
An Innovative Approach for Achieving Composability in Concurrent Systems
using Multi-Version Object Based STMs∗

Sandeep Kulkarni2, Sweta Kumari1, Sathya Peri1, and Archit Somani1

1Department of Computer Science Engineering, IIT Hyderabad
2Department of Computer Science, Michigan State University

Abstract

In the modern era of multicore processors, utilizing multiple cores properly is a tedious job. Synchronization and communication among
processors involve high cost. Software transaction memory systems (STMs) addresses this issues and provide better concurrency in
which programmer need not have to worry about consistency issues. Several big-data applications which deal large amounts of data can
benefit from Transactional Memory Systems.

In this paper, we introduce a new STM system as multi-version object based STM (MV-OSTM) which is the fusion of object based
STM with multiple versions. As the name suggests MV-OSTM, works on a higher level and keeping the multiple versions corresponding
to each key. Presently, we have developed MV-OSTM with the unlimited number of versions corresponding to each key. To overcome
traversal overhead, it performs the garbage collection method to delete the unwanted versions corresponding to the key. It provides
greater concurrency while reducing the number of aborts. It ensures composability by making the transaction as atomic. In the proposed
algorithm, k is the input parameter and the value of it will be decided by the programmer and depends on the application. Programmer
can tune the value of k from 1 to∞. If k equal to 1 then it will boil down to single version object based STM (OSTM) and if k equal to
∞ then it will be equivalent to multi-version OSTM with∞ versions.

MV-OSTM satisfies correctness-criteria as opacity. For a given version order of keys, if any history H generated by MV-OSTM
produces acyclic graph then H is opaque. The progress condition of the proposed MV-OSTM is multi-version permissiveness or
mv-permissiveness which never aborts a transaction which is having return-value method only. To the best of our knowledge, this is the
first work to explore the idea of using multiple versions in OSTMs to achieve greater concurrency.

1 Introduction

Software Transaction Memory Systems (STMs) are a convenient programming interface for a programmer to access shared memory
without worrying about concurrency issues [7, 19]. Concurrently executing transactions access shared memory through the interface
provided by the STMs. Thus with STMs, the programmer can focus on harnessing optimum parallelism from the application instead of
worrying about the locking, races and deadlocks. Transactional Memory Systems can benefit several big-data applications which deal
large amounts of data and parallelism to process them.

Another advantage of STMs is that they facilitate composability of concurrent programs with great ease. Different concurrent
operations that need to be composed to form a single atomic unit is simply achieved by encapsulating all these operations as a single
transaction. Composition of concurrent programs is a very nice feature which makes STMs very appealing to use by programmers.

Most of the STMs proposed in the literature are specifically based on read/write primitive operations (or methods) on memory buffers
(or memory registers). These STMs typically export the following methods: t begin which begins a transaction, t read which reads from
a buffer, t write which writes onto a buffer, tryC which validates the operations of the transaction and tries to commit. If validation is
successful then it returns commit otherwise STMs export tryA which returns abort. We refer to these as Read-Write STMs or RWSTMs.
As a part of the validation, the STMs typically check for conflicts among the operations. Two operations are said to be conflicting if at
least one of them is a write (or update) operation. Normally, the order of two conflicting operations can not be commutated.

On the other hand, Object-based STM or OSTM operate on higher level objects rather than read & write operations on memory
locations. They include more complicated operations such as enq/deq on queue objects, push/pop on stack objects etc.

It was shown in databases that object-based schedulers provide greater concurrency than read-write based systems [20, Chap 6].
Harris et al. [3], Hassan et al [4], Herlihy et al.[17, 8] extended this concept to STMs. OSTMs achieve greater concurrency by milking the
richer semantics of object level operations. In this paper, we consider hash table OSTM implemented using list. We assume that the
hash table object supports insert, delete and lookup operations on 〈key, value〉 pairs. We show the correctness of the resulting OSTM
by showing it is opaque[2].

∗work in progress

1



Now, we explain how OSTMs provide greater concurrency than RWSTMs using hash table. Consider an OSTM operating on the
hash table object exports the following methods: (1) t begin which begins a transaction (same as in RWSTMs), (2) t insert which
inserts a value for a given key, (3) t delete which deletes the value associated with the given key and returns the current value of the key,
(4) t lookup which looks up the value associated with the given key and (5) tryC which validates the operations of the transaction.

We denote t insert, t delete as update methods since as the name suggests, they update the shared memory. Along the same lines, we
denote t lookup, t delete as rv method as they return the current value of the key on which the method operates on. Thus it can be see that
t delete is both an update as well as rv method. STMs being optimistic in nature, the affect of update methods takes place only upon the
commit of the transactions. On being aborted, all the updates by the transaction are discarded.

An intuitive way to implement the hash table object is using a collection of lists. All the keys that hash onto the same bucket are
chained into the same list. Each element of the list stores the 〈key, value〉 pair. The elements of the list are sorted by their keys similar
to the set implementations discussed in [6, Chap 9]. Figure 1 a) shows this implementation. It can be seen that the underlying list is a
concurrent data-structure (DS) manipulated by multiple transactions (and hence threads). So we have adopted the lazy-list approach [5]
to implement the operations of the list denoted as: list ins, list del and list lookup (referred as contains in [5]). Thus when a transaction
invokes t insert, t delete and t lookup methods, the STM internally invokes the list ins, list del and list lookup methods respectively.

b) H1: Transactional tree historya) Underlying list

T1 T2

r2(k2) r2(k5) r2(k7) w2(k5) w2(k7)

d2(k7)

c2

l1(k8)

r1(k5) r1(k8)r1(k2)
r1(k2) r1(k5)

l1(k5)

−∞ k2 k5 k7 k8 +∞

Layer-1: Lookups & Deletes

Layer-0: Reads & Writes

Figure 1: Motivational example for OSTMs Vs RWSTMs
Consider an instance of list in one of the chains of hash table which contains nodes with keys 〈k2 k5 k7 k8〉 as shown in Figure 1

a). Suppose transactions T1 and T2 are concurrently executing t lookup1(k5), t delete2(k7) and t lookup1(k8) as shown in Figure 1 b).
For simplicity, we refer to nodes of the list by their keys and we abbreviate t delete, t lookup, t insert, commit and abort as d, l, i, c and a
respectively.

In this setting, suppose a transaction T1 of OSTM invokes methods t lookup on the keys k5, k8. This would internally cause the OSTM
to invoke list lookup method on keys 〈k2, k5〉 and 〈k2, k5, k7, k8〉 respectively. Concurrently, suppose transaction T2 invokes the method
t delete on key k7 between the two t lookups of T1. This would cause, OSTM to invoke list del method of list on k7. Since, we are using
lazy-list approach on the underlying list, list del involves pointing the next field of element k5 to k8 and marking element k7 as deleted.
Thus list del of k7 would execute the following sequence of read/write level operations- r(k2)r(k5)r(k7)w(k5)w(k7) where r(k5), w(k5)
denote read & write on the element k5 with some value respectively. The execution of OSTM denoted as a history can be represented as a
transactional forest as shown in Figure 1 b). Here the execution of each transaction is a tree.

In this execution, we denote the read-write operations (leaves) as layer-0 and t lookup, t delete methods as layer-1. Consider the
history (execution) at layer-0 (while ignoring higher-level operations), denoted as H0. It can be verified this history is not opaque[2].
This is because between the two reads of k5 by T1, T2 writes to k5. It can be seen that if history H0 is input to a RWSTMs one of the
transactions among T1 or T2 would be aborted to ensure correctness (in this case opacity[2]).

On the other hand consider the history H1 at layer-1 consisting of t lookup, t delete methods while ignoring the underlying read/write
operations. We ignore the underlying read & write operations since they do not overlap (referred to as pruning in [20, Chap 6]). Since
these methods operate on different keys, they are not conflicting and can be re-ordered either way. Thus, we get that H1 is opaque[2] with
T1T2 (or T2T1) being an equivalent serial history.

The important idea in the above argument is ignoring lower-level operations since they do not overlap. Harris et al. referred to it
as benign-conflicts[3]. This history clearly shows the advantage of considering STMs with higher level operations in this case they are
t insert, t delete and t lookup. With object level modeling of histories, we get a higher number of acceptable schedules than read/write
model. This is because not all conflicts at the lower level matter at the higher level. Thus, OSTM reduces number of aborts and provides

2



greater concurrency which can greatly benefit composition of operations of higher level objects. These ideas have been explored in Harris
et al. [3], Hassan et al [4], Herlihy et al.[17, 8].

It must be noted, there are instances where the conflicts at lower level do matter at the higher level. Thus OSTMs must be carefully
designed to ensure correctness while not reducing the efficiency.
Motivational example of MV-OSTM : It was observed in databases and STMs that storing multiple versions in RWSTMs provides better
concurrency [10, 16]. Maintaining multiple versions can ensure that more read operations succeed because the reading operation will
have an appropriate version to read. This motivated us to consider multiple versions of objects with OSTMs.

We consider an example to motivate the advantage of having multiple object versions. Figure 2 a) represents a history H with two
concurrent transactions T1 and T2 operating on a hash table. T1 first performs a t lookup on key k2. But due to absence of key k2
in hash table ht, its gets NULL . After that suppose T2 invokes t insert method on the same key k2 and inserts the value v2 in
hash table ht. Then T2 deletes the key k1 from hash table ht and returns v3 implying that some other transaction had previously
inserted v3 into k1. The second method of T1 is t lookup on the key k1. In this case the STM system has to returns abort to ensure
correctness, i.e., opacity. If T1 obtained a return value of NULL for k1, then the history will not be opaque.

In order to improve concurrency, we can use multiple versions for each key. Whenever a transaction inserts or deletes, a new version
is created. Hence, in the above example even after T2 deletes k1, the previous value of v3 is still retained. Thus, when T1 invokes t lookup
on k1 after the delete on k1 by T2, if the return value is v3 (the old value) then the history is opaque. In this case, the equivalent serial
history being T1T2. This is shown in Figure 2 b). Thus by using multiple versions for each key, we get higher number t lookup methods
can commit.

a) Single version OSTMs b) Multi−version OSTM

T1

T2

C2

C1

T1

T2

A1

C2

l1(ht, k2, NULL)

i2(ht, k2, v2)

l1(ht, k1, ABORT ) l1(ht, k2, NULL)

i2(ht, k2, v2)

l1(ht, k1, v3)

d2(ht, k1, v3) d2(ht, k1, v3)

Figure 2: Advantages of multi version over single version OSTM

Thus to reduce the number of aborts and achieving greater concurrency we propose MV-OSTM. To the best of our knowledge, this is
the first work to explore the idea of using multiple versions in OSTMs to achieve greater concurrency. This we believe can in turn ensure
greater number of successful composed operations.

Currently, we have developed MV-OSTM with the∞ number of versions for each key. So, we need garbage collection method to
delete the unwanted versions of a key. Our contributions are as follows:

• We have proposed a new STM as MV-OSTM which providing the greater concurrency with the help of multiple versions to reduce
the number of aborts and its composable too.

• MV-OSTM ensures the progress condition as multi-version permissiveness or mv-permissiveness [18]. A mv-permissive MV-OSTM
system never aborts a return-value only transaction. In that sense return-value method will never return abort because of∞ versions.

• We have developed the garbage collection method to delete old & unwanted versions from MV-OSTM.

• MV-OSTM satisfies opacity.

Roadmap. We describe our system model in Section 2. Section 3 represents the graph characterization for MV-OSTM. Section 4 describes
the design along with data structure and pcode of MV-OSTM algorithm. We conclude in Section 5 followed by future direction. Finally
in technical reporta, we describe graph characterization of opacity, detailed description of data structure, missing pcode and garbage
collection method.

2 System Model and Preliminaries

The basic model we consider is adapted from Kuznetsov et.al, [11] and Lev-Ari et. al.[14, 15]. It comprises of n processes, p1, . . . , pn
that access a collection of shared t-objects/keys via atomic transactions. A process is accessed by a thread and internally, a threads may

a

3



invoke one or more atomic transactions. Transactions consists of multiple operations on keys. Key is a container of data. Transaction Ti is
accessing keys to perform the operations of hash table (t begin, t lookup, t insert, t delete and tryC).

We are assuming the version created by each transaction on each keys are unique. Let say, if transaction Tj has created a version on
key ki then the version corresponding to the key is represented as kij .
Events: Lower level operations of STMs (t begin(), t read(), t write(), tryC()) are events. We assume that events are atomic.
Methods: A method consists of multiple events including invocation (inv) and response (res). So, it is a higher level operation on hash
table (ht) invoked by a transaction Ti on any key k. Method can be as follows: init(), t begini(), t lookupi(), t inserti(),t deletei() and
tryCi() as explained in Section 1. Consider a method m composed of multiple events as evts(m) then m should have total order among
all the events evts(m) invoked by it. Formally, 〈evts(m), <m〉. As t insert and t delete are modifying the underlying data-structure so,
we represent it as update methods (or upd method or up). Methods, t delete and t lookup returns the values from hash table ht, so
we represent it as return-value method (or rv method or rvm).
Transactions: As defined in database multi-level transactions [20], it modeled as a two-layer tree. The layer-0 comprises of low level
operations as read/write events. Consider a transaction Ti composed of multiple events as evts(Ti) then Ti should have total order among
all the events evts(Ti) invoked by it. Formally, 〈evts(Ti), <Ti〉.

The layer-1 of the tree consists of methods invoked by transaction at higher level. A transaction can invoked multiple methods.
Consider a transaction Ti composed of multiple methods as methods(Ti) then Ti should have total order among all the methods
methods(Ti) invoked by it. Formally, 〈methods(Ti), <Ti〉.
Histories: It consists of sequence of interleaving events of different transactions. We denote events of history H as evts(H). A history
H should have total order among all the events evts(H) invoked by it. Formally, 〈evts(H), <H〉. The method of H is represented as
methods(H) which is made up of inv(m) and rsp(m).
Sequential Histories: A history H is said to be sequential [12, 13]) or linearized [9] if all the methods are atomic instead of interval.
Consider a sequential history H , let mij(ht, k, v/nil), where mij stands for jth method of ith transaction.
Real-time Order & Serial Histories: Two methods mij and mpq of history H are in real-time order, if rsp(mij) <H inv(mpq). Similarly,
two transactions Ti and Tj are in real-time order, if (Ti.lastEvt <H Tj .firstEvt). A history H is said to be serial if all the transactions
are atomic and totally ordered.
Valid and Legal Histories: A history H is said to valid if all the rv methods are lookup from previous committed transactions. A history
H is said to be legal, if all the rv methods of H are legal. If Tj invokes rv method on key k1 from Ti in H , note that in order for this to
happen, Ti must have closest committed before Tj i.e. ci <H rvmj(k1,i). Such rvmj is consider as legal.
Opacity: It is a correctness-criteria for STMs [2]. A history H is said to be opaque if there exists a serial history S such that: (1) S is
equivalent to H , i.e. , evts(H) = evts(S) (2) S is legal and (3) S respects the transactional real-time order of H , i.e., ≺TR

H ⊆≺TR
S .

3 Graph Characterisation for MV-OSTM

Graph characterisation of histories is one of best technique to prove the correctness of STMs. So to prove the correctness of MV-OSTM, we
are taking the help of graph characterization proposed by Kumar et al [10] for proving opacity which is coming from graph characterization
by Bernstein et al [1]. We describe graph characterisation for a history H with a given version order�. Then we define the opacity graph
(or OPG(H,�)) = (V,E) as follows: each transaction of complete history H is considered as a vertex and edges are of three types:

1. rt(real-time) edges: If commit of Ti happens before beginning of Tj in H , then there exist a real-time edge from vi to vj . We
denote set of such edges as rt(H).

2. rvf (return value-from) edges: If Tj invokes rv method on key k1 from Ti which has already been committed in H , then there
exist a return value-from edge from vi to vj . If Ti is having upd method as insert on the same key k1 then ii(k1,i, vi1) <H ci <H

rvmj(k1,i, vi1). If Ti is having upd method as delete on the same key k1 then di(k1,i, nili1) <H ci <H rvmj(k1,i, nili1). We
denote set of such edges as rvf(H).

3. mv(multi-version) edges: This is based on version order. Consider a triplet with successful methods as upi(k1,i, u) rvmj(k1, u)
upk(k1,k, v) , where u 6= v. As we can observe it from rvmj(k1,i, u), ci <H rvmj(k1,i, u). If k1,i � k1,k then there exist a
multi-version edge from vj to vk. Otherwise (k1,k � k1,i), there exist a multi-version edge from vk to vi. We denote set of such
edges as mv(H,�).

Consider the history H4 : l1(ht, kx,0, NULL)l2(ht, kx,0, NULL)l1(ht, ky,0, NULL)l3(ht, kz,0, NULL)i1(ht, kx,1, v11)i3(ht, ky,3,
v31)i2(ht, ky,2, v21)i1(ht, kz,1, v12)c1c2l4(ht, kx,1, v11)l4(ht, ky,2, v21)i3(ht, kz,3, v32)c3l4(ht, kz,1, v12)l5(ht, kx,1, v11), l6(ht, ky,2, v21)

4



c4, c5, c6. Using the notation that a committed transaction Ti writing to kx creates a version kx,i, a possible version order for H4�H4 is:
〈kx,0 � kx,1〉, 〈ky,0 � ky,2 � ky,3〉, 〈kz,0 � kz,1 � kz,3〉 shown in Figure 3.

mv

rt

rt, rvf
rvf

rvf

rt, rvf

rt, rvf

rt

rt

rt

rt

rt

rt, rvf

rt
rt, rvf

T1

T2

T3

T4

T5

T6

T0

Figure 3: OPG(H4,�H4)

4 MV-OSTM Design and Data Structure

MV-OSTM is a new STM that explore the idea of using multiple versions in OSTMs to achieve greater concurrency. The idea of MV-OSTM
has come from multi-version RWSTMs. But RWSTMs works on a lower level which is prone to more number of aborts. So, we developed
MV-OSTM in the context of OSTM which works on a higher level. MV-OSTM stores multiple versions (say, k versions) corresponding to
each key that reduces the number of aborts and provides greater concurrency. The value of k can be vary from 1 to∞. Proposed system
gives privilege to the programmer to accept the value of k as any integer. If k is 1, it boils down to OSTM. Currently, we have developed
MV-OSTM with∞ versions. So, we are performing garbage collection method to delete unwanted version.

a) Underlying DS

VL(Version List)

RVL(Return Value List)

b) DS for maintaining Versions

k1

0 v0 rvl1T

k7 k8 +∞k1−∞ k5

201675 2827 30

15 v5 F rvl2 25 v10 F

12 18 23 35

rvl3

Figure 4: MV-OSTM design

We are considering the chaining hash table as a underlying data structure where chaining is done via lazy-list refer Figure 4 a).
Each bucket of the hash table is having two sentinel nodes: head and tail. Head and tail are initialized as -∞ and +∞ respectively.
Keys 〈k1, k2, ...kn〉 are added in increasing order in the list between the sentinel nodes. Each key is maintaining the multiple versions in
increasing order of timestamp (Figure 4 b)). For each key k1 of transaction Ti, we maintain k1.vl (version list) which is a list consisting
of version tuples in the form 〈ts, val,mark, rvl, vnext〉. Description of each field as: ts stands for timestamp which is unique for each
transaction, val is the value written by any transaction corresponding to the key, mark is the boolean variable which can be true or false
(if the method corresponding to the key is STM delete() then the value of mark field will be true, (T ) and if the method corresponding
to the key is STM insert() then the value of mark field will be false, (F )), rvl represents return-value list which is having all the
transactions who has performed rv method on the same key k1 and vnext is having the information about next available version of the
same key k1. The MV-OSTM system consists of the following main methods: STM init(), STM begin(), STM insert(), STM lookup(),
STM delete() and STM tryC().

1. STM init(): This method invokes at the start of the STM system. Initialize the global counter as 1.

2. STM begin(): It invoked by a thread to being a new transaction Ti. It creates transaction local log and allocate unique id.

5



3. STM insert(): Optimistically, actual insertion will happen in the STM tryC(). First, it will identify the node corresponding to the
key in local log. If the node exists then it just update the local log with useful information like value, operation name and operation
status for later use in STM tryC(). Otherwise, it will create a local log and update it.

4. STM lookup(): If STM lookup() is not the first method on a particular key means if its a subsequent method of the same transaction
on that key then it will search into the local log and return the value and operation status based on the previous operation.

If STM lookup() is the first method on that key then it will identify the location of the node corresponding to the key in the
underlying data structure (DS) with the help of list lookup(). If node corresponding to the key is not present in the underlying DS
then it will create the node and insert the version of T0 and add itself into T0.rvl.

Why do we need to create a version of transaction T0 by rv method? This will be clear by the Figure 5, where we have two
concurrent transactions T1 and T2. History in the Figure 5.a) is not opaque because we cannot come up with any serial order. To
make it serial (or opaque) first method l2(ht, k3,0, NULL) of transaction T2 have to create the version of T0 if its not present in the
underlying DS and add itself into T0.rvl (refer Figure 5.c). So in future if any lower timestamp transaction less than T2 will come
then that lower transaction will ABORT (in this case transaction T1 is aborting in (Figure 5.b))) because higher timestamp already
present in the rvl (Figure 5.c)) of the same version. After aborting T1 we will get the serial history.

0

2

k3

rvl T1

l1(ht, k2,0, NULL)

l2(ht, k3,0, NULL) i2(ht, k2,2, v)

T1

T2
C2

C1i1(ht, k3,1, v) l1(ht, k2,0, NULL)

l2(ht, k3,0, NULL) i2(ht, k2,2, v)

T1

T2
C2

i1(ht, k3, ABORT ) A1

c) Underlying DSb) Opaque historya) History is not opaque

Figure 5: Need of inserting version of T0 by rv method to satisfy opacity

5. STM delete(): STM delete() will work same as a STM lookup(). The actual deletion will be happen in the STM tryC().

6. STM tryC(): The actual effect of upd method (STM insert() and STM delete()) will take place in STM tryC(). It will identify the
pred and curr of each upd method and validate it. If there exist any higher timestamp transaction in the rvl of the closest tuple
(version with largest timestamp less then itself) of curr then return ABORT.

On successful validation of all the upd methods, the actually effect will be taken place. If the upd method is insert and node
corresponding to the key is part of underlying DS then it creates the new version tuple and add it in increasing order of version
list. Otherwise it will create the node with the help of list Ins() and insert the version tuple. If the upd method is delete and node
corresponding to the key is part of underlying DS then it creates the new version tuple and set its mark field as TRUE and add it in
increasing order of version list. Otherwise it will create the node with the help of list Ins() and insert the version tuple with mark
field TRUE. After successful completion of each upd method it will release all the locks in the same order of lock acquisition.

Theorem 1 Any valid history H generated by MV-OSTM algorithm with a given version order�, if OPG(H,�) is acyclic, then H is
opaque.

5 Conclusion and Future Work

STMs is an alternative to provide synchronization and communication among multiple threads without worrying about consistency issues.
We have proposed a new STM as MV-OSTM which providing the greater concurrency in terms of number of abort with the help of
multiple version and composability. It ensures the progress condition as mv-permissiveness which will never abort a transaction which
is having a return-value method only. In that sense return-value method will never return abort because of∞ versions. To overcome
the traversal overhead, we have developed the garbage collection method to delete unwanted versions from MV-OSTM. It satisfies
correctness-criteria as opacity.

Further, we want to optimize MV-OSTM with limited (say k) number of versions corresponding to each key. Later on, we will
implement our proposed MV-OSTM with the unlimited and limited number of version and compare its performance.

6



References

[1] Philip A. Bernstein and Nathan Goodman. Multiversion Concurrency Control: Theory and Algorithms. ACM Trans. Database Syst.,
8(4):465–483, December 1983. URL: http://doi.acm.org/10.1145/319996.319998, doi:10.1145/319996.
319998.

[2] Rachid Guerraoui and Michal Kapalka. On the Correctness of Transactional Memory. In PPoPP, pages 175–184. ACM, 2008.

[3] Tim Harris et al. Abstract nested transactions. 2007.

[4] Ahmed Hassan, Roberto Palmieri, and Binoy Ravindran. On developing optimistic transactional lazy set. In OPODIS, pages
437–452. Springer, 2014.

[5] Steve Heller, Maurice Herlihy, Victor Luchangco, Mark Moir, William N. Scherer III, and Nir Shavit. A lazy concurrent list-based
set algorithm. Parallel Processing Letters, 17(4):411–424, 2007.

[6] M. Herlihy and N. Shavit. The Art of Multiprocessor Programming. Elsevier Science, 2012.

[7] Maurice Herlihy and J. Eliot B.Moss. Transactional memory: Architectural Support for Lock-Free Data Structures. SIGARCH
Comput. Archit. News, 21(2):289–300, 1993.

[8] Maurice Herlihy and Eric Koskinen. Transactional boosting: a methodology for highly-concurrent transactional objects. In PPoPP,
pages 207–216. ACM, 2008.

[9] Maurice P. Herlihy and Jeannette M. Wing. Linearizability: a correctness condition for concurrent objects. ACM Trans. Program.
Lang. Syst., 12(3):463–492, 1990.

[10] Priyanka Kumar, Sathya Peri, and K. Vidyasankar. A TimeStamp Based Multi-version STM Algorithm. In ICDCN, pages 212–226,
2014.

[11] Petr Kuznetsov and Sathya Peri. On non-interference of transactions. CoRR, abs/1211.6315, 2012.

[12] Petr Kuznetsov and Sathya Peri. Non-interference and local correctness in transactional memory. Theor. Comput. Sci., 688:103–116,
2017.

[13] Petr Kuznetsov and Srivatsan Ravi. On the cost of concurrency in transactional memory. In OPODIS, pages 112–127, 2011.

[14] Kfir Lev-Ari, Gregory V. Chockler, and Idit Keidar. On correctness of data structures under reads-write concurrency. In Fabian
Kuhn, editor, DISC, pages 273–287. Springer, 2014.

[15] Kfir Lev-Ari, Gregory V Chockler, and Idit Keidar. A Constructive Approach for Proving Data Structures’ Linearizability. In Yoram
Moses, editor, DISC, pages 356–370. Springer, 2015.

[16] Li Lu and Michael L. Scott. Generic multiversion STM. In Distributed Computing - 27th International Symposium, DISC
2013, Jerusalem, Israel, October 14-18, 2013. Proceedings, pages 134–148, 2013. URL: http://dx.doi.org/10.1007/
978-3-642-41527-2_10, doi:10.1007/978-3-642-41527-2_10.

[17] Yang Ni, Vijay S Menon, Ali-Reza Adl-Tabatabai, Antony L Hosking, Richard L Hudson, J Eliot B Moss, Bratin Saha, and Tatiana
Shpeisman. Open nesting in software transactional memory. In PPoPP, pages 68–78. ACM, 2007.

[18] Dmitri Perelman, Rui Fan, and Idit Keidar. On Maintaining Multiple Versions in STM. In PODC, pages 16–25, 2010.

[19] Nir Shavit and Dan Touitou. Software Transactional Memory. In PODC, pages 204–213, 1995.

[20] Gerhard Weikum and Gottfried Vossen. Transactional Information Systems: Theory, Algorithms, and the Practice of Concurrency
Control and Recovery. Morgan Kaufmann, 2002.

7

http://doi.acm.org/10.1145/319996.319998
http://dx.doi.org/10.1145/319996.319998
http://dx.doi.org/10.1145/319996.319998
http://dx.doi.org/10.1007/978-3-642-41527-2_10
http://dx.doi.org/10.1007/978-3-642-41527-2_10
http://dx.doi.org/10.1007/978-3-642-41527-2_10

	Introduction
	System Model and Preliminaries
	Graph Characterisation for MV-OSTM
	MV-OSTM Design and Data Structure
	Conclusion and Future Work

