
An Efficient Practical Concurrent Wait-Free

Unbounded Graph

Sathya Peri1, Chandra Kiran Reddy2, Muktikanta Sa3

Department of Computer Science & Engineering
Indian Institute of Technology Hyderabad, India

{1sathya p, 2cs15btech11012, 3cs15resch11012}@iith.ac.in

Wait-free Concurrent Graphs IIT Hyderabad 1/36



Outline of the Presentation

1 Introduction

2 The Data Structure

3 Design of Wait Freedom Algorithm

4 The ADT Operations
Part - I : Wait-Free Graph Algorithms
Part - II : Optimized Wait-Free Graph Algorithms

5 Correctness and Progress Guarantees

6 Simulation Results

Wait-free Concurrent Graphs IIT Hyderabad 2/36



Introduction

Common real world objects can be modeled as graphs, which build
the pairwise relations between objects.

Graph algorithms applied in many applications, including social
networks, communication networks, VLSI design, graphics, etc.

Often these graphs are dynamic in nature and the updates are
real-time.

Figure: Concurrent Graph.
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The System Model

Asynchronous shared-memory model with a finite set of p processors
accessed by a finite set of n threads.

The non-faulty threads communicate with each other by invoking
methods on the shared objects.

Execution on a shared-memory multi-processor system which supports
atomic read, write, fetch-and-add (FAA) and

compare-and-swap (CAS) instructions.

Figure: Concurrent Threads.
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The ADT Operations a

aBapi Chatterjee, Sathya Peri, Muktikanta Sa, and Nandini Singhal. A Simple and
Practical Concurrent Non-blocking Unbounded Graph with Linearizable Reachability
Queries,ICDCN 2019.
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The Data Structure

A directed graph G = (V ,E ) represented by its adjacency list which
enables it to grow (up to the availability of memory) and sink at the
runtime.
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Correctness

The inconsistency is due to violation of correctness.

The correctness-criterion that we consider is Linearizabilityb.

A concurrent data-strcture d is linearizable if for any history
(execution) H output by d :

Assign an atomic step as a linearization point (LP) inside the execution
interval of each of the operations.

The history H is equivalent to a valid sequential execution obtained by
ordering the operations by their LPs.

bMaurice P. Herlihy and Jeannette M. Wing, Linearizability: A Correctness Condition
for Concurrent Objects, TOPLAS-1990.
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Linearizability Example
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Progress Guaranteec

Wait-free

A method is wait-free if it guarantees that every call finishes its execution
in a finite number of steps.

Lock-free

A method is lock-free if it guarantees that infinitely often some method
call finishes in a finite number of steps.

cMaurice P. Herlihy and Nir Shavit, On the Nature of Progress, OPODIS-2011.
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Help Mechanism and Difficulties

1 A common technique to achieve wait-freedom.

2 Multiple threads should be able to work concurrently on the same
operation.

3 Many potential races.

4 Difficult to design.

5 Usually slower: At times many threads are attempting to help
the same operation.
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Help Mechanism

1 Each operation is assigned a dynamic age-based priority.

2 Each thread declares in a designated state array the operation it
desires.

3 Many threads may attempt to execute it.
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Help Mechanism for Each Thread

Each thread accessing a concurrent graph data structure.

Chooses a monotonically increasing phase number.

Writes down its phase and operation information in a special state
array.

Helps all threads with a non-larger phase to apply their operations.
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State Array
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Part - I

Wait-Free Graph Algorithms
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The ADT Operations

1 AddVertex

2 RemoveVertex

3 ContainsVertex

4 AddEdge

5 RemoveEdge

6 ContainsEdge
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Working of AddVertex(u) Operation
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Working of AddVertex(u) Operation
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Working of Help AddVertex Method
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Working of Help AddVertex Method
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Working of AddEdge(u,v) Operation
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Working of AddEdge(u,v) Operation
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Working of Help AddEge Method
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Part - II

Optimized Wait-Free Graph Algorithms
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Lock-free Vs Wait-free

1 Lock-free algorithms:

Among all threads trying to apply operations on the data structure, at
least one will succeed.
Many scalable and efficient algorithms.
Global progress.

2 Wait-free algorithms:

A thread completes its operation a bounded # steps: regardless of
what other threads are doing.
Particularly important property in several domains e.g., real-time
systems and operating systems.
Commonly regarded as too inefficient and complicated to design.
The overhead of wait-freedom is because of helping.
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Reducing the Overhead of Helping

1 Ask for help only when you really need it.

i.e., after trying several times to apply the operation.

2 Help others only after giving them a chance to proceed on their own.

delayed helping.
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An Optimized Fast Wait-free Graph Algorithm

1 Start operation by running its lock-free implementation.

Fast path

2 Upon several failures, switch into a wait-free implementation →
notify others that you need help → keep trying

Slow path

3 Once in a while, threads on the fast path check if their help is needed
and provide help.
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Optimized Fast Wait-free Algorithm Framework

 

Return

Do I need

Apply my Op.

(at most N times)

Help Someone

Apply my Op.

(until success)

Start

NO

YES

NO

YES

using Fast Path

using Slow Path

to help ?‘

Success?‘
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Correctness and Progress Guarantees

Theorem 1:

The ADT operations are linearizable.

Theorem 2:

The ADT operations AddVertex, RemoveVertex, ContainsVertex,
AddEdge, RemoveEdge, and ContainsEdge are Wait-free.

Proofs of the Theorem 1 and 2 are shown in the paper.
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Experiments

Intel(R) Xeon(R) E5-2690 v4 CPU containing 14 cores running at
2.60GHz on two sockets. Each core supports 2 logical threads.

Thus, a total of 56 logical cores.

Implementation in C++ without any garbage collection.
Multi-threaded implementation is based on Posix threads.

Start experiments, with 1000 vertices and approximately 125000
edges added randomly.

We measure throughput obtained on running the experiment for 20
seconds.

Each data point is obtained by averaging over 5 iterations.

We compare the wit-free graph with its sequential, coarse-grained,
hand-over-hand, lazy and lock-free graphs counterparts.
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Workload Distributions

Graph Operations: AddVertex, RemoveVertex, ContainsVertex, AddEdge,
RemoveEdge and ContainsEdge

Lookup Intensive: (2.5%, 2.5%, 45%, 2.5%, 2.5%, 45%)

Equal Lookup and Updates: (12.5%, 12.5%, 25%,12.5%, 12.5%,
25%)

Update Intensive: (22.5%, 22.5%, 5%, 22.5%, 22.5%, 5%)
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Results

We have compared the following cases.

S. No Label Explanation

1 Seq Sequential execution of all the operations

2 Coarse Execution with a coarse grained lock [Ch. 9, AMP Book]

3 HoH Execution with Hand-over-Hand lock [Ch. 9, AMP Book]

4 Lazy Execution with Lazy-lock [Heller’s Lazy List]

5 NBGraph Based on non-blocking graph [Chatterjee’s Non-blocking Graph]

6 WFGraph-woh wait-free graph without helping of ContainsVertex & ContainsEdge.

7 WFGraph-wh wait-free graph with helping of ContainsVertex & ContainsEdge.

8 OWFGraph-woh Optimized wait-free graph without helping of ContainsVertex & ContainsEdge.

9 OWFGraph-wh Optimized wait-free graph with helping of ContainsVertex & ContainsEdge.
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Conclusion

1 A practical wait-free directed graph data structure represented by its
adjacency list which can grow without bound and sink at the runtime.

2 Provably all the methods are linearizable.

3 We implemented in a dynamic setting with threads helping each other
using operator descriptors.

4 We also extended the wait-free graph to enhance the performance
and achieve a fast wait-free graph: optimized wait-free graph.

5 We extensively evaluate a sample C++ implementation of the
algorithm through a number of micro-benchmarks.

6 Our experimental results show on an average of 9x improvement over
the sequential implementation.
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For More Information

1 The Technical Report is available at:
https://arxiv.org/abs/1810.13325

2 And the complete source code is available at:
https://github.com/PDCRL/ConcurrentGraphDS
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Thank You!
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