A Simple and Practical Concurrent
Non-blocking Unbounded Graph with
Linearizable Reachability Queries

Bapi Chatterjee’, Sathya Peri’, Muktikanta Sa’, Nandini Singhal®
‘Institute of Science and Technology Austria, bapi.chatterjee@ist.ac.at
"Dept. of CSSE, IIT Hyderabad, India, {sathya_p, cs15resch11012}@iith.ac.in
*Microsoft (R&D) Pvt. Ltd., Bangalore, India, nandini12396@gmail.com

Graphs are Everywhere...

Common real world objects can be modeled as
graphs, which build the pairwise relations
between objects.

Graph algorithms applied in many applications,
including social networks, communication
networks, VLSI design, graphics, etc.

Often these graphs are dynamic in nature and
the updates are real-time.

The System Model

- Asynchronous shared-memory model with a finite set of p
processors accessed by a finite set of n threads.

The non-faulty threads communicate with each other by invoking
methods on the shared objects.

- Execution on a shared-memory multi-processor system which
supports atomic read, write, fetch-and-add (FAA) and
compare-and-swap (CAS) instructions..

o

T

The Data Structure

VertexHead

—

A directed graph G = (V, E) represented
by its adjacency list which enables it to
grow (up to the availability of
memory) and sink at the runtime.

1 8

EdgeHead ENode EdgeTail

o)

]

/:-00——'[7 ——ﬁ» 0

VNode |

|
|

T
\

Ol | g—W
-

L3
v
£ 1

~—

~ 7 VertexTalil

Vertexlist .

r
1
I
I
1
1
I
I
1
1
I
I
1
I
1
I
[
1
1
I
[
1
1
I
[
1
1

The ADT Operations

Update Operations

3. AddEdge (k, I)

4. RemoveEdge (k/ Cha"enge
] Consistency of a traversal
i 6. containsedge With concurrent Updates
| in the Graph
: 7. GetPath(k, I) N G Grapn Raversal -
I - — o P |

non-update Operations .

Consistency Example

T1: AddVertex(k1) = true

k1 is not
returned
e k2 is returned

T2: RemoveVertex(k2) = true

T3: GetPath(kO0, k3) = (...,

Wrong!

The ADT operations implemented by the data structure are represented
by their invocation and return steps.

For an arbitrary concurrent execution of a set of ADT operations should
satisfy the consistency framework linearizability.

=> Assign an atomic step as a linearization point (LP) inside the execution
interval of each of the operations and show that the data structure
invariants are maintained across the LPs.

=> An arbitrary concurrent execution is equivalent to a valid sequential
execution obtained by ordering the operations by their LPs.

Linearizability Example

T1: AddVertex(k1) = true
”l |]
Lt |]

T2: AddVertex(k2) = true

o !

T3: ContainsVertex(k1)

S }

true

Progress Guarantee

A method is walit-free if it guarantees that every call finishes its execution
in a finite number of steps.

A method is lock-free if it guarantees that infinitely often some method
call finishes in a finite number of steps.

A method is obstruction-free if, from any point after which it executes
in isolation, it finishes in a finite number of steps (method call executes in
isolation if no other threads take steps).

10

xr

N ’
-n M 3,/ N~ N 7
A, HlH T
5 LRN) Gl
b

Add Vertex

Found Location

EN1D
+ [LIY
T 1T\ T

11

12

REEREENED

X
)
t
o
>
g
=)
<

Ta

v =
3
-y

4

’ |
nv

Create new
VNode

13

B
-

X
)
t
o
>
g
=)
<

Ta
3
-y

:
N

’ |
nv

X
)
t
o
>
g
=)
<

Remove Vertex

RemoveVertex(5)

"

115 e Wi g B¢

=

/-
=3

3

bl

7

A

'

-0 __ﬁ» 1 -

v
8

15

Remove Vertex

Found Location

8

EN1D
+ [LIY
T 1T\ T

—N

16

Remove Vertex

Logically Mark
the node

LP

—N

e
i

=
Ol
8

17

Remove Vertex

Physical

removal of

Node

—N

e
i

=
Ol
8

18

Remove Vertex

CAS(pv.vnxt,
cv, cv.vnxt)

All incoming and outgoing
edges are logically removed.

19

Edge Operations

AddEdge(7,3)

N
el
T 1T\ T

20

Add Edge

AddEdge(7,3)

3

e

F.,
B
It

RN
|
8
|

es

bl

Find and verify the
presence of vertices
v(7) and v(3) in the
vertex-list.

8

8

\'

) fok
N
\

A

—»V -o0 ——ﬁ» 1

1
8

21

edge-list of v(7)
using locE and
physically removes
two kind of logically
removed ENodes:
(a). logically
removed VNode.
(b) logically
’remove\d ENodes

Add Edge

AddEdge(7,3)

_F., 3

- J

7

(o0}

\'

(oo}

1
Jot 7

A

I A

T

22

Add Edge

AddEdge(7,3)

e

-0 Bt

3

5

)

e

\'

o0

Lo
~
NEX

B
H

\'

i g

(oo}

ce

Y

s 0]

s Joto

ne

Create new
l’oo ENode ne

23

—~
o
N
N
()
(®)}
©
L
©
©
<

—~
o
N
N
()
(®)}
©
L
©
©
<

Add Edge

AddEdge(7,3)

EREILEENEEE
=
i Bl
DG

S = LP
¢ T 1. ~

ne 26

Increment a counter at
v(7)

Add Edge

AddEdge(7,3)

e

I e e B e B e e
=
i =7
5 Hi{ H?H
B

27

AddEdge Conflicts with Vertex Modifications

T1: AddEdge(k, |) = EDGE ADDED

\

locV(k) = true locV(l) = true AddEdge(k,I)\

T2: RemoveVertex(k) = true

| { l } T3: AddVertex(l) = true
]
Rl |

Real time
Not
Possible

28

Synchronization of AddEdge with Vertex oparations

T1: AddEdge(k, |) = EDGE ADDED

\

t’ / locV(K) = true locV(1) = true verify v(k) and v()) A)ddEdge(k,I)
1 | | 1
L 1 | | T J

T2: RemoveVertex(k) = true

Q{ |] T3: AddVertex(l) = true
]
o [_]

29

Remove Edge

RemoveEdge(7,1)

8

5

|

) —F)» ‘3

7

3

e fof
NEA
L Py

By
e

A

'

-0 __ﬁ» 1 -

v
8

30

Remove Edge

RemoveEdge(7,1)

3

) —F)» ?,

7

|

presence of
vertices v(7) and
v(1) in the

vertex-list using
ConVPlus().

e fof
O\ A
L Py

By
e

A

_»V _oo_—ﬁ» 1 -

v
8

31

Remove Edge

edge -list of v(7) using
locE and physically
removes two kind of

RemoveEdge(7,1)

logically removed
ENodes:

1 > =

e

- J

(a). logically removed

VNode.

RN
8

(b) logically removed
<ENodes, |

bl

=3
It

8

L~

T

32

Remove Edge

RemoveEdge(7,1)

—00 = - 3
=

e

|

7

A

e fo f
L P

3
34

LP
] o 41 S

pe e Logically Mark
l’oo the node

!

s 0]

s Joto

33

Remove Edge

RemoveEdge(7,1)

Physical removal of ENode
CAS(pe.enxt, ce, ce.enxt)

Remove Edge

RemoveEdge(7,1)

e

d

—00 = - 3
=

7

A

) fo f
L P

3
34

— e) M1—

Increment a counter at
v(7)

!
Na

pe ce

s Joto

35

36

O

1 4| -~ -

o

E e

-
@
S
C
>
=
Qo
©
<
3
S
Q
14

presence of
vertices v(1) and
v(7) in the

vertex-list using
ConVPlus().

Reachability Query

(o w,]iJ(
-
N)

e
b

37

Reachability Query

Collect the
Path(Single-Collect)
using traversal
algorithm: BFS

) o) f
AEATS

+ |

I 1 o

38

Problem with Single Collect

InitiaIGraphI:> [3 —>[2—>1—>5—>7 9

T1: GetPath(3, 9) Q

_ T1: GetPath(3, 9)] ,l 2 _ 1 7 1—»
t1- Starts First-Collect [3 / 25

T2:RemoveEedge(2, 1)" « '& T3: AddEdge(7,9)

{2

Current Graph C———) | 3 -

39

Need Double Collect

Initial Graph ———) [3

T1: GetPath(3, 9) Q

_ T1: GetPath(3, 9)] ,l 2 _ 1 7 1—»
t1- Starts First-Collect [3 / 25

T2:RemoveEedge(2, 1)" “ '& T3: AddEdge(7,9)

t- T1: GetPath(3, € OH H! —» 9
2" i -
Fret-Collect Still have a problem. Return

” NULL
t: T1: GetPath(3, 9)———» | 3 _.[2 14— 5+ 7 -_> 9

Second-Collect

40

Double Collect Problem

t - Initial Graph :> 3 -—>[2 +—» 1 T 5 i
T1: GetPath(3, 9!'.' _,[‘
3 - 2 +—» 1 +—» 5 +—»| 7 -

1" Starts First-Collect

l
l

9

T2:RemoveEedge(7,9)

l’ T3: AddEdge(1.9) s N
t.:
2 [(33{2}{ 1157 9

41

Problem ...

” T5: RemoveEdg€(1/9)

/

3 2

1

ZN \\
-3

Graph has been restored) [3 -

.%M: AddEdge(7,9)

T1: GetPath(3, 9”

4" Starts Second-Collect

11— 7 -'>§ 9
« wz: RemoveEdge(7,9)

42

Problem ...

(& T3: AddEdge(1,9) 7 N
t.
° (34— 241+ 5+ 7 9

path does
not exist

VAVANRN

Q TS: RemoveEdg€(1/9)

/ VAN
te: 3j—>2]—>1-—>[5-—>[714>@
AT AdCEdge(7.9)

Graph has been restored I:> [3 -—»[2 +—» 1 +—» 5 > 7 1+—» 9 | 43

To solve these issues...

1. We take double collect.
2. |In each scan we collect BFS-tree which is a partial snapshot.

3. To capture the modifications.
3.1. We have a counter associated with each vertex.
3.2. Whenever any edge operations happens the counter incremented.

4. To verify the double collect we compare with BFS-tree alone with
counter.

44

Solution ...

If the both the double collects are same

5.1. We have valid snapshot
5.2. We analyse the the valid snapshot for the presence or absence of the

path.

45

Reachability Query

AddVertex(4)

RemoveVertex(5)

|

_

o0] RemoveEdge(5,7)

L O w'H
\

s Joto

S ™

s 0]

AddEdge(7,3)

46

Reachability Query

Multi-scan
Stop when two)
consecutive scans -°°l ,%

match.

_

3
%C-«H?Hw] @
@EE/ W)

0 7 =1 of =
R Vertex(5
emoveVertex(5) 'J_ radEden? 3

47

Correctness

Theorem 1: The ADT operations are linearizable.

48

Progress Guarantee

Theorem 2: The ADT operations are non-blocking:

1.

If the set of keys is finite, the operations ContainsVertex and
ContainsEdge are wait-free.

The operation GetPath is obstruction-free.

The operations AddVertex, RemoveVertex, ContainsVertex, AddEdge,
RemoveEdge, and ContainsEdge are lock-free.

49

Experimental Setup

- Intel(R) Xeon(R) E5-2690 v4 CPU containing 56 cores running at 2.60GHz. and
each core supports 2 logical threads.

- Implementation has been done in C++ (without any garbage collection) and
multi-threaded implementation is based on Posix threads.

- Start experiments, with 1000 vertices and approximately 125000 edges added
randomly.

- We measure throughput obtained on running the experiment for 20 seconds.

- Each data point is obtained by averaging over 5 iterations.

> We compare the non-blocking graph with its sequential and coarse-grained

counterparts in two separate sets of experiments comprising:
(a) The ADT operations excluding GetPath.
(b) All the ADT operations.

50

Workload Distributions With GetPath

With GetPath: {AddVertex, RemoveVertex, ContainsVertex,
RemoveEdge, ContainsEdge, GetPath }
A. Equal Lookup and Updates: (12.5%, 12.5%, 24%,12.5%, 12.5%, 24%, 2%)
B. Lookup Intensive: (2%, 2%, 45%, 2%, 2%, 45%, 2%)

C. Update Intensive: (22.5%, 22.5%, 4%, 22.5%, 22.5%, 4%, 2%)

AddEdge,

51

100000

7500

5000

2500

25000

20000

15000

10000

5000

With GetPath: Equal Lookup and Updates Equal LOOkup and
B Sequential W Coarse Lock-Free Updates : (12. 50/0,

100000
- 75000
3
2
= 50000
=
=
=2
o
= 25000
'_

. . 12.5%,24%0,12.5%
With GetPath: Equal Lookup and Updates 12.5%, 24%, 2%)

B Sequential [Coarse [Lock-Free

60 70

I ol ol uf a of af o &l =

1 5 10 15 20 30 40 50 60 70

No of threads

52

A novel concurrent directed Graph data structure represented by its
adjacency list which can grow without bound and sink at the runtime.

> A simple and efficient non-blocking implementation of the ADT
operations.

> The spotlight of our work is an obstruction-free reachability query.

> Provably all the methods are linearizable.

> We extensively evaluate a sample C/C++ implementation of the
algorithm through a number of micro-benchmarks.

> Our experiments show that the proposed algorithm scales 5-7X with the

number of threads in commonly available multi-core systems.

53

The Technical Report is available at: URL: https://arxiv.org/abs/1809.00896
And the complete source code is available at: https://github.com/PDCRL/ConcurrentGraphDS

54

References

Bapi Chatterjee, Sathya Peri, Muktikanta Sa, and Nandini Singhal. A Simple and Practical Concurrent
Non-blocking Unbounded Graph with Linearizable Reachability Queries. 20th ICDCN. 2019.

2. Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. Introduction to
algorithms. MIT press. 2009.

3. Timothy L. Harris. A Pragmatic Implementation of Non-blocking Linked Lists. 15th DISC. 2001.

4. Maurice Herlihy, Victor Luchangco, and Mark Moir. Obstruction-Free Synchronization: Double-Ended
Queues as an Example. 23rd ICDCS. 2003.

5. Maurice Herlihy and Nir Shavit. The art of multiprocessor programming. Morgan Kaufmann, 2008.

6. Maurice P. Herlihy and Jeannette M. Wing. Linearizability: a correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst. 1990.

7. Nikolaos D. Kallimanis and Eleni Kanellou. Wait-Free Concurrent Graph Objects with Dynamic
Traversals. 19th OPODIS. 2015.

The Technical Report is available at: URL: https://arxiv.org/abs/1809.00896
And the complete source code is available at: https://github.com/PDCRL/ConcurrentGraphDS

56

Node Structure

Edge Node
class ENode{
intk;
ENode enxt;
VNode ptv;
5

BFS Node
class BFSNode{
VNode n;
BFSNode nxt;
BFSNode p;
Int locCnt;
I

Vertex Node
class VNode{
intk;
VNode vnxt;
ENode enxt;

int VisitedArrayl];

int ecnt;

I

Vertexlist

VNode

r
I
I
I
I
I
I
I
I
I
I
I
I

Z
I
I
I
I
I
I
I
I
I
I
I
I

-~

VertexTail

VertexHea

T

Edquead

ENode EdgeTail

=00 =

| —

> 57

M

o0

_J

*r

=00 =

>

,‘ —c0 =

1
|

57

Observations

The non-blocking algorithm is scalable with the number of threads in the

system.

B. The performance of lock-based algorithm degrades with the increasing
number of threads.

C. 5x-7x increase in the throughput in comparison to the sequential and

lock-based counterparts.

58

Workload Distributions Without GetPath

Without GetPath: {AddVertex, RemoveVertex, ContainsVertex, AddEdge,
RemoveEdge, ContainsEdge }

A. Equal Lookup and Updates: (12.5%, 12.5%, 25%, 12.5%, 12.5%, 25%)
B. Lookup Intensive: (2.5%, 2.5%, 45%, 2.5%, 2.5%, 45%)
C. Update Intensive: (22.5%, 22.5%, 5%, 22.5%, 22.5%, 5%)

59

Without GetPath: Equal Lookup and Update

B Sequential W Coarse | Lock-Free

100000

Without GetPath: Update Intensive

B Sequential @ Coarse [Lock-Free

50000

I al ol ml o of of f ol W 60000

1 5 10 15 20 30 40 50 60 70

40000
No of threads

20000

Without GetPath: Lookup Intenstive]
o Ml of m of o m w af ml ef

B Sequential @ Coarse Lock-Free 1 5 10 15 20 30 40 50 60 70

250000
No of threads

200000

100000

150000
50000

OJIII‘IIIIIII_

1 5 10 15 20 30 40 50 60 70

No of threads

60

Reachability Query

After successfully
checking of v(1) and
v(7), it performs
repeated BFS
traversals by invoking
the procedure Scan

P4

IF I T I

v

During any edge
modification operations
the atomic counter ecnt of
the source vertex is
necessarily incremented

o1l

