
An Efficient Practical Concurrent Wait-Free

Unbounded Graph

Sathya Peri1, Chandra Kiran Reddy2, Muktikanta Sa3

Department of Computer Science & Engineering
Indian Institute of Technology Hyderabad, India

{1sathya p, 2cs15btech11012, 3cs15resch11012}@iith.ac.in

Wait-free Concurrent Graphs IIT Hyderabad 1/36



Outline of the Presentation

1 Introduction

2 The Data Structure

3 Design of Wait Freedom Algorithm

4 The ADT Operations
Part - I : Wait-Free Graph Algorithms
Part - II : Optimized Wait-Free Graph Algorithms

5 Correctness and Progress Guarantees

6 Simulation Results

Wait-free Concurrent Graphs IIT Hyderabad 2/36



Introduction

Common real world objects can be modeled as graphs, which build
the pairwise relations between objects.

Graph algorithms applied in many applications, including social
networks, communication networks, VLSI design, graphics, etc.

Often these graphs are dynamic in nature and the updates are
real-time.

Figure: Concurrent Graph.

Wait-free Concurrent Graphs IIT Hyderabad 3/36



Introduction

Common real world objects can be modeled as graphs, which build
the pairwise relations between objects.

Graph algorithms applied in many applications, including social
networks, communication networks, VLSI design, graphics, etc.

Often these graphs are dynamic in nature and the updates are
real-time.

Figure: Concurrent Graph.

Wait-free Concurrent Graphs IIT Hyderabad 3/36



The System Model

Asynchronous shared-memory model with a finite set of p processors
accessed by a finite set of n threads.

The non-faulty threads communicate with each other by invoking
methods on the shared objects.

Execution on a shared-memory multi-processor system which supports
atomic read, write, fetch-and-add (FAA) and

compare-and-swap (CAS) instructions.

Figure: Concurrent Threads.

Wait-free Concurrent Graphs IIT Hyderabad 4/36



The System Model

Asynchronous shared-memory model with a finite set of p processors
accessed by a finite set of n threads.

The non-faulty threads communicate with each other by invoking
methods on the shared objects.

Execution on a shared-memory multi-processor system which supports
atomic read, write, fetch-and-add (FAA) and

compare-and-swap (CAS) instructions.

Figure: Concurrent Threads.

Wait-free Concurrent Graphs IIT Hyderabad 4/36



The ADT Operations a

aBapi Chatterjee, Sathya Peri, Muktikanta Sa, and Nandini Singhal. A Simple and
Practical Concurrent Non-blocking Unbounded Graph with Linearizable Reachability
Queries,ICDCN 2019.

Wait-free Concurrent Graphs IIT Hyderabad 5/36



Wait-free Concurrent Graphs IIT Hyderabad 6/36



The Data Structure

A directed graph G = (V ,E ) represented by its adjacency list which
enables it to grow (up to the availability of memory) and sink at the
runtime.

Wait-free Concurrent Graphs IIT Hyderabad 7/36



Correctness

The inconsistency is due to violation of correctness.

The correctness-criterion that we consider is Linearizabilityb.

A concurrent data-strcture d is linearizable if for any history
(execution) H output by d :

Assign an atomic step as a linearization point (LP) inside the execution
interval of each of the operations.

The history H is equivalent to a valid sequential execution obtained by
ordering the operations by their LPs.

bMaurice P. Herlihy and Jeannette M. Wing, Linearizability: A Correctness Condition
for Concurrent Objects, TOPLAS-1990.

Wait-free Concurrent Graphs IIT Hyderabad 8/36



Correctness

The inconsistency is due to violation of correctness.

The correctness-criterion that we consider is Linearizabilityb.

A concurrent data-strcture d is linearizable if for any history
(execution) H output by d :

Assign an atomic step as a linearization point (LP) inside the execution
interval of each of the operations.

The history H is equivalent to a valid sequential execution obtained by
ordering the operations by their LPs.

bMaurice P. Herlihy and Jeannette M. Wing, Linearizability: A Correctness Condition
for Concurrent Objects, TOPLAS-1990.

Wait-free Concurrent Graphs IIT Hyderabad 8/36



Correctness

The inconsistency is due to violation of correctness.

The correctness-criterion that we consider is Linearizabilityb.

A concurrent data-strcture d is linearizable if for any history
(execution) H output by d :

Assign an atomic step as a linearization point (LP) inside the execution
interval of each of the operations.

The history H is equivalent to a valid sequential execution obtained by
ordering the operations by their LPs.

bMaurice P. Herlihy and Jeannette M. Wing, Linearizability: A Correctness Condition
for Concurrent Objects, TOPLAS-1990.

Wait-free Concurrent Graphs IIT Hyderabad 8/36



Correctness

The inconsistency is due to violation of correctness.

The correctness-criterion that we consider is Linearizabilityb.

A concurrent data-strcture d is linearizable if for any history
(execution) H output by d :

Assign an atomic step as a linearization point (LP) inside the execution
interval of each of the operations.

The history H is equivalent to a valid sequential execution obtained by
ordering the operations by their LPs.

bMaurice P. Herlihy and Jeannette M. Wing, Linearizability: A Correctness Condition
for Concurrent Objects, TOPLAS-1990.

Wait-free Concurrent Graphs IIT Hyderabad 8/36



Linearizability Example

Wait-free Concurrent Graphs IIT Hyderabad 9/36



Progress Guaranteec

Wait-free

A method is wait-free if it guarantees that every call finishes its execution
in a finite number of steps.

Lock-free

A method is lock-free if it guarantees that infinitely often some method
call finishes in a finite number of steps.

cMaurice P. Herlihy and Nir Shavit, On the Nature of Progress, OPODIS-2011.
Wait-free Concurrent Graphs IIT Hyderabad 10/36



Progress Guaranteec

Wait-free

A method is wait-free if it guarantees that every call finishes its execution
in a finite number of steps.

Lock-free

A method is lock-free if it guarantees that infinitely often some method
call finishes in a finite number of steps.

cMaurice P. Herlihy and Nir Shavit, On the Nature of Progress, OPODIS-2011.
Wait-free Concurrent Graphs IIT Hyderabad 10/36



Help Mechanism and Difficulties

1 A common technique to achieve wait-freedom.

2 Multiple threads should be able to work concurrently on the same
operation.

3 Many potential races.

4 Difficult to design.

5 Usually slower: At times many threads are attempting to help
the same operation.

Wait-free Concurrent Graphs IIT Hyderabad 11/36



Help Mechanism and Difficulties

1 A common technique to achieve wait-freedom.

2 Multiple threads should be able to work concurrently on the same
operation.

3 Many potential races.

4 Difficult to design.

5 Usually slower: At times many threads are attempting to help
the same operation.

Wait-free Concurrent Graphs IIT Hyderabad 11/36



Help Mechanism and Difficulties

1 A common technique to achieve wait-freedom.

2 Multiple threads should be able to work concurrently on the same
operation.

3 Many potential races.

4 Difficult to design.

5 Usually slower: At times many threads are attempting to help
the same operation.

Wait-free Concurrent Graphs IIT Hyderabad 11/36



Help Mechanism and Difficulties

1 A common technique to achieve wait-freedom.

2 Multiple threads should be able to work concurrently on the same
operation.

3 Many potential races.

4 Difficult to design.

5 Usually slower: At times many threads are attempting to help
the same operation.

Wait-free Concurrent Graphs IIT Hyderabad 11/36



Help Mechanism and Difficulties

1 A common technique to achieve wait-freedom.

2 Multiple threads should be able to work concurrently on the same
operation.

3 Many potential races.

4 Difficult to design.

5 Usually slower:

At times many threads are attempting to help
the same operation.

Wait-free Concurrent Graphs IIT Hyderabad 11/36



Help Mechanism and Difficulties

1 A common technique to achieve wait-freedom.

2 Multiple threads should be able to work concurrently on the same
operation.

3 Many potential races.

4 Difficult to design.

5 Usually slower: At times many threads are attempting to help
the same operation.

Wait-free Concurrent Graphs IIT Hyderabad 11/36



Help Mechanism

1 Each operation is assigned a dynamic age-based priority.

2 Each thread declares in a designated state array the operation it
desires.

3 Many threads may attempt to execute it.

Wait-free Concurrent Graphs IIT Hyderabad 12/36



Help Mechanism

1 Each operation is assigned a dynamic age-based priority.

2 Each thread declares in a designated state array the operation it
desires.

3 Many threads may attempt to execute it.

Wait-free Concurrent Graphs IIT Hyderabad 12/36



Help Mechanism

1 Each operation is assigned a dynamic age-based priority.

2 Each thread declares in a designated state array the operation it
desires.

3 Many threads may attempt to execute it.

Wait-free Concurrent Graphs IIT Hyderabad 12/36



Help Mechanism for Each Thread

Each thread accessing a concurrent graph data structure.

Chooses a monotonically increasing phase number.

Writes down its phase and operation information in a special state
array.

Helps all threads with a non-larger phase to apply their operations.

Wait-free Concurrent Graphs IIT Hyderabad 13/36



Help Mechanism for Each Thread

Each thread accessing a concurrent graph data structure.

Chooses a monotonically increasing phase number.

Writes down its phase and operation information in a special state
array.

Helps all threads with a non-larger phase to apply their operations.

Wait-free Concurrent Graphs IIT Hyderabad 13/36



Help Mechanism for Each Thread

Each thread accessing a concurrent graph data structure.

Chooses a monotonically increasing phase number.

Writes down its phase and operation information in a special state
array.

Helps all threads with a non-larger phase to apply their operations.

Wait-free Concurrent Graphs IIT Hyderabad 13/36



Help Mechanism for Each Thread

Each thread accessing a concurrent graph data structure.

Chooses a monotonically increasing phase number.

Writes down its phase and operation information in a special state
array.

Helps all threads with a non-larger phase to apply their operations.

Wait-free Concurrent Graphs IIT Hyderabad 13/36



State Array

Wait-free Concurrent Graphs IIT Hyderabad 14/36



State Array

Wait-free Concurrent Graphs IIT Hyderabad 14/36



State Array

Wait-free Concurrent Graphs IIT Hyderabad 14/36



State Array

Wait-free Concurrent Graphs IIT Hyderabad 14/36



State Array

Wait-free Concurrent Graphs IIT Hyderabad 14/36



Outline

1 Introduction

2 The Data Structure

3 Design of Wait Freedom Algorithm

4 The ADT Operations
Part - I : Wait-Free Graph Algorithms
Part - II : Optimized Wait-Free Graph Algorithms

5 Correctness and Progress Guarantees

6 Simulation Results

Wait-free Concurrent Graphs IIT Hyderabad 15/36



Part - I

Wait-Free Graph Algorithms

Wait-free Concurrent Graphs IIT Hyderabad 16/36



The ADT Operations

1 AddVertex

2 RemoveVertex

3 ContainsVertex

4 AddEdge

5 RemoveEdge

6 ContainsEdge

Wait-free Concurrent Graphs IIT Hyderabad 17/36



Working of AddVertex(u) Operation

Wait-free Concurrent Graphs IIT Hyderabad 18/36



Working of AddVertex(u) Operation

Wait-free Concurrent Graphs IIT Hyderabad 18/36



Working of Help AddVertex Method

Wait-free Concurrent Graphs IIT Hyderabad 19/36



Working of Help AddVertex Method

Wait-free Concurrent Graphs IIT Hyderabad 19/36



Working of Help AddVertex Method

Wait-free Concurrent Graphs IIT Hyderabad 19/36



Working of Help AddVertex Method

Wait-free Concurrent Graphs IIT Hyderabad 19/36



Working of AddEdge(u,v) Operation

Wait-free Concurrent Graphs IIT Hyderabad 20/36



Working of AddEdge(u,v) Operation

Wait-free Concurrent Graphs IIT Hyderabad 20/36



Working of Help AddEge Method

Wait-free Concurrent Graphs IIT Hyderabad 21/36



Working of Help AddEge Method

Wait-free Concurrent Graphs IIT Hyderabad 21/36



Working of Help AddEge Method

Wait-free Concurrent Graphs IIT Hyderabad 21/36



Working of Help AddEge Method

Wait-free Concurrent Graphs IIT Hyderabad 21/36



Working of Help AddEge Method

Wait-free Concurrent Graphs IIT Hyderabad 21/36



Outline

1 Introduction

2 The Data Structure

3 Design of Wait Freedom Algorithm

4 The ADT Operations
Part - I : Wait-Free Graph Algorithms
Part - II : Optimized Wait-Free Graph Algorithms

5 Correctness and Progress Guarantees

6 Simulation Results

Wait-free Concurrent Graphs IIT Hyderabad 22/36



Part - II

Optimized Wait-Free Graph Algorithms

Wait-free Concurrent Graphs IIT Hyderabad 23/36



Lock-free Vs Wait-free

1 Lock-free algorithms:

Among all threads trying to apply operations on the data structure, at
least one will succeed.
Many scalable and efficient algorithms.
Global progress.

2 Wait-free algorithms:

A thread completes its operation a bounded # steps: regardless of
what other threads are doing.
Particularly important property in several domains e.g., real-time
systems and operating systems.
Commonly regarded as too inefficient and complicated to design.
The overhead of wait-freedom is because of helping.

Wait-free Concurrent Graphs IIT Hyderabad 24/36



Lock-free Vs Wait-free

1 Lock-free algorithms:

Among all threads trying to apply operations on the data structure, at
least one will succeed.
Many scalable and efficient algorithms.
Global progress.

2 Wait-free algorithms:

A thread completes its operation a bounded # steps: regardless of
what other threads are doing.
Particularly important property in several domains e.g., real-time
systems and operating systems.
Commonly regarded as too inefficient and complicated to design.
The overhead of wait-freedom is because of helping.

Wait-free Concurrent Graphs IIT Hyderabad 24/36



Lock-free Vs Wait-free

1 Lock-free algorithms:

Among all threads trying to apply operations on the data structure, at
least one will succeed.
Many scalable and efficient algorithms.
Global progress.

2 Wait-free algorithms:

A thread completes its operation a bounded # steps: regardless of
what other threads are doing.
Particularly important property in several domains e.g., real-time
systems and operating systems.
Commonly regarded as too inefficient and complicated to design.
The overhead of wait-freedom is because of helping.

Wait-free Concurrent Graphs IIT Hyderabad 24/36



Reducing the Overhead of Helping

1 Ask for help only when you really need it.

i.e., after trying several times to apply the operation.

2 Help others only after giving them a chance to proceed on their own.

delayed helping.

Wait-free Concurrent Graphs IIT Hyderabad 25/36



Reducing the Overhead of Helping

1 Ask for help only when you really need it.

i.e., after trying several times to apply the operation.

2 Help others only after giving them a chance to proceed on their own.

delayed helping.

Wait-free Concurrent Graphs IIT Hyderabad 25/36



An Optimized Fast Wait-free Graph Algorithm

1 Start operation by running its lock-free implementation.

Fast path

2 Upon several failures, switch into a wait-free implementation →
notify others that you need help → keep trying

Slow path

3 Once in a while, threads on the fast path check if their help is needed
and provide help.

Wait-free Concurrent Graphs IIT Hyderabad 26/36



An Optimized Fast Wait-free Graph Algorithm

1 Start operation by running its lock-free implementation.

Fast path

2 Upon several failures, switch into a wait-free implementation →
notify others that you need help → keep trying

Slow path

3 Once in a while, threads on the fast path check if their help is needed
and provide help.

Wait-free Concurrent Graphs IIT Hyderabad 26/36



An Optimized Fast Wait-free Graph Algorithm

1 Start operation by running its lock-free implementation.

Fast path

2 Upon several failures, switch into a wait-free implementation

→
notify others that you need help → keep trying

Slow path

3 Once in a while, threads on the fast path check if their help is needed
and provide help.

Wait-free Concurrent Graphs IIT Hyderabad 26/36



An Optimized Fast Wait-free Graph Algorithm

1 Start operation by running its lock-free implementation.

Fast path

2 Upon several failures, switch into a wait-free implementation →
notify others that you need help

→ keep trying

Slow path

3 Once in a while, threads on the fast path check if their help is needed
and provide help.

Wait-free Concurrent Graphs IIT Hyderabad 26/36



An Optimized Fast Wait-free Graph Algorithm

1 Start operation by running its lock-free implementation.

Fast path

2 Upon several failures, switch into a wait-free implementation →
notify others that you need help → keep trying

Slow path

3 Once in a while, threads on the fast path check if their help is needed
and provide help.

Wait-free Concurrent Graphs IIT Hyderabad 26/36



An Optimized Fast Wait-free Graph Algorithm

1 Start operation by running its lock-free implementation.

Fast path

2 Upon several failures, switch into a wait-free implementation →
notify others that you need help → keep trying

Slow path

3 Once in a while, threads on the fast path check if their help is needed
and provide help.

Wait-free Concurrent Graphs IIT Hyderabad 26/36



An Optimized Fast Wait-free Graph Algorithm

1 Start operation by running its lock-free implementation.

Fast path

2 Upon several failures, switch into a wait-free implementation →
notify others that you need help → keep trying

Slow path

3 Once in a while, threads on the fast path check if their help is needed
and provide help.

Wait-free Concurrent Graphs IIT Hyderabad 26/36



Optimized Fast Wait-free Algorithm Framework

 

Return

Do I need

Apply my Op.

(at most N times)

Help Someone

Apply my Op.

(until success)

Start

NO

YES

NO

YES

using Fast Path

using Slow Path

to help ?‘

Success?‘

Wait-free Concurrent Graphs IIT Hyderabad 27/36



Correctness and Progress Guarantees

Theorem 1:

The ADT operations are linearizable.

Theorem 2:

The ADT operations AddVertex, RemoveVertex, ContainsVertex,
AddEdge, RemoveEdge, and ContainsEdge are Wait-free.

Proofs of the Theorem 1 and 2 are shown in the paper.

Wait-free Concurrent Graphs IIT Hyderabad 28/36



Correctness and Progress Guarantees

Theorem 1:

The ADT operations are linearizable.

Theorem 2:

The ADT operations AddVertex, RemoveVertex, ContainsVertex,
AddEdge, RemoveEdge, and ContainsEdge are Wait-free.

Proofs of the Theorem 1 and 2 are shown in the paper.

Wait-free Concurrent Graphs IIT Hyderabad 28/36



Correctness and Progress Guarantees

Theorem 1:

The ADT operations are linearizable.

Theorem 2:

The ADT operations AddVertex, RemoveVertex, ContainsVertex,
AddEdge, RemoveEdge, and ContainsEdge are Wait-free.

Proofs of the Theorem 1 and 2 are shown in the paper.

Wait-free Concurrent Graphs IIT Hyderabad 28/36



Experiments

Intel(R) Xeon(R) E5-2690 v4 CPU containing 14 cores running at
2.60GHz on two sockets. Each core supports 2 logical threads.

Thus, a total of 56 logical cores.

Implementation in C++ without any garbage collection.
Multi-threaded implementation is based on Posix threads.

Start experiments, with 1000 vertices and approximately 125000
edges added randomly.

We measure throughput obtained on running the experiment for 20
seconds.

Each data point is obtained by averaging over 5 iterations.

We compare the wit-free graph with its sequential, coarse-grained,
hand-over-hand, lazy and lock-free graphs counterparts.

Wait-free Concurrent Graphs IIT Hyderabad 29/36



Experiments

Intel(R) Xeon(R) E5-2690 v4 CPU containing 14 cores running at
2.60GHz on two sockets. Each core supports 2 logical threads.

Thus, a total of 56 logical cores.

Implementation in C++ without any garbage collection.
Multi-threaded implementation is based on Posix threads.

Start experiments, with 1000 vertices and approximately 125000
edges added randomly.

We measure throughput obtained on running the experiment for 20
seconds.

Each data point is obtained by averaging over 5 iterations.

We compare the wit-free graph with its sequential, coarse-grained,
hand-over-hand, lazy and lock-free graphs counterparts.

Wait-free Concurrent Graphs IIT Hyderabad 29/36



Experiments

Intel(R) Xeon(R) E5-2690 v4 CPU containing 14 cores running at
2.60GHz on two sockets. Each core supports 2 logical threads.

Thus, a total of 56 logical cores.

Implementation in C++ without any garbage collection.
Multi-threaded implementation is based on Posix threads.

Start experiments, with 1000 vertices and approximately 125000
edges added randomly.

We measure throughput obtained on running the experiment for 20
seconds.

Each data point is obtained by averaging over 5 iterations.

We compare the wit-free graph with its sequential, coarse-grained,
hand-over-hand, lazy and lock-free graphs counterparts.

Wait-free Concurrent Graphs IIT Hyderabad 29/36



Experiments

Intel(R) Xeon(R) E5-2690 v4 CPU containing 14 cores running at
2.60GHz on two sockets. Each core supports 2 logical threads.

Thus, a total of 56 logical cores.

Implementation in C++ without any garbage collection.
Multi-threaded implementation is based on Posix threads.

Start experiments, with 1000 vertices and approximately 125000
edges added randomly.

We measure throughput obtained on running the experiment for 20
seconds.

Each data point is obtained by averaging over 5 iterations.

We compare the wit-free graph with its sequential, coarse-grained,
hand-over-hand, lazy and lock-free graphs counterparts.

Wait-free Concurrent Graphs IIT Hyderabad 29/36



Experiments

Intel(R) Xeon(R) E5-2690 v4 CPU containing 14 cores running at
2.60GHz on two sockets. Each core supports 2 logical threads.

Thus, a total of 56 logical cores.

Implementation in C++ without any garbage collection.
Multi-threaded implementation is based on Posix threads.

Start experiments, with 1000 vertices and approximately 125000
edges added randomly.

We measure throughput obtained on running the experiment for 20
seconds.

Each data point is obtained by averaging over 5 iterations.

We compare the wit-free graph with its sequential, coarse-grained,
hand-over-hand, lazy and lock-free graphs counterparts.

Wait-free Concurrent Graphs IIT Hyderabad 29/36



Workload Distributions

Graph Operations: AddVertex, RemoveVertex, ContainsVertex, AddEdge,
RemoveEdge and ContainsEdge

Lookup Intensive: (2.5%, 2.5%, 45%, 2.5%, 2.5%, 45%)

Equal Lookup and Updates: (12.5%, 12.5%, 25%,12.5%, 12.5%,
25%)

Update Intensive: (22.5%, 22.5%, 5%, 22.5%, 22.5%, 5%)

Wait-free Concurrent Graphs IIT Hyderabad 30/36



Results

We have compared the following cases.

S. No Label Explanation

1 Seq Sequential execution of all the operations

2 Coarse Execution with a coarse grained lock [Ch. 9, AMP Book]

3 HoH Execution with Hand-over-Hand lock [Ch. 9, AMP Book]

4 Lazy Execution with Lazy-lock [Heller’s Lazy List]

5 NBGraph Based on non-blocking graph [Chatterjee’s Non-blocking Graph]

6 WFGraph-woh wait-free graph without helping of ContainsVertex & ContainsEdge.

7 WFGraph-wh wait-free graph with helping of ContainsVertex & ContainsEdge.

8 OWFGraph-woh Optimized wait-free graph without helping of ContainsVertex & ContainsEdge.

9 OWFGraph-wh Optimized wait-free graph with helping of ContainsVertex & ContainsEdge.

Wait-free Concurrent Graphs IIT Hyderabad 31/36



Results

Wait-free Concurrent Graphs IIT Hyderabad 32/36



Results

Wait-free Concurrent Graphs IIT Hyderabad 32/36



Conclusion

1 A practical wait-free directed graph data structure represented by its
adjacency list which can grow without bound and sink at the runtime.

2 Provably all the methods are linearizable.

3 We implemented in a dynamic setting with threads helping each other
using operator descriptors.

4 We also extended the wait-free graph to enhance the performance
and achieve a fast wait-free graph: optimized wait-free graph.

5 We extensively evaluate a sample C++ implementation of the
algorithm through a number of micro-benchmarks.

6 Our experimental results show on an average of 9x improvement over
the sequential implementation.

Wait-free Concurrent Graphs IIT Hyderabad 33/36



Conclusion

1 A practical wait-free directed graph data structure represented by its
adjacency list which can grow without bound and sink at the runtime.

2 Provably all the methods are linearizable.

3 We implemented in a dynamic setting with threads helping each other
using operator descriptors.

4 We also extended the wait-free graph to enhance the performance
and achieve a fast wait-free graph: optimized wait-free graph.

5 We extensively evaluate a sample C++ implementation of the
algorithm through a number of micro-benchmarks.

6 Our experimental results show on an average of 9x improvement over
the sequential implementation.

Wait-free Concurrent Graphs IIT Hyderabad 33/36



Conclusion

1 A practical wait-free directed graph data structure represented by its
adjacency list which can grow without bound and sink at the runtime.

2 Provably all the methods are linearizable.

3 We implemented in a dynamic setting with threads helping each other
using operator descriptors.

4 We also extended the wait-free graph to enhance the performance
and achieve a fast wait-free graph: optimized wait-free graph.

5 We extensively evaluate a sample C++ implementation of the
algorithm through a number of micro-benchmarks.

6 Our experimental results show on an average of 9x improvement over
the sequential implementation.

Wait-free Concurrent Graphs IIT Hyderabad 33/36



Conclusion

1 A practical wait-free directed graph data structure represented by its
adjacency list which can grow without bound and sink at the runtime.

2 Provably all the methods are linearizable.

3 We implemented in a dynamic setting with threads helping each other
using operator descriptors.

4 We also extended the wait-free graph to enhance the performance
and achieve a fast wait-free graph: optimized wait-free graph.

5 We extensively evaluate a sample C++ implementation of the
algorithm through a number of micro-benchmarks.

6 Our experimental results show on an average of 9x improvement over
the sequential implementation.

Wait-free Concurrent Graphs IIT Hyderabad 33/36



For More Information

1 The Technical Report is available at:
https://arxiv.org/abs/1810.13325

2 And the complete source code is available at:
https://github.com/PDCRL/ConcurrentGraphDS

Wait-free Concurrent Graphs IIT Hyderabad 34/36



Thank You!

Wait-free Concurrent Graphs IIT Hyderabad 35/36



For Further Reading..

Chatterjee B. et al. A Simple and Practical Concurrent Non-blocking Unbounded Graph with Linearizable Reachability

Queries. Proceedings of the 20th International Conference on Distributed Computing and Networking, ICDCN 2019

Maurice P. et al. Linearizability: A Correctness Condition for Concurrent Objects. ACM Transactions on Programming

Languages and Systems, Vol. 12, No. 3, July 1990, Pages 463-492.

Y. Riany. et al. Towards a practical snapshot algorithm. Theoretical Computer Science, 269(1-2): 163-201, 2001.

Timothy L. Harris. A Pragmatic Implementation of Non-blocking Linked-Lists. Distributed Computing, 15th International

Conference, DISC 2001.

Maurice Herlihy and Nir Shavit. The Art of Multiprocesor Programming, Revised Print. Imprinted Morgan

Kaufmann,Elsevier, May 2012.

A. Natarajan and N. Mittal, Fast concurrent lock-free binary search trees 19th PPoPP, 2014, pp. 317–328.

Arnab Sinha, Sharad Malik, Runtime checking of serializability in software transactional memory, Parallel & Distributed

Processing (IPDPS), 2010

Khanh Do Ba, Wait-Free and Obstruction-Free Snapshot, Dartmouth Computer Science Technical Report TR2006-578,

June 2006.

Y. Afek, H. Attiya, D. Dolev, E. Gafni, M. Merritt and N. Shavit. Atomic snapshots of shared memory. Proc. ACM

PODC , 1–14, 1990.

Steve Heller, Maurice Herlihy, Victor Luchangco, Mark Moir, William N. Scherer III, Nir Shavit. A Lazy Concurrent

List-Based Set Algorithm. Parallel Processing Letters, volume 17, 4, 411–424, 2007,

Wait-free Concurrent Graphs IIT Hyderabad 36/36


	Introduction
	The Data Structure
	Design of Wait Freedom Algorithm
	The ADT Operations
	Part - I : Wait-Free Graph Algorithms
	Part - II : Optimized Wait-Free Graph Algorithms

	Correctness and Progress Guarantees
	Simulation Results

