
Efficient means of Achieving Composability using
Object based Semantics in Transactional Memory

Systems?

Sathya Peri, Ajay Singh, and Archit Somani??

Department of Computer Science & Engineering, IIT Hyderabad, India
(sathya p, cs15mtech01001, cs15resch01001)@iith.ac.in

Abstract. Composing together the individual atomic methods of concurrent data-
structures (cds) pose multiple design and consistency challenges. In this context
composition provided by transactions in software transaction memory (STM) can
be handy. However, most of the STMs offer read/write primitives to access shared
cds. These read/write primitives result in unnecessary aborts. Instead, semantically
rich higher-level methods of the underlying cds like lookup, insert or delete (in
case of hash-table or lists) aid in ignoring unimportant lower level read/write
conflicts and allow better concurrency.
In this paper, we adapt transaction tree model in databases to propose OSTM
which enables efficient composition in cds. We extend the traditional notion of
conflicts and legality to higher level methods of cds using STMs and lay down
detailed correctness proof to show that it is co-opaque. We implement OSTM
with concurrent closed addressed hash-table (HT-OSTM) and list (list-OSTM)
which exports the higher-level operations as transaction interface.
In our experiments with varying workloads and randomly generated transaction
operations, HT-OSTM shows speedup of 3 to 6 times and w.r.t aborts HT-OSTM is
3 to 7 times better than ESTM and read/write based STM, respectively. Where as,
list-OSTM outperforms state of the art lock-free transactional list, NOrec STM
list and boosted list by 30% to 80% across all workloads and scenarios. Further,
list-OSTM incurred negligible aborts in comparison to other techniques considered
in the paper.
Keywords: Concurrent Data Structures, Composability, Software Transactional
Memory, Opacity, Co-opacity

1 Introduction
Software Transaction Memory Systems (STMs) are a convenient programming interface
for a programmer to access shared memory without worrying about concurrency issues
[1, 2] and are natural choice for achieving composability [3].

Most of the STMs proposed in the literature are specifically based on read/write
primitive operations (or methods) on memory buffers (or memory registers). These STMs
typically export the following methods: STM begin which begins a transaction, t read
which reads from a buffer, t write which writes onto a buffer, tryC which validates the
operations of the transaction and tries to commit. We refer to these as Read-Write STMs
or RWSTMs. As a part of the validation, the STMs typically check for conflicts among
? A preliminary version of this work was accepted in AADDA 2017 as work in progress.

?? Author sequence follows lexical order of last names.

2 Sathya Peri, Ajay Singh, and Archit Somani

the operations. Two operations are said to be conflicting if at least one of them is a
write (or update) operation. Normally, the order of two conflicting operations cannot
be commutated. On the other hand, Object STMs or OSTMs operate on higher level
objects rather than read & write operations on memory locations. They include more
semantically rich operations such as enq/deq on queue objects, push/pop on stack objects
and insert/lookup/delete on sets, trees or hash-table objects depending upon the
underlying data structure used to implement OSTM.

It was shown in databases that object-level systems provide greater concurrency than
read/write systems [4, Chap 6]. Along the same lines, we propose a model to achieve
composability with greater concurrency for STMs by considering higher-level objects
which leverage the richer semantics of object level methods. We motivate this with an
interesting example.

Consider an OSTM operating on the hash-table object called as Hash-table
Object STM or HT-OSTM which exports the following methods - STM beginwhich
begins a transaction (same as in RWSTMs); STM insert which inserts a value for a given
key; STM delete which deletes the value associated with the given key; STM lookup
which looks up the value associated with the given key and STM tryC which validates
the operations of the transaction.

(ii) H1: Transactional tree history(i) Underlying list

Layer-1: Lookups & Deletes

Layer-0: Reads & Writes

−∞ k2 k5 k7 k8 +∞

T1

l1(k5)

r1(k2) r1(k5) r2(k2) r2(k5) r2(k7) w2(k5)

d2(k7)

T2

c2

l1(k8)

w2(k7) r1(k2) r1(k5) r1(k8)

Fig. 1: Motivational example for OSTMs

A simple way to implement the concurrent HT-OSTM is using a list (a single bucket)
where each element of the list stores the 〈key, value〉 pair. The elements of the list
are sorted by their keys similar to the set implementations discussed in [5, Chap 9].
It can be seen that the underlying list is a concurrent data-structure manipulated by
multiple transactions. So, we may use the lazy-list based concurrent set [6] to implement
the operations of the list denoted as: list insert, list del and list lookup. Thus, when a
transaction invokes STM insert(shortened as i), STM delete(shortened as d) and STM -
lookup(shortened as l) methods, the STM internally invokes the list insert, list del and
list lookup methods respectively.

Consider an instance of list in which the nodes with keys 〈k2 k5 k7 k8〉 are present
in the hash-table as shown in Figure 1(i) and transactions T1 and T2 are concur-
rently executing STM lookup1(k5), STM delete2(k7) and STM lookup1(k8) as shown
in Figure 1(ii). In this setting, suppose a transaction T1 of HT-OSTM invokes methods
STM lookup on the keys k5, k8. This would internally cause the HT-OSTM to invoke
list lookup method on keys 〈k2, k5〉 and 〈k2, k5, k7, k8〉 respectively.

Efficient means of Achieving Composability using OSTM 3

Concurrently, suppose transaction T2 invokes the method STM delete on key k7
between the two STM lookups of T1. This would cause, HT-OSTM to invoke list del
method of list on k7. Since, we are using lazy-list approach on the underlying list, list del
involves pointing the next field of element k5 to k8 and marking element k7 as deleted.
Thus list del of k7 would execute the following sequence of read/write level operations-
r(k2)r(k5)r(k7)w(k5)w(k7) where r(k5), w(k5) denote read & write on the element
k5 with some value respectively. The execution of HT-OSTM denoted as a history can be
represented as a transactional forest as shown in Figure 1(ii). Here the execution of each
transaction is a tree.

In this execution, we denote the read/write operations (leaves) as layer-0 and STM -
lookup, STM delete methods as layer-1. Consider the history (execution) at layer-0
(while ignoring higher-level operations), denoted as H0. It can be verified this history is
not opaque [7]. This is because between the two reads of k5 by T1, T2 writes to k5. It
can be seen that if history H0 is input to a RWSTMs one of the transactions among T1

and T2 would be aborted to ensure correctness (in this case opacity [7]). On the other
hand consider the history H1 at layer-1 consisting of STM lookup, STM delete methods
while ignoring the underlying read/write operations. We ignore the underlying read &
write operations since they do not overlap (referred to as pruning in [4, Chap 6]). Since
these methods operate on different keys, they are not conflicting and can be re-ordered
either way. Thus, we get that H1 is opaque [7] with T1T2 (or T2T1) being an equivalent
serial history.

The important idea in the above argument is that some conflicts at lower-level
operations do not matter at higher level operations. Thus, such lower level conflicting
operations may be ignored a. Harris et al. referred to it as benign-conflicts [9]. With
object level modeling of histories, we get a higher number of acceptable schedules
than read/write model. The history, H1 in Figure 1(ii) clearly shows the advantage of
considering STMs with higher level STM insert, STM delete and STM lookup operations.

The atomic property of transactions helps to correctly compose together several
different individual operations. The above examples demonstrate that the concurrency in
such STM can be enhanced by considering the object level semantics. To achieve this,
in this paper:(a) We propose a generic framework for composing higher level objects
based on the notion of conflicts for objects in databases [4, Chap 6]. (b) For correctness
our framework considers, opacity [7] a popular correctness-criterion for STMs which is
different from serializability commonly used in databases. It can be proved that verifying
the membership of opacity similar to view-serializability is NP-Complete [10]. Hence,
using conflicts we develop a subclass of opacity which is conflict opacity or co-opacity
for objects. We then develop polynomial time graph characterization for co-opacity based
on conflict-graph acyclicity. The proposed correctness-criterion, co-opacity is similar
to the notion of conflict-opacity developed for RWSTMs by Kuznetsov & Peri [11]. (c)
To show the efficacy of this framework, we develop HT-OSTM based on the idea of
basic timestamp order (BTO) scheduler developed in databases [4, Chap 4]. For showing
correctness of HT-OSTM, we show that all the methods are linearizabale while the
transactions are co-opaque by showing that the corresponding conflict graph is acyclic.

a While some conflicts of lower level do not matter at higher level, some other conflicts do. An
example illustrating this is shown in the technical report [8]

4 Sathya Peri, Ajay Singh, and Archit Somani

Although we have considered HT-OSTM here, we believe that this notion of conflicts
can be extended to other high-level objects such as Stacks, Queues, Tries etc.

A simple modification of HT-OSTM gives us a concurrent list based STM or list-
OSTM. Finally, we compared the performance of HT-OSTM against a hash-table
application built ESTM [12] and BTO [4] based RWSTM. The list-OSTM is compared
with lock-free transactional list [13], NOrec based RSTM list [14] and boosting list [15].
The results in Section 5 represent HT-OSTM and list-OSTM reduces the number of aborts
to minimal and show significant performance gain in comparison to other techniques.

Related Work: Our work differs from databases model in with regard to correctness-
criterion used for safety. While databases consider CSR. We consider linearizability
to prove the correctness of the methods of the transactions and opacity to show the
correctness of the transactions. Earliest work of using the semantics of concurrent data
structures for object level granularity include that of open nested transactions [16] and
transaction boosting of Herlihy et al. [15] which is based on serializability(strict or
commit order serializability) of generated schedules as correctness criteria. Herlihy’s
model is pessimistic and uses undo logs for rollback. Our model is more optimistic in
that sense and the underlying data structure is updated only after there is a guarantee that
there is no inconsistency due to concurrency. Thus, we do not need to do rollbacks which
keeps the log overhead minimal. This also solves the problem of irrevocable operations
being executed during a transaction which might abort later otherwise.

Hassan et al. [17] have proposed optimistic transactional boosting (OTB) that extends
original transactional boosting methodology by optimizing and making it more adaptable
to STMs. Although there seem similarities between their work and our implementation,
we differ w.r.t the correctness-criterion which is co-opacity a subclass of opacity [11] in
our case. They did not prove opacity for OTB however, their work extensively talks of
linearizability. Furthermore, we also differ in the development of the conflict-based theo-
retical framework which can be adapted to build other object based STMs. Spiegelman
et al. [18] try to build a transactional data structure library from existing concurrent data
structure library. Their work is much of a mechanism than a methodology.

Zhang et al. [13] recently propose a method to transform lockfree cds to transactional
lockfree linked cds and base the correctness on strict serializability. Fraser et. al. [19]
proposed OSTM based on shadow copy mechanism, which involves a level of indirection
to access the shared objects through OSTMOpenForReading and OSTMOpenForWriting
as exported methods.The exported methods in Fraser et.al’s OSTM may allow OST-
MOpenForReading to see the inconsistent state of the shared objects but our OSTM
model precludes this possibility by validating the access during execution of rv method
(i.e. the methods which do not modify the underlying objects and only return some value
by performing a search on them).Thus, we can say our motivation and implementation is
different from Fraser OSTM [19] and only the name happens to coincide.

Roadmap. We explain the system model in Section 2. In Section 3, we build the notion
of legality, conflicts to describe opacity, co-opacity and the graph characterization. Based
on the model we demonstrate the HT-OSTM design in Section 4. In Section 5 we show
the evaluation results. Finally, we conclude in Section 6.

Efficient means of Achieving Composability using OSTM 5

2 Building System Model
In this paper, we assume that our system consists finite number of n threads that run in a
completely asynchronous manner and communicate using shared objects. The threads
communicate with each other by invoking higher-level methods on the shared objects
and getting corresponding responses. Consequently, we make no assumption about the
relative speeds of the threads. We also assume that none of these processors and threads
fail or crash abruptly.
Events & Methods: We assume that the threads execute atomic events. We assume
that these events by different threads are (1) read/write on shared/local memory objects,
(2) method invocations (or inv) event and responses (or rsp) event on higher level
shared-memory objects.

Within a transaction, a process can invoke layer-1 methods (or operations) on a
hash-table transaction object. A hash-table(ht) consists of multiple key-value
pairs of the form 〈k, v〉. The keys and values are respectively from sets K and V . The
methods that a transaction Ti can invoke are: (1) STM begini(): Begins a transaction and
returns an unique id to the invoking thread (2) STM inserti(ht, k, v): Inserts a value v
onto key k in hash-table ht (3) STM deletei(ht, k, v): Deletes the key k from the
hash-table ht & returns the current value v (4) STM lookupi(ht, k, v): returns the
current value v for key k in ht (5) tryCi() which tries to commit all the operations of Ti

and (6) tryAi() aborts Ti. We assume that each method consists of an inv and rsp event.
We denote STM insert and STM delete as update methods (or upd method) since

both of these change the underlying data-structure. We denote STM delete and STM -
lookup as return-value methods (or rv method) as these operations return values from
ht. A method may return ok if successful or A (abort) if it sees inconsistent state of ht.
Transactions: Following the notations used in database multi-level transactions [4], we
model a transaction as a two-level tree. The layer-0 consist of read/write events and
layer-1 of the tree consists of methods invoked by transaction.

Having informally explained a transaction, we formally define a transaction T as
the tuple 〈evts(T), <T 〉. Here evts(T) are all the read/write events at layer-0 of the
transaction. <T is a total order among all the events of the transaction.

We denote the first and last events of a transaction Ti as Ti.firstEvt and Ti.lastEvt.
Given any other read/write event rw in Ti, we assume that Ti.firstEvt <Ti rw <Ti

Ti.lastEvt. All the methods of Ti are denoted as methods(Ti).
Histories: A history is a sequence of events belonging to different transactions. The
collection of events is denoted as evts(H). Similar to a transaction, we denote a history
H as tuple 〈evts(H), <H〉 where all the events are totally ordered by <H . The set of
methods that are in H is denoted by methods(H). A method m is incomplete if inv(m)
is in evts(H) but not its corresponding response event. Otherwise m is complete in H .

Coming to transactions in H , the set of transactions in H are denoted as txns(H).
The set of committed (resp., aborted) transactions in H is denoted by committed(H)
(resp., aborted(H)). The set of live transactions in H are those which are neither
committed nor aborted. On the other hand, the set of terminated transactions are those
which have either committed or aborted.

We denote two histories H1, H2 as equivalent if their events are the same, i.e.,
evts(H1) = evts(H2). A history H is qualified to be well-formed if: (1) all the

6 Sathya Peri, Ajay Singh, and Archit Somani

methods of a transaction Ti in H are totally ordered, i.e. a transaction invokes a method
only after it receives a response of the previous method invoked by it (2) Ti does not
invoke any other method after it received an A response or after tryC(ok) method. We
only consider well-formed histories for HT-OSTM.

A method mij (jth method of a transaction Ti) in a history H is said to be isolated
or atomic if for any other event epqr belonging to some other method mpq (of transaction
Tp) either epqr occurs before inv(mij) or after rsp(mij). Here, epqr stands for rth event
of mpq .
Sequential Histories: A history H is said to be sequential (term used in [11, 20]) if all
the methods in it are complete and isolated. From now on wards, most of our discussion
would relate to sequential histories.

Since in sequential histories all the methods are isolated, we treat each method
as whole without referring to its inv and rsp events. For a sequential history H , we
construct the completion of H , denoted H , by inserting tryAk(A) immediately after the
last method of every transaction Tk ∈ live(H). Since all the methods in a sequential
history are complete, this definition only has to take care of completed transactions.
Consider a sequential history H . Let mij(ht, k, v/NULL) be the first method of Ti in
H operating on the key k as H.firstKeyMth(〈ht, k〉, Ti). For a method mix(ht, k, v)
which is not the first method on 〈ht, k〉 of Ti in H , we denote its previous method on k
of Ti as mij(ht, k, v) = H.prevKeyMth(mix, Ti).
Real-time Order & Serial Histories: Given a history H , <H orders all the events in
H . For two complete methods mij ,mpq in methods(H), we denote mij ≺MR

H mpq if
rsp(mij) <H inv(mpq). Here MR stands for method real-time order. It must be noted
that all the methods of the same transaction are ordered. Similarly, for two transactions
Ti, Tp in term(H), we denote (Ti ≺TR

H Tp) if (Ti.lastEvt <H Tp.firstEvt). Here
TR stands for transactional real-time order.

We define a history H as serial [10] or t-sequential [20] if all the transactions in H
have terminated and can be totally ordered w.r.t ≺TR, i.e. all the transactions execute
one after the other without any interleaving. Intuitively, a history H is serial if all its
transactions can be isolated. Formally, 〈(H is serial) =⇒ (∀Ti ∈ txns(H) : (Ti ∈
term(H)) ∧ (∀Ti, Tp ∈ txns(H) : (Ti ≺TR

H Tp) ∨ (Tp ≺TR
H Ti))〉. Since all the

methods within a transaction are ordered, a serial history is also sequential.

3 Correctness of HT-OSTM: Opacity & Conflict Opacity
In this section, we define the correctness of HT-OSTM by extending opacity [7]. We
then define a tractable subclass of opacity, co-opacity which is defined using conflict
like CSR [4] in databases. We start with legality and opacity.

3.1 Legal Histories & Opacity
In this subsection, we start with defining legal histories. To simplify our analysis, we
assume that there exists an initial transaction T0 that invokes STM delete method on all
the keys of all the hash-tables used by any transaction.

We define legality of rv methods (STM delete & STM lookup) on sequential histories
which we later use to define correctness criterion. Consider a sequential history H having
a rv method rvmij(ht, k, v) (with v 6= NULL) belonging to transaction Ti. We define
this rvm method to be legal if:

Efficient means of Achieving Composability using OSTM 7

LR1 If the rvmij is not first method of Ti to operate on 〈ht, k〉 and mix is the previous
method of Ti on 〈ht, k〉. Formally, rvmij 6= H.firstKeyMth(〈ht, k〉, Ti) ∧(mix

(ht, k, v′) = H.prevKeyMth(〈ht, k〉, Ti)) (where v′ could be NULL). Then,
(a) If mix(ht, k, v

′) is a STM insert method then v = v′.
(b) If mix(ht, k, v

′) is a STM lookup method then v = v′.
(c) If mix(ht, k, v

′) is a STM delete method then v = NULL.
In this case, we denote mix as the last update method of rvmij , i.e., mix(ht, k, v

′) =
H.lastUpdt(rvmij(ht, k, v)).

LR2 If rvmij is the first method of Ti to operate on 〈ht, k〉 and v is not NULL. Formally,
rvmij(ht, k, v) = H.firstKeyMth(〈ht, k〉, Ti) ∧ (v 6= NULL). Then,
(a) There is a STM insert method STM insertpq(ht, k, v) in methods(H) such that

Tp committed before rvmij . Formally, 〈∃STM insertpq(ht, k, v) ∈ methods(H) :
tryCp ≺MR

H rvmij〉.
(b) There is no other update method upxy of a transaction Tx operating on 〈ht, k〉

in methods(H) such that Tx committed after Tp but before rvmij . Formally,
〈@upxy(ht, k, v′′) ∈ methods(H) : tryCp ≺MR

H tryCx ≺MR
H rvmij〉.

In this case, we denote tryCp as the last update method of rvmij , i.e., tryCp(ht, k, v)=
H.lastUpdt(rvmij(ht, k, v)).

LR3 If rvmij is the first method of Ti to operate on 〈ht, k〉 and v is NULL. Formally,
rvmij(ht, k, v) = H.firstKeyMth(〈ht, k〉, Ti) ∧ (v = NULL). Then,
(a) There is STM delete method STM deletepq(ht, k, v′) in methods(H) such that

Tp (which could be T0 as well) committed before rvmij . Formally, 〈∃STM deletepq
(ht, k, v′) ∈ methods(H) : tryCp ≺MR

H rvmij〉. Here v′ could be NULL.
(b) There is no other update method upxy of a transaction Tx operating on 〈ht, k〉

in methods(H) such that Tx committed after Tp but before rvmij . Formally,
〈@upxy(ht, k, v′′) ∈ methods(H) : tryCp ≺MR

H tryCx ≺MR
H rvmij〉.

In this case similar to step 3.1, we denote tryCp as the last update method of rvmij ,
i.e., tryCp(ht, k, v) = H.lastUpdt(rvmij(ht, k, v)).

We assume that when a transaction Ti operates on key k of a hash-table ht, the
result of this method is stored in local logs of Ti for later methods to reuse. Thus, only
the first rv method operating on 〈ht, k〉 of Ti accesses the shared-memory. The other
rv methods of Ti operating on 〈ht, k〉 do not access the shared-memory and they see
the effect of the previous method from the local logs. This idea is utilized in LR1. With
reference to LR2 and LR3, it is possible that Tx could have aborted before rvmij . For
LR3, since we are assuming that transaction T0 has invoked a STM delete method on all
the keys used of all hash-table objects, there exists at least one STM delete method
for every rv method on k of ht. We formally prove legality in technical report [8] and
then we finally show that HT-OSTM histories are co-opaque [11].

Coming to STM insert methods, since a STM insert method always returns ok as
they overwrite the node if already present therefore they always take effect on the ht.
Thus, we denote all STM insert methods as legal and only give legality definition for
rv method. We denote a sequential history H as legal or linearized [21] if all its rvm
methods are legal.
Correctness-Criteria & Opacity: A correctness-criterion is a set of histories. A history
H satisfying a correctness-criterion has some desirable properties. A popular correctness-
criterion is opacity [7]. A sequential history H is opaque if there exists a serial history

8 Sathya Peri, Ajay Singh, and Archit Somani

S such that: (1) S is equivalent to H , i.e. , evts(H) = evts(S) (2) S is legal and (3) S
respects the transactional real-time order of H , i.e., ≺TR

H ⊆≺TR
S .

3.2 Conflict Notion & Conflict-Opacity

Opacity is a popular correctness-criterion for STMs. But, as observed in Section 1, it can
be proved that verifying the membership of opacity similar to view-serializability (VSR)
in databases is NP-Complete [10]. To circumvent this issue, researchers in databases
have identified an efficient sub-class of VSR, called conflict-serializability or CSR, based
on the notion of conflicts. The membership of CSR can be verified in polynomial time
using conflict graph characterization. Along the same lines, we develop the notion of
conflicts for HT-OSTM and identify a sub-class of opacity, co-opacity. The proposed
correctness-criterion is extension of the notion of conflict-opacity developed for RWSTMs
by Kuznetsov & Peri [11].

We say two transactions Ti, Tj of a sequential history H for HT-OSTM are in conflict
if atleast one of the following conflicts holds:

– tryC-tryC conflict:(1) Ti & Tj are committed and (2) Ti & Tj update the same key k
of the hash-table, ht, i.e., (〈ht, k〉 ∈ updtSet(Ti))∧ (〈ht, k〉 ∈ updtSet(Tj)),
where updtSet(Ti) is update set of Ti. (3) Ti’s tryC completed before Tj’s tryC,
i.e., tryCi ≺MR

H tryCj .
– tryC-rv conflict:(1) Ti is committed (2) Ti updates the key k of hash-table,

ht. Tj invokes a rv method rvmjy on the key same k of hash-table ht which
is the first method on 〈ht, k〉. Thus, (〈ht, k〉 ∈ updtSet(Ti)) ∧ (rvmjy(ht, k, v) ∈
rvSet(Tj))∧(rvmjy(ht, k, v) = H.firstKeyMth(〈ht, k〉, Tj)), where rvSet(Tj)
is return value set of Tj . (3) Ti’s tryC completed before Tj’s rvm, i.e., tryCi ≺MR

H

rvmjy.
– rv-tryC conflict:(1) Tj is committed (2) Ti invokes a rv method on the key same k

of hash-table ht which is the first method on 〈ht, k〉. Tj updates the key k of
the hash-table, ht. Thus, (rvmix(ht, k, v) ∈ rvSet(Ti)) ∧ (rvmix(ht, k, v) =
H.firstKeyMth(〈ht, k〉, Ti)) ∧ (〈ht, k〉 ∈ updtSet(Tj)) (3) Ti’s rvm completed
before Tj’s tryC, i.e., rvmix ≺MR

H tryCj .

(rv−tryC)
rt edge

(rv−tryC),

rt edge

(tryC−tryC)

(tryC−rv), rt edge

T2

T3

b) CGa) History in time line view

C4

T1
l1(ht, k1, NULL) i1(ht, k4, v1)

l2(ht, k2, NULL) d2(ht, k4, v1)

C1

C2

i3(ht, k1, v1) i3(ht, k3, v3) C3

l4(ht, k4, NULL) i4(ht, k2, v4)

T4

T2

T1 T3

T4

Fig. 2: Graph Characterization of history H5

A rv method rvmij conflicts with a tryC method only if rvmij is the first method of Ti

that operates on hash-table with a given key. Thus the conflict notion is defined only
by the methods that access the shared memory. (tryCi, tryCj), (tryCi, STM lookupj),

Efficient means of Achieving Composability using OSTM 9

(STM lookupi, tryCj), (tryCi, STM deletej) and (STM deletei, tryCj) can be the possi-
ble conflicting methods. For example, consider the history H5 : l1(ht, k1, NULL)l2(ht, k2
, NULL)i2(ht, k1, v1)i1(ht, k4, v1)c1i3(ht, k3, v3)c3d2(ht, k4, v1)c2l4(ht, k4, NULL)
i4(ht, k2, v4)c4 in Figure 2. (l1(ht, k1, NULL), i3(ht, k1, v1)) and (l2(ht, k2, NULL), i4
(ht, k2, v4)) are a conflict of type rv-tryC. Conflict type of (i1(ht, k4, v1), d2(ht, k4, v1))
and (i1(ht, k4, v1), l4(ht, k4, NULL)) are tryC-tryC and tryC-rv respectively.
Conflict Opacity: Using this conflict notion, we can now define co-opacity. A sequential
history H is conflict-opaque (or co-opaque) if there exists a serial history S such that:
(1) S is equivalent to H , i.e. , evts(H) = evts(S) (2) S is legal and (3) S respects the
transactional real-time order of H , i.e., ≺TR

H ⊆≺TR
S and (4) S preserves conflicts (i.e.

≺CO
H ⊆≺CO

S).
Thus from the above definition, it can be seen that any history that is co-opaque is also
opaque.
Graph Characterization: We now develop a graph characterization of co-opacity. For
a sequential history H , we define conflict-graph of H , CG(H) as the pair (V,E) where
V is the set of txns(H) and E can be of following types: (a) conflict edges: {(Ti, Tj) :
(Ti, Tj) ∈ conflict(H)} where, conflict(H) is an ordered pair of transactions such that
the transactions have one of the above pair of conflicts. (b) real-time edge(or rt edge):
{(Ti, Tj): Transaction Ti precedes Tj in real-time, i.e., Ti ≺TR

H Tj}. Now, we have the
following theorem which explains how graph characterization is useful.
Theorem 1. A legal HT-OSTM history H is co-opaque iff CG(H) is acyclic.

Using this framework, we next develop HT-OSTM using the notion of BTO. We show
the transactional level correctness of the proposed algorithm by showing that all conflict
graph of the histories generated by it are acyclic in the accompanying report [8].

4 HT-OSTM
We design HT-OSTM a concurrent closed addressed hash-table using above ex-
plained legality and conflict notion. The HT-OSTM exports STM begin(), STM insert(),
STM delete(), STM lookup() and STM tryC() and has m number of buckets, which we
refer to as size of the hash-table. The main part of interest from concurrency per-
spective is each bucket of the hash-table implemented as lazyrb-list (lazy red-blue
list), the shared memory data structure.
Lazyrb-list: It is a linked structure with immutable head and tail sentinel nodes of the
form of a tuple 〈 key, value, lock, marked, max ts, rl, bl 〉 representing a node. The key
represents unique id of the node so that a transaction could differentiate between two
nodes. The key values may range from−∞ (key of head node) to +∞ (key of tail node
). The value field may accommodate any type ranging from a basic integer to a complex
class type. The marked field is to have lazy deletion as popular in lazylists [5, 6] and
lock to implement exclusive access to the node.

Lazyrb-list node have two links - bl (blue links) and rl (red links). First, the nodes
which are not marked (not deleted) are reachable by bl from the head. Second, the
nodes which are marked (i.e. logically deleted) and are only reached by rl. Thus, the
name lazyrb-list. All marked nodes are reachable via rl and all the unmarked nodes are
reachable via bl & rl from the head. Thus nodes reachable by bl are the subset of the
nodes reachable by rl. Every node of lazyrb-list is in increasing order of its key.

10 Sathya Peri, Ajay Singh, and Archit Somani

Furthermore, every lazyrb-list node also has a time-stamp field (max ts) to record
the ids of the transaction which most recently executed some method. Augmenting the
underlying shared data structure with time-stamps help in identifying conflicts which
can cause a cycle in the execution and hence violate co-opacity [11]. This is captured by
the graph characterization of a generated history as discussed in Figure 2 which implies
that cyclic conflicts leads to non co-opaque execution.

l1(ht, k2, v0)

i2(ht, k2, v1)

T1

T2

C2d2(ht, k1, v0)

l1(ht, k1, NULL)A1

Fig. 3: History H is not co-opaque

l1(ht, k2, v0)

i2(ht, k2, v1)

T1

T2

C2

l1(ht, k1, Abort) A1

d2(ht, k1, v0)

Fig. 4: co-opaque History H1

Now, we explain why we need to maintain deleted nodes through Figure 3 and 4.
History H shown in Figure 3 is not co-opaque because there is no serial execution of
T1 & T2 that can be shown co-opaque. In order to make it co-opaque l1(ht, k1, NULL)
needs to be aborted. And l1(ht, k1, NULL) can only be aborted if HT-OSTM scheduler
knows that a conflicting operation d2(ht, k1, v0) has already been scheduled and thus
violating co-opacity. One way to have this information is that if the node represented
by k1 records the time-stamp of the delete method so that the scheduler realizes the
violation of the time-order [4] and aborts l1(ht, k1, NULL) to ensure co-opacity.

Thus, to ensure correctness, we need to maintain information about the nodes deleted
from the hash-table. This can be achieved by only marking node deleted from the
list of hash-table. But do not unlink it such that the marked node is still part of the
list. This way, the information from deleted nodes can be used for ensuring co-opacity.
In this case, after aborting l1(ht, k1), we get that the history is co-opaque with T1 & T2
being the equivalent serial history as shown in Figure 4. The deleted keys (nodes with
marked field set) can be reused if another transaction comes & inserts the same key back.

k3 k6 k7 k8−∞ +∞k1

Fig. 5: Searching k8 over lazylist

k1 k3 k6

+∞−∞ k8k7

Fig. 6: Searching k8 over lazyrb-list

But, the major hindrance in maintaining the deleted nodes as part of the ordinary
lazy-list is that it would reduce search efficiency of the data structure. For example, in
Figure 5 searching k8 would unnecessary cause traversal over marked (marked for lazy
deletion) nodes represented by k1, k3 and k6. We solve this problem in lazyrb-list by
using two pointers. 1) bl(blue link): used to traverse over the actual inserted nodes and 2)
rl(red link) used to traverse over the deleted nodes. Hence, in Figure 6 to search for k8
we can directly use bl saving significant search computations. A question may arise that
how would we maintain the time-stamp of a node which has not yet been inserted? Such
a case arises when STM lookup() or STM delete() is invoked from rv method, and node
corresponding to the key, say k is not present in bl and rl. Then the rv method will
create a node for key k and insert it into underlying data structure as deleted (marked
field set) node.

For example, lookup wants to search key k10 in Figure 6 which is not present in the
bl as well as rl. Therefore, lookup method will create a new node corresponding to the

Efficient means of Achieving Composability using OSTM 11

key k10 and insert it into rl (refer the Figure 7). So, we discuss in detail the invariants
and properties of the lazyrb-list and ensure that no duplicate nodes are inserted while
proving the method level correctness in technical report [8].

k1 k3 k6

+∞

k10

−∞ k8k7

Fig. 7: Execution under lazyrb-list. k10 is added in lazyrb-list if not present.

Transaction log. Each transaction maintains local log called txlog. It stores transaction
id and status: live, commit or abort signifying that transaction is executing, has committed
or has aborted due to some method failing the validation, respectively.

Each entry of the txlog is called log entry (shortened as le) stores the meta
information of each method a transaction encounters as updtSet() and rvSet() as
formalized in Section 3.2. The le is a tuple of type 〈key, value, status, preds, currs〉.
A method may have OK and FAIL as it’s status. The preds and currs are the array of
nodes in rl and bl identified during the traversal over the lazyrb-list by each method. It
depicts the location over the lazyrb-list where the method would take effect.

HT-OSTM Methodology:
In this section, we provide the working idea of the methods exported to transactions
of the HT-OSTM and detailed algorithms are provided in the accompanying report [8].
Execution of every transaction Ti can be categorized into rv method execution phase and
upd method execution phase.
rv method execution phase:
1. ∀mij(k) ∈ {STM lookup(), STM delete()}

(a) If legality rule 3.1 is applicable.
i. update the txlog and return.

(b) If legality rule 3.2 & 3.3 is applicable.
i. Traverse the cds to identify pred and curr nodes for both the rl and bl as

done in lazy-lists or skip lists. Then, acquire ordered locks on the nodes.
ii. Validate. If the Validate() returns A , the mij(k) aborts and subsequently

Ti is aborted. Otherwise, if Validate() returns retry then mij(k) is retried
from step 1.(b).

iii. If validation succeeds, create a new le in txlog & update the le. And, insert
a node in rl if the node is not present in lazyrb-list as explained in Figure 7.

iv. Release locks and return.
2. If mij(k) ∈ {STM insert()}

(a) Update the txlog and return.

We validate STM lookup() immediately and do not validate again in STM tryC() unlike
the implementation of OTB by Hassan et. al [17]. This is required to ensure that the
execution is opaque.
Validate():
1. First the current operation validates for any possible interference due to concurrent

transactions through method validation.
methodValidation rule: If the preds are marked and the next node of pred
is not curr, implies a conflicting concurrent operation has also made changes.

12 Sathya Peri, Ajay Singh, and Archit Somani

Thus, the current operation has to retry. Otherwise method validation is said to
succeed.

2. Time order validation is performed when method validation succeeds.
time orderValidation rule [4, Chap 4]: If a transaction Ti with time-stamp i
want to access a node n. Also, Let Tj be a conflicting transaction with time-
stamp j which accessed n previously. Now, If i < j then Ti is aborted. Else this
method returns ok.

3. Return abort or retry or ok.

STM delete() in rv method execution phase behaves as STM lookup() but it is val-
idated twice. First, in rv method execution similar to STM lookup() and secondly in
upd method execution to ensure co-opacity. We adopt lazy delete approach for STM -
delete(). Thus, nodes are marked for deletion and not physically deleted for STM delete()
method. In the current work we assume that a garbage collection mechanism is present
and we do not worry about it.
upd method execution phase. During this phase a transaction executes STM tryC().
It begins by ordering the txlog in increasing order of the keys. This way locks can be
acquired in increasing order of keys to avoid deadlock. We re-validate upd method in
txlog to ensure that the pred & curr for the methods has not changed since the point they
were logged during rv method execution phase. Please note that txlog only contains the
log entry (le) for upd method. Because we do not validate the lookup and failed delete
again in STM tryC().

(a)

(b)

(c)

(d)

−∞ k3 k8 +∞
−∞ k8 +∞

−∞
−∞

k4

k3

k4

k3

k4 k5

k5 k8 +∞
k5 k8 +∞

k3

k4

(i) When k5 is not present in BL and RL (ii) When k5 is present in RL

Fig. 8: Insert of k5 in STM tryC(). (i) bl & rl of k5 is set to K8 then bl of k3 linked to
K5 & rl of k4 is linked to k5. (ii) Only bl of k5 is set to K8 then bl of k3 linked to K5.

Now after successful validation, we update the shared lazyrb-list using the log entries
(le) of the txlog one by one. There may be two cases when a node is inserted into lazyrb-
list by the STM insert(). First, the node is not reachable by both rl and bl (not present
in cds). Figure 8(i) represents this case when k5 is neither reachable by bl and nor in
rl. It adds k5 to lazyrb-list at location preds〈k3, k4〉 and currs〈k8, k8〉 (in the notation,
first and second index is the key reachable by bl & rl, respectively). Figure 8(i)(a) is
lazyrb-list before addition of k5 and Figure 8(i)(b) is lazyrb-list state post addition.
Second, if the node is reached only by rl. Figure 8(ii) represents this case where k5 is
reached only by rl. It adds k5 to lazyrb-list at location pred〈k3, k4〉 and curr〈k5, k8〉.
Figure 8(i)(c) is lazyrb-list before addition of k5 with bl and Figure 8(i)(d) is lazyrb-list
state post addition.

During STM delete() if a node to be removed is reachable with bl then its marked
field is set and the links are modified such that it is not reachable by bl. Figure 9 shows a

Efficient means of Achieving Composability using OSTM 13

case where a node k5 needs to be deleted from the lazyrb-list in Figure 9(i). So, here the
node k5 sets its marked field and then is detached from the bl(Figure 9(ii)).

(i) (ii)−∞ −∞

k3

k1 +∞k5 +∞

k5

k1

k3

Fig. 9: Delete of k5 in STM tryC(). k5 is unlinked from bl by linking bl of k1 to∞.

Correctness: In object based STM techniques like HT-OSTM where methods are in-
tervals, proving that its methods can be partially ordered or linearized is complex. But,
proving the correctness of cds requires taking into account the semantics and implemen-
tation details as asserted by work of Hassan et al. [17]. We establish that all methods can
be linearized at method level before arguing about the co-opacity of HT-OSTM history at
transaction level using graph characterization. The accompanying technical report [8]
provides detailed proof, here we only state the major theorem which contributes to
proving that HT-OSTM is co-opaque.
Theorem 2. Consider a history H generated by HT-OSTM. Then there exists a sequen-
tial & legal history H ′ equivalent to H such that the conflict-graph of H ′ is acyclic.

5 Evaluation
We performed all the experiments on Intel(R) Xeon(R) CPU E5-2690 v4 @ 2.60GHz
machine with 56 CPUs and 32K L1 data cache and 32 GB memory. Each thread spawns
10 transactions each of which randomly generate up to 5 methods of HT-OSTM. We
assume that the hash-table of HT-OSTM has 5 buckets and each of the bucket (or
list in case of list-OSTM) can have maximum size of 1K keys. We ran the experiments
to calculate two parameters: (1) time taken for a transaction to commit. Upon abort,
a transaction is retried until it commits. (2) Number of aborts incurred until all the
transactions commit.

We compare HT-OSTM with the ESTM [12] based hash-table and the transac-
tional hash-table application built using RWSTM which is synchronised by basic
time stamp ordering protocol [4, Chap 4]. Further, we evaluate list-OSTM with the
state of the art lock-free transactional list (LFT) [13], NOrec STM list (NTM) [14] and
boosting list (BST) [15]. All these implementations are directly taken from the TLDS
frameworkb. The experiments were performed under two kinds of workloads. Update
intensive(lookup:50%, insert:25%, delete:25%) and lookup intensive(lookup:70%, in-
sert:10%, delete:20%). Here, upto 70% lookups HT-OSTM performs better but with
more than 70% of lookups ESTM shows better performance when contention is higher.
The evaluation is done by varying threads from 2 to 64 in power of 2. Before each
application is run there is a initialization phase where the data structure is populated
randomly with nodes of half its maximum size.
HT-OSTM.c Figure 10a shows that w.r.t. time taken HT-OSTM outperforms ESTM [12]
and RWSTM on an average by 3 times for lookup intensive workload. Plus, for update
intensive workload HT-OSTM on average is 6 times better than ESTM & RWSTM.

b https://ucf-cs.github.io/tlds/
c lib source code link: https://github.com/PDCRL/ht-ostm

14 Sathya Peri, Ajay Singh, and Archit Somani

Similarly, in terms of aborts, HT-OSTM has 3 & 2 times lesser aborts than ESTM and
RWSTM for lookup intensive workload, respectively. Also for update intensive load
HT-OSTM has 7 and 8 times lesser aborts with ESTM and RWSTM respectively, as can
be seen in Figure 10b.

(a) HT-OSTM time in second(s) (b) HT-OSTM aborts

(c) list-OSTM time in second(s) (d) list-OSTM aborts

Fig. 10: HT-OSTM and list-OSTM evaluation. Each curve is named as technique
name(workload type). LI/UI denotes lookup intensive/ update intensive.
list-OSTM. The average aborts for list-OSTM never go beyond 30 in magnitude while
that of other techniques (in Figure 10d) are of 388 in the magnitude for both types of
workloads. While time taken is 76%, 89% and 33% (with lookup intensive) and 77%,
77% and 154% (with update intensive) better than LFT, NTM and BST respectively (as
shown in Figure 10c).

6 Conclusion and Future Work
In this paper, we build a model for building highly concurrent and composable data
structures using object based transactional memory. We use the observation that higher
concurrency can be obtained by considering OSTMs as compared to traditional RWSTMs
by leveraging richer object-level semantics. To achieve this, we propose comprehensive
theoretical model based on legality semantics and conflict notions for hash-table
based OSTM. Using these notions we extend the definition of opacity and co-opacity for

Efficient means of Achieving Composability using OSTM 15

HT-OSTMs in Section 3. Then, based on this model, we develop a practical implementa-
tion of hash-table based object STM, HT-OSTM. We then perform some extensive
experiments to verify the gains achieved as demonstrated in Section 5. As a part of future
work, we plan to develop multi-version object STMs similar to multi-version STMs &
databases.
Acknowledgment: We extend our thanks to Dr. Roy Friedman and anonymous review-
ers for careful reading of the draft and suggestions. This research is partially supported
by the grant from Board of Research in Nuclear Sciences (BRNS), India with project
number- 36(3)/14/19/2016-BRNS/36019.

References

1. Herlihy, M., B.Moss, J.E.: Transactional memory: Architectural Support for Lock-Free Data
Structures. SIGARCH Comput. Archit. News 21(2) (1993) 289–300

2. Shavit, N., Touitou, D.: Software Transactional Memory. In: PODC. (1995) 204–213
3. Harris, T., Marlow, S., Peyton-Jones, S., Herlihy, M.: Composable memory transactions. In:

PPoPP, New York, NY, USA, ACM (2005) 48–60
4. Weikum, G., Vossen, G.: Transactional Information Systems: Theory, Algorithms, and the

Practice of Concurrency Control and Recovery. Morgan Kaufmann (2002)
5. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming. Elsevier Science (2012)
6. Heller, S., Herlihy, M., Luchangco, V., Moir, M., III, W.N.S., Shavit, N.: A lazy concurrent

list-based set algorithm. Parallel Processing Letters 17(4) (2007) 411–424
7. Guerraoui, R., Kapalka, M.: On the Correctness of Transactional Memory. In: PPoPP, ACM

(2008) 175–184
8. Peri, S., Singh, A., Somani, A.: Efficient means of achieving composability using transactional

memory. CoRR abs/1709.00681 (2017)
9. Harris, T., et al.: Abstract nested transactions (2007)

10. Papadimitriou, C.H.: The serializability of concurrent database updates. J. ACM 26(4) (1979)
11. Kuznetsov, P., Peri, S.: Non-interference and local correctness in transactional memory. Theor.

Comput. Sci. 688 (2017) 103–116
12. Felber, P., Gramoli, V., Guerraoui, R.: Elastic transactions. J. Parallel Distrib. Comput. 100(C)

(February 2017) 103–127
13. Zhang, D., Dechev, D.: Lock-free transactions without rollbacks for linked data structures.

SPAA ’16, New York, NY, USA, ACM (2016) 325–336
14. Dalessandro, L., Spear, M.F., Scott, M.L.: Norec: streamlining stm by abolishing ownership

records. In Govindarajan, R., Padua, D.A., Hall, M.W., eds.: PPOPP, ACM (2010) 67–78
15. Herlihy, M., Koskinen, E.: Transactional boosting: a methodology for highly-concurrent

transactional objects. In: PPoPP, ACM (2008) 207–216
16. Ni, Y., Menon, V.S., Adl-Tabatabai, A.R., Hosking, A.L., Hudson, R.L., Moss, J.E.B., Saha,

B., Shpeisman, T.: Open nesting in software transactional memory. In: PPoPP, ACM (2007)
17. Hassan, A., Palmieri, R., Ravindran, B.: Optimistic transactional boosting. In Moreira, J.E.,

Larus, J.R., eds.: PPoPP, ACM (2014) 387–388
18. Spiegelman, A., Golan-Gueta, G., Keidar, I.: Transactional data structure libraries. In: PLDI,

ACM (2016) 682–696
19. Fraser, K., Harris, T.: Concurrent programming without locks. ACM Trans. Comput. Syst.

25(2) (May 2007)
20. Kuznetsov, P., Ravi, S.: On the cost of concurrency in transactional memory. In: OPODIS.

(2011) 112–127
21. Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for concurrent objects.

ACM Trans. Program. Lang. Syst. 12(3) (1990) 463–492

	Efficient means of Achieving Composability using Object based Semantics in Transactional Memory Systems
	Introduction
	Building System Model
	Correctness of HT-OSTM: Opacity & Conflict Opacity
	Legal Histories & Opacity
	Conflict Notion & Conflict-Opacity

	HT-OSTM
	Evaluation
	Conclusion and Future Work

