
A Pragmatic Non-Blocking Concurrent
Directed Acyclic Graph

Sathya Peri1 Muktikanta Sa1 Nandini Singhal2

1Department of Computer Science & Engineering,
Indian Institute of Technology Hyderabad, India
{sathya p@iith.ac.in, cs15resch11012@iith.ac.in}
2Microsoft (R&D) Pvt. Ltd, Bangalore, India

nandini12396@gmail.com

Non-blocking Acyclic Graph IIT Hyderabad 1/44



Outline of the Presentation

1 Introduction

2 The System Model

3 The ADT Operations

4 Modified ADT Operations: For Maintaining Acyclicity

5 The Data Structure

6 Acyclic Add Edge Operation

7 Reachability Methods to Test a Cycle

8 Correctness and Progress Guarantees

9 Simulation Results

Non-blocking Acyclic Graph IIT Hyderabad 2/44



Introduction

Common real world objects can be modeled as graphs, which build
the pairwise relations between objects.

Graph algorithms applied in many applications, including social
networks, communication networks, VLSI design, graphics, etc.

Often these graphs are dynamic in nature and the updates are
real-time.

Figure: Concurrent Graph.

Non-blocking Acyclic Graph IIT Hyderabad 3/44



Introduction

Common real world objects can be modeled as graphs, which build
the pairwise relations between objects.

Graph algorithms applied in many applications, including social
networks, communication networks, VLSI design, graphics, etc.

Often these graphs are dynamic in nature and the updates are
real-time.

Figure: Concurrent Graph.

Non-blocking Acyclic Graph IIT Hyderabad 3/44



Acyclic Graph

Several applications which maintain dynamic graphs require it to be
acyclic such as:

Databases: Serialization Graph Testing (SGT) in the field of
Databases and Transactional Memory Systems (TM).

Blockchains: Several blockchains maintain acyclic graphs such as tree
structure (Bitcoin, Ethereum) or general DAGs (Tangle).

Deadlock Detection: Several deadlock detection algorithms have been
proposed in literature that require maintenance of acyclic graphs.

Data processing, Data compression etc.

Non-blocking Acyclic Graph IIT Hyderabad 4/44



The System Model

Asynchronous shared-memory model with a finite set of p processors
accessed by a finite set of n threads.

The non-faulty threads communicate with each other by invoking
methods on the shared objects.

Execution on a shared-memory multi-processor system which supports
atomic read, write, fetch-and-add (FAA) and

compare-and-swap (CAS) instructions.

Figure: Concurrent Threads.

Non-blocking Acyclic Graph IIT Hyderabad 5/44



The System Model

Asynchronous shared-memory model with a finite set of p processors
accessed by a finite set of n threads.

The non-faulty threads communicate with each other by invoking
methods on the shared objects.

Execution on a shared-memory multi-processor system which supports
atomic read, write, fetch-and-add (FAA) and

compare-and-swap (CAS) instructions.

Figure: Concurrent Threads.

Non-blocking Acyclic Graph IIT Hyderabad 5/44



The ADT Operations a

aBapi Chatterjee, Sathya Peri, Muktikanta Sa, and Nandini Singhal. A Simple and
Practical Concurrent Non-blocking Unbounded Graph with Linearizable Reachability
Queries,ICDCN 2019.

Non-blocking Acyclic Graph IIT Hyderabad 6/44



The ADT Operations

Non-blocking Acyclic Graph IIT Hyderabad 7/44



Difficulty with Maintaining Acyclicity

Non-blocking Acyclic Graph IIT Hyderabad 8/44



Difficulty with Maintaining Acyclicity

Non-blocking Acyclic Graph IIT Hyderabad 8/44



Difficulty with Maintaining Acyclicity

Non-blocking Acyclic Graph IIT Hyderabad 8/44



Correctness

The inconsistency is due to violation of correctness.

The correctness-criterion that we consider is linearizability.

A concurrent data-strcture d is linearizable if for any history
(execution) H output by d :

Assign an atomic step as a linearization point (LP) inside the execution
interval of each of the operations.
The history H is equivalent to a valid sequential execution obtained by
ordering the operations by their LPs.

Non-blocking Acyclic Graph IIT Hyderabad 9/44



Correctness

The inconsistency is due to violation of correctness.

The correctness-criterion that we consider is linearizability.

A concurrent data-strcture d is linearizable if for any history
(execution) H output by d :

Assign an atomic step as a linearization point (LP) inside the execution
interval of each of the operations.
The history H is equivalent to a valid sequential execution obtained by
ordering the operations by their LPs.

Non-blocking Acyclic Graph IIT Hyderabad 9/44



Correctness

The inconsistency is due to violation of correctness.

The correctness-criterion that we consider is linearizability.

A concurrent data-strcture d is linearizable if for any history
(execution) H output by d :

Assign an atomic step as a linearization point (LP) inside the execution
interval of each of the operations.
The history H is equivalent to a valid sequential execution obtained by
ordering the operations by their LPs.

Non-blocking Acyclic Graph IIT Hyderabad 9/44



Correctness

The inconsistency is due to violation of correctness.

The correctness-criterion that we consider is linearizability.

A concurrent data-strcture d is linearizable if for any history
(execution) H output by d :

Assign an atomic step as a linearization point (LP) inside the execution
interval of each of the operations.
The history H is equivalent to a valid sequential execution obtained by
ordering the operations by their LPs.

Non-blocking Acyclic Graph IIT Hyderabad 9/44



Linearizability Example: Set Data-Structure

Non-blocking Acyclic Graph IIT Hyderabad 10/44



Linearizability Example: Set Data-Structure

Non-blocking Acyclic Graph IIT Hyderabad 10/44



Progress Guarantees

Wait-free

A method is wait-free if it guarantees that every call finishes its execution
in a finite number of steps.

Lock-free

A method is lock-free if it guarantees that infinitely often some method
call finishes in a finite number of steps.

Obstruction-free

A method is obstruction-free if, from any point after which it executes in
isolation, it finishes in a finite number of steps (method call executes in
isolation if no other threads take steps).

Non-blocking Acyclic Graph IIT Hyderabad 11/44



Progress Guarantees

Wait-free

A method is wait-free if it guarantees that every call finishes its execution
in a finite number of steps.

Lock-free

A method is lock-free if it guarantees that infinitely often some method
call finishes in a finite number of steps.

Obstruction-free

A method is obstruction-free if, from any point after which it executes in
isolation, it finishes in a finite number of steps (method call executes in
isolation if no other threads take steps).

Non-blocking Acyclic Graph IIT Hyderabad 11/44



Progress Guarantees

Wait-free

A method is wait-free if it guarantees that every call finishes its execution
in a finite number of steps.

Lock-free

A method is lock-free if it guarantees that infinitely often some method
call finishes in a finite number of steps.

Obstruction-free

A method is obstruction-free if, from any point after which it executes in
isolation, it finishes in a finite number of steps (method call executes in
isolation if no other threads take steps).

Non-blocking Acyclic Graph IIT Hyderabad 11/44



Progress Guarantees

Wait-free

A method is wait-free if it guarantees that every call finishes its execution
in a finite number of steps.

Lock-free

A method is lock-free if it guarantees that infinitely often some method
call finishes in a finite number of steps.

Obstruction-free

A method is obstruction-free if, from any point after which it executes in
isolation, it finishes in a finite number of steps (method call executes in
isolation if no other threads take steps).

Non-blocking Acyclic Graph IIT Hyderabad 11/44



Modification of ADT Operations: For Maintaining
Acyclicity

1 AddVertex

2 RemoveVertex

3 ContainsVertex

4 AddEdge

5 RemoveEdge

6 ContainsEdge

Non-blocking Acyclic Graph IIT Hyderabad 12/44



Modification of ADT Operations: For Maintaining
Acyclicity

1 AddVertex

2 RemoveVertex

3 ContainsVertex

4 AddEdge

5 RemoveEdge

6 ContainsEdge

Non-blocking Acyclic Graph IIT Hyderabad 13/44



Modification of AddEdge Operation: For Maintaining
Acyclicity

1 Only edge addition can cause cycle

2 So, we modify AddEdge to ensure that no cycles are formed.

Non-blocking Acyclic Graph IIT Hyderabad 14/44



Modification of AddEdge Operation: For Maintaining
Acyclicity

1 Only edge addition can cause cycle

2 So, we modify AddEdge to ensure that no cycles are formed.

Non-blocking Acyclic Graph IIT Hyderabad 14/44



The Data Structure

A directed graph G = (V ,E )

represented as an adjacency list

enables it to grow (up to the availability of memory) and sink at the
runtime.

based on [Chatterjee et. al., ICDCN 2019]

Non-blocking Acyclic Graph IIT Hyderabad 15/44



The Data Structure

A directed graph G = (V ,E )

represented as an adjacency list

enables it to grow (up to the availability of memory) and sink at the
runtime.

based on [Chatterjee et. al., ICDCN 2019]

Non-blocking Acyclic Graph IIT Hyderabad 15/44



The Data Structure

A directed graph G = (V ,E )

represented as an adjacency list

enables it to grow (up to the availability of memory) and sink at the
runtime.

based on [Chatterjee et. al., ICDCN 2019]

Non-blocking Acyclic Graph IIT Hyderabad 15/44



The Data Structure - Node States

The states of the nodes

VNode: MARKED or UNMARKED. Similar to a concurrent list-based set.

ENode: MARKED or ADDED or TRANSIT.

Non-blocking Acyclic Graph IIT Hyderabad 16/44



The Data Structure - Node States

The states of the nodes

VNode: MARKED or UNMARKED. Similar to a concurrent list-based set.

ENode: MARKED or ADDED or TRANSIT.

Non-blocking Acyclic Graph IIT Hyderabad 16/44



Acyclic Add Edge Operation

Non-blocking Acyclic Graph IIT Hyderabad 17/44



Acyclic Add Edge Operation

Non-blocking Acyclic Graph IIT Hyderabad 18/44



Acyclic Add Edge Operation Cont...

Non-blocking Acyclic Graph IIT Hyderabad 19/44



Acyclic Add Edge Operation Cont...

Non-blocking Acyclic Graph IIT Hyderabad 20/44



Acyclic Add Edge Operation Cont...

Non-blocking Acyclic Graph IIT Hyderabad 21/44



Acyclic Add Edge Operation Cont...

Non-blocking Acyclic Graph IIT Hyderabad 22/44



Acyclic Add Edge Operation Cont...

Non-blocking Acyclic Graph IIT Hyderabad 23/44



Acyclic Add Edge Operation Cont...

Non-blocking Acyclic Graph IIT Hyderabad 24/44



Algorithm of Add Edge

1 Add an edge with the TRANSIT state.

2 Invokes the reachability method to test whether this edge creates a
cycle or not

1 If so, we delete the edge by setting its state from TRANSIT to MARKED

and return false along with an indicative string CYCLE DETECTED.
2 Otherwise, we set the state from TRANSIT to ADDED and return true

along with an indicative string EDGE ADDED.

3 An edge in TRANSIT state is not visible to containsEdge operations.

Non-blocking Acyclic Graph IIT Hyderabad 25/44



Algorithm of Add Edge

1 Add an edge with the TRANSIT state.
2 Invokes the reachability method to test whether this edge creates a

cycle or not

1 If so, we delete the edge by setting its state from TRANSIT to MARKED

and return false along with an indicative string CYCLE DETECTED.
2 Otherwise, we set the state from TRANSIT to ADDED and return true

along with an indicative string EDGE ADDED.

3 An edge in TRANSIT state is not visible to containsEdge operations.

Non-blocking Acyclic Graph IIT Hyderabad 25/44



Algorithm of Add Edge

1 Add an edge with the TRANSIT state.
2 Invokes the reachability method to test whether this edge creates a

cycle or not
1 If so, we delete the edge by setting its state from TRANSIT to MARKED

and return false along with an indicative string CYCLE DETECTED.
2 Otherwise, we set the state from TRANSIT to ADDED and return true

along with an indicative string EDGE ADDED.

3 An edge in TRANSIT state is not visible to containsEdge operations.

Non-blocking Acyclic Graph IIT Hyderabad 25/44



Algorithm of Add Edge

1 Add an edge with the TRANSIT state.
2 Invokes the reachability method to test whether this edge creates a

cycle or not
1 If so, we delete the edge by setting its state from TRANSIT to MARKED

and return false along with an indicative string CYCLE DETECTED.
2 Otherwise, we set the state from TRANSIT to ADDED and return true

along with an indicative string EDGE ADDED.

3 An edge in TRANSIT state is not visible to containsEdge operations.

Non-blocking Acyclic Graph IIT Hyderabad 25/44



Reachability Methods to Test a Cycle

We present two approaches for maintaining acyclicity:

1 First one is based on a Wait-free Reachability query (SCR: Single
Collect Reachable)

2 Second one is based on a Obstruction-free Reachability query (DCR:
Double Collect Reachable), similar to the GetPathb algorithm.

bBapi Chatterjee, Sathya Peri, Muktikanta Sa, and Nandini Singhal. A Simple and
Practical Concurrent Non-blocking Unbounded Graph with Linearizable Reachability
Queries,ICDCN 2019.

Non-blocking Acyclic Graph IIT Hyderabad 26/44



Reachability Methods to Test a Cycle

We present two approaches for maintaining acyclicity:

1 First one is based on a Wait-free Reachability query (SCR: Single
Collect Reachable)

2 Second one is based on a Obstruction-free Reachability query (DCR:
Double Collect Reachable), similar to the GetPathb algorithm.

bBapi Chatterjee, Sathya Peri, Muktikanta Sa, and Nandini Singhal. A Simple and
Practical Concurrent Non-blocking Unbounded Graph with Linearizable Reachability
Queries,ICDCN 2019.

Non-blocking Acyclic Graph IIT Hyderabad 26/44



SCR(k , l) : Wait-free Reachability

Non-blocking Acyclic Graph IIT Hyderabad 27/44



SCR(k , l) : Wait-free Reachability

Non-blocking Acyclic Graph IIT Hyderabad 28/44



SCR(k , l) : Wait-free Reachability

Non-blocking Acyclic Graph IIT Hyderabad 29/44



SCR(k , l) : Wait-free Reachability

Algorithm

1 Performs non-recursive BFS traversal starting from the vertex k .

2 Explores all VNodes which are reachable from k and are unmarked,
i.e., are either TRANSIT or ADDEDENodes.

3 If it reaches l , then it terminates by returning true to the AddEdge
operation.

4 If it unable to reach l then it terminates by returning false to the
AddEdge operation.

Non-blocking Acyclic Graph IIT Hyderabad 30/44



SCR(k , l) : Wait-free Reachability

Algorithm

1 Performs non-recursive BFS traversal starting from the vertex k .

2 Explores all VNodes which are reachable from k and are unmarked,
i.e., are either TRANSIT or ADDEDENodes.

3 If it reaches l , then it terminates by returning true to the AddEdge
operation.

4 If it unable to reach l then it terminates by returning false to the
AddEdge operation.

Non-blocking Acyclic Graph IIT Hyderabad 30/44



SCR(k , l) : Wait-free Reachability

Algorithm

1 Performs non-recursive BFS traversal starting from the vertex k .

2 Explores all VNodes which are reachable from k and are unmarked,
i.e., are either TRANSIT or ADDEDENodes.

3 If it reaches l , then it terminates by returning true to the AddEdge
operation.

4 If it unable to reach l then it terminates by returning false to the
AddEdge operation.

Non-blocking Acyclic Graph IIT Hyderabad 30/44



SCR(k , l) : Wait-free Reachability

Algorithm

1 Performs non-recursive BFS traversal starting from the vertex k .

2 Explores all VNodes which are reachable from k and are unmarked,
i.e., are either TRANSIT or ADDEDENodes.

3 If it reaches l , then it terminates by returning true to the AddEdge
operation.

4 If it unable to reach l then it terminates by returning false to the
AddEdge operation.

Non-blocking Acyclic Graph IIT Hyderabad 30/44



DCR(k,l) : Obstruction-free Reachability

Double Collect Problem: First Collect

Non-blocking Acyclic Graph IIT Hyderabad 31/44



After First Collect Graph Restored

Non-blocking Acyclic Graph IIT Hyderabad 32/44



Double Collect Problem: Second Collect

Non-blocking Acyclic Graph IIT Hyderabad 33/44



Solution

To solve these issues...

1 We take double collect.

2 In each scan we collect BFS-tree which is a partial snapshot.

3 To capture the modifications.
1 We have a counter associated with each vertex.
2 Whenever any edge operations happens the counter incremented.

4 To verify the double collect we compare with BFS-tree alone with
counter.

5 If the both the double collects are same
1 We have valid snapshot
2 We analyse the the valid snapshot for the presence or absence of the

path.

Non-blocking Acyclic Graph IIT Hyderabad 34/44



Solution

To solve these issues...

1 We take double collect.

2 In each scan we collect BFS-tree which is a partial snapshot.

3 To capture the modifications.
1 We have a counter associated with each vertex.
2 Whenever any edge operations happens the counter incremented.

4 To verify the double collect we compare with BFS-tree alone with
counter.

5 If the both the double collects are same
1 We have valid snapshot
2 We analyse the the valid snapshot for the presence or absence of the

path.

Non-blocking Acyclic Graph IIT Hyderabad 34/44



Solution

To solve these issues...

1 We take double collect.

2 In each scan we collect BFS-tree which is a partial snapshot.

3 To capture the modifications.
1 We have a counter associated with each vertex.
2 Whenever any edge operations happens the counter incremented.

4 To verify the double collect we compare with BFS-tree alone with
counter.

5 If the both the double collects are same
1 We have valid snapshot
2 We analyse the the valid snapshot for the presence or absence of the

path.

Non-blocking Acyclic Graph IIT Hyderabad 34/44



Correctness and Progress Guarantees

Theorem 1:
1 The ADT operations are linearizable.

Theorem 2:

The ADT operations are non-blocking:

1 The operations ContainsVertex, ContainsEdge and SCR are wait-free.

2 The operation DCR is obstruction-free.

3 The operations AddVertex, RemoveVertex, ContainsVertex, AddEdge,
RemoveEdge, and ContainsEdge are lock-free.

Proofs of the Theorem 1 and 2 are shown in the paper.

Non-blocking Acyclic Graph IIT Hyderabad 35/44



Correctness and Progress Guarantees

Theorem 1:
1 The ADT operations are linearizable.

Theorem 2:

The ADT operations are non-blocking:

1 The operations ContainsVertex, ContainsEdge and SCR are wait-free.

2 The operation DCR is obstruction-free.

3 The operations AddVertex, RemoveVertex, ContainsVertex, AddEdge,
RemoveEdge, and ContainsEdge are lock-free.

Proofs of the Theorem 1 and 2 are shown in the paper.

Non-blocking Acyclic Graph IIT Hyderabad 35/44



Correctness and Progress Guarantees

Theorem 1:
1 The ADT operations are linearizable.

Theorem 2:

The ADT operations are non-blocking:

1 The operations ContainsVertex, ContainsEdge and SCR are wait-free.

2 The operation DCR is obstruction-free.

3 The operations AddVertex, RemoveVertex, ContainsVertex, AddEdge,
RemoveEdge, and ContainsEdge are lock-free.

Proofs of the Theorem 1 and 2 are shown in the paper.

Non-blocking Acyclic Graph IIT Hyderabad 35/44



Experimental Setup

Intel(R) Xeon(R) E5-2690 v4 CPU containing 14 cores running at
2.60GHz on two sockets. Each core supports 2 logical threads.

Thus, a total of 56 logical cores.

Implementation in C++ without any garbage collection.
Multi-threaded implementation is based on Posix threads.

Start experiments, with 1000 vertices and approximately 125000
edges added randomly.

We measure throughput obtained on running the experiment for 20
seconds.

Each data point is obtained by averaging over 7 iterations.

We compare the SCR and DCR with its sequential and coarse-grained
counterparts.

Non-blocking Acyclic Graph IIT Hyderabad 36/44



Experimental Setup

Intel(R) Xeon(R) E5-2690 v4 CPU containing 14 cores running at
2.60GHz on two sockets. Each core supports 2 logical threads.

Thus, a total of 56 logical cores.

Implementation in C++ without any garbage collection.
Multi-threaded implementation is based on Posix threads.

Start experiments, with 1000 vertices and approximately 125000
edges added randomly.

We measure throughput obtained on running the experiment for 20
seconds.

Each data point is obtained by averaging over 7 iterations.

We compare the SCR and DCR with its sequential and coarse-grained
counterparts.

Non-blocking Acyclic Graph IIT Hyderabad 36/44



Experimental Setup

Intel(R) Xeon(R) E5-2690 v4 CPU containing 14 cores running at
2.60GHz on two sockets. Each core supports 2 logical threads.

Thus, a total of 56 logical cores.

Implementation in C++ without any garbage collection.
Multi-threaded implementation is based on Posix threads.

Start experiments, with 1000 vertices and approximately 125000
edges added randomly.

We measure throughput obtained on running the experiment for 20
seconds.

Each data point is obtained by averaging over 7 iterations.

We compare the SCR and DCR with its sequential and coarse-grained
counterparts.

Non-blocking Acyclic Graph IIT Hyderabad 36/44



Experimental Setup

Intel(R) Xeon(R) E5-2690 v4 CPU containing 14 cores running at
2.60GHz on two sockets. Each core supports 2 logical threads.

Thus, a total of 56 logical cores.

Implementation in C++ without any garbage collection.
Multi-threaded implementation is based on Posix threads.

Start experiments, with 1000 vertices and approximately 125000
edges added randomly.

We measure throughput obtained on running the experiment for 20
seconds.

Each data point is obtained by averaging over 7 iterations.

We compare the SCR and DCR with its sequential and coarse-grained
counterparts.

Non-blocking Acyclic Graph IIT Hyderabad 36/44



Experimental Setup

Intel(R) Xeon(R) E5-2690 v4 CPU containing 14 cores running at
2.60GHz on two sockets. Each core supports 2 logical threads.

Thus, a total of 56 logical cores.

Implementation in C++ without any garbage collection.
Multi-threaded implementation is based on Posix threads.

Start experiments, with 1000 vertices and approximately 125000
edges added randomly.

We measure throughput obtained on running the experiment for 20
seconds.

Each data point is obtained by averaging over 7 iterations.

We compare the SCR and DCR with its sequential and coarse-grained
counterparts.

Non-blocking Acyclic Graph IIT Hyderabad 36/44



Workload Distributions

Graph Operations: AddVertex, RemoveVertex, ContainsVertex, AddEdge,
RemoveEdge and ContainsEdge

Lookup Intensive: (2.5%, 2.5%, 45%, 2.5%, 2.5%, 45%)

Equal Lookup and Updates: (12.5%, 12.5%, 25%,12.5%, 12.5%,
25%)

Update Intensive: (22.5%, 22.5%, 5%, 22.5%, 22.5%, 5%)

We have compared the following cases.

S. No Label Explanation

1 Sequential Sequential execution of all the operations

2 Coarse-lock Coarse lock execution of all the operations

3 SCR AddEdge based on Single Collect Reachable Algorithm

4 DCR AddEdge based on Double Collect Reachable Algorithm

Non-blocking Acyclic Graph IIT Hyderabad 37/44



Workload Distributions

Graph Operations: AddVertex, RemoveVertex, ContainsVertex, AddEdge,
RemoveEdge and ContainsEdge

Lookup Intensive: (2.5%, 2.5%, 45%, 2.5%, 2.5%, 45%)

Equal Lookup and Updates: (12.5%, 12.5%, 25%,12.5%, 12.5%,
25%)

Update Intensive: (22.5%, 22.5%, 5%, 22.5%, 22.5%, 5%)

We have compared the following cases.

S. No Label Explanation

1 Sequential Sequential execution of all the operations

2 Coarse-lock Coarse lock execution of all the operations

3 SCR AddEdge based on Single Collect Reachable Algorithm

4 DCR AddEdge based on Double Collect Reachable Algorithm

Non-blocking Acyclic Graph IIT Hyderabad 37/44



Results

Non-blocking Acyclic Graph IIT Hyderabad 38/44



Results

Non-blocking Acyclic Graph IIT Hyderabad 39/44



Observation

1 Both SCR and DCR algorithms suffer from false-positives due to
concurrent addition of edges.

2 In the future, we plan to measure the number of false positives
incurred by these algorithms.

3 Identify ways to reduce them.

Non-blocking Acyclic Graph IIT Hyderabad 40/44



Observation

1 Both SCR and DCR algorithms suffer from false-positives due to
concurrent addition of edges.

2 In the future, we plan to measure the number of false positives
incurred by these algorithms.

3 Identify ways to reduce them.

Non-blocking Acyclic Graph IIT Hyderabad 40/44



Observation

1 Both SCR and DCR algorithms suffer from false-positives due to
concurrent addition of edges.

2 In the future, we plan to measure the number of false positives
incurred by these algorithms.

3 Identify ways to reduce them.

Non-blocking Acyclic Graph IIT Hyderabad 40/44



Conclusion

1 Two efficient non-blocking concurrent algorithms for maintaining
acyclicity in a directed graph where vertices and edges are
dynamically inserted and/or deleted.

2 The first algorithm is based on a wait-free reachability query: SCR

3 the second one is based on partial snapshot-based obstruction-free
reachability query: DCR

4 We extensively evaluate a sample C/C++ implementation of the
algorithm through a number of micro-benchmarks.

5 Our experiments show that the proposed algorithm scales 7X with the
number of threads in commonly available multi-core systems.

Non-blocking Acyclic Graph IIT Hyderabad 41/44



Conclusion

1 Two efficient non-blocking concurrent algorithms for maintaining
acyclicity in a directed graph where vertices and edges are
dynamically inserted and/or deleted.

2 The first algorithm is based on a wait-free reachability query: SCR

3 the second one is based on partial snapshot-based obstruction-free
reachability query: DCR

4 We extensively evaluate a sample C/C++ implementation of the
algorithm through a number of micro-benchmarks.

5 Our experiments show that the proposed algorithm scales 7X with the
number of threads in commonly available multi-core systems.

Non-blocking Acyclic Graph IIT Hyderabad 41/44



Conclusion

1 Two efficient non-blocking concurrent algorithms for maintaining
acyclicity in a directed graph where vertices and edges are
dynamically inserted and/or deleted.

2 The first algorithm is based on a wait-free reachability query: SCR

3 the second one is based on partial snapshot-based obstruction-free
reachability query: DCR

4 We extensively evaluate a sample C/C++ implementation of the
algorithm through a number of micro-benchmarks.

5 Our experiments show that the proposed algorithm scales 7X with the
number of threads in commonly available multi-core systems.

Non-blocking Acyclic Graph IIT Hyderabad 41/44



Conclusion

1 Two efficient non-blocking concurrent algorithms for maintaining
acyclicity in a directed graph where vertices and edges are
dynamically inserted and/or deleted.

2 The first algorithm is based on a wait-free reachability query: SCR

3 the second one is based on partial snapshot-based obstruction-free
reachability query: DCR

4 We extensively evaluate a sample C/C++ implementation of the
algorithm through a number of micro-benchmarks.

5 Our experiments show that the proposed algorithm scales 7X with the
number of threads in commonly available multi-core systems.

Non-blocking Acyclic Graph IIT Hyderabad 41/44



Conclusion

1 Two efficient non-blocking concurrent algorithms for maintaining
acyclicity in a directed graph where vertices and edges are
dynamically inserted and/or deleted.

2 The first algorithm is based on a wait-free reachability query: SCR

3 the second one is based on partial snapshot-based obstruction-free
reachability query: DCR

4 We extensively evaluate a sample C/C++ implementation of the
algorithm through a number of micro-benchmarks.

5 Our experiments show that the proposed algorithm scales 7X with the
number of threads in commonly available multi-core systems.

Non-blocking Acyclic Graph IIT Hyderabad 41/44



For More Information

1 The Technical Report is available at:
https://arxiv.org/abs/1611.03947

2 And the complete source code is available at:
https://github.com/PDCRL/ConcurrentGraphDS

Non-blocking Acyclic Graph IIT Hyderabad 42/44



Thank You!

Non-blocking Acyclic Graph IIT Hyderabad 43/44



For Further Reading..

Chatterjee B. et al. A Simple and Practical Concurrent Non-blocking Unbounded Graph with Linearizable Reachability

Queries. Proceedings of the 20th International Conference on Distributed Computing and Networking, ICDCN 2019

Maurice P. et al. Linearizability: A Correctness Condition for Concurrent Objects. ACM Transactions on Programming

Languages and Systems, Vol. 12, No. 3, July 1990, Pages 463-492.

Y. Riany. et al. Towards a practical snapshot algorithm. Theoretical Computer Science, 269(1-2): 163-201, 2001.

Timothy L. Harris. A Pragmatic Implementation of Non-blocking Linked-Lists. Distributed Computing, 15th International

Conference, DISC 2001.

Maurice Herlihy and Nir Shavit. The Art of Multiprocesor Programming, Revised Print. Imprinted Morgan

Kaufmann,Elsevier, May 2012.

A. Natarajan and N. Mittal, Fast concurrent lock-free binary search trees 19th PPoPP, 2014, pp. 317–328.

Arnab Sinha, Sharad Malik, Runtime checking of serializability in software transactional memory, Parallel & Distributed

Processing (IPDPS), 2010

Khanh Do Ba, Wait-Free and Obstruction-Free Snapshot, Dartmouth Computer Science Technical Report TR2006-578,

June 2006.

Y. Afek, H. Attiya, D. Dolev, E. Gafni, M. Merritt and N. Shavit. Atomic snapshots of shared memory. Proc. ACM

PODC , 1–14, 1990.

Steve Heller, Maurice Herlihy, Victor Luchangco, Mark Moir, William N. Scherer III, Nir Shavit. A Lazy Concurrent

List-Based Set Algorithm. Parallel Processing Letters, volume 17, 4, 411–424, 2007,

Non-blocking Acyclic Graph IIT Hyderabad 44/44


	Introduction
	The System Model
	The ADT Operations
	Modified ADT Operations: For Maintaining Acyclicity
	The Data Structure
	Acyclic Add Edge Operation
	Reachability Methods to Test a Cycle
	Correctness and Progress Guarantees
	Simulation Results

