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Abstract

Concurrent data structures (CDS) and algorithms can accelerate the big data applications. But, developing a CDS and verifying
its correctness is an uphill task. Thus, in this paper we address the most basic problem of this domain: given the set of LPs of a
CDS, how to show its correctness? We assume that we are given a CDS and its LPs(linearisation points). We have developed a
hand-crafted technique of proving correctness of the CDSs by validating its LPs. We also believe that this technique might also
offer the programmer some insight to develop more efficient variants of the CDS, by iteratively applying the steps of the proposed
technique uncovering hidden parallelism in each iteration or errors in CDS design, if any. The proof technique can be applied to
prove the correctness of several commonly used CDSs developed in literature such as Lock-free list based Sets, Skiplists etc. To
show the efficacy of this technique, we show the correctness of lazy-list and hoh-locking-list based set.

1 Introduction

Concurrent data structures or CDS such as concurrent stacks, queues, lists etc. have become very popular in the past few years
due to the rise of multi-core systems and due to their performance benefits over their sequential counterparts. This makes the
concurrent data structures highly desirable in big data applications such data structures in combination with multi-core machines can
be exploited to accelerate the big data applications. But one of the greatest challenges with CDSs is developing correct structures
and then proving their correctness either through automatic verification or through hand-written proofs [4]. We believe that the
techniques which help to prove correctness of CDSs can also guide in developing new CDSs.

A CDS exports methods which can be invoked concurrently by different threads. A history generated by a CDS is a collection of
method invocation and response events. Each invocation or inv event of a method call has a subsequent response or rsp event which
can be interleaved with invocation, responses from other concurrent methods.

To prove a concurrent data structure to be correct, linearizability proposed by Herlihy & Wing [7] is the standard correctness
criterion used. Linearizability ensures that every concurrent execution simulates the behavior of some sequential execution while
not actually executing sequentially and hence leveraging on the performance. A history generated by a CDS is linearizable if (1)
The inv and rsp events can be reordered to get a valid sequential history. (2) The generated sequential history satisfies the object’s
sequential specification. (3) If a rsp event precedes an invocation event in the original history, then this should also be preserved in
the sequential reordering.

Several techniques have been proposed for proving linearizability: both hand-written based and through automatic verification.
One of the intuitive techniques to prove correctness of CDSs is using Linearization Points or LPs. A LP is an (atomic) event in the
execution interval of each method such that the execution of the entire method seems to have taken place in the instant of that event.

Many of techniques for showing linearizability consider lazy linked-list based concurrent set implementation, denoted as lazy-list,
proposed by Heller at al [5]. This is one of the popular CDSs used for proving correctness due to the intricacies of LPs of its methods
in their execution. A particularly interesting scenario with lazy-list being that the LP of an unsuccessful contains() method can lie
outside the method’s code and depend on the LP of a successful concurrent add() method if add’s LP lies between the inv and rsp
events of the contains() method [5]. Such scenarios can also occur with other CDSs as well.

Vafeiadis et al. [15] hand-crafted one of the earliest proofs of linearizability for lazy-list using the rely-guarantee approach [8]
which can be generalized to other CDSs as well. O’Hearn et al. [12] have developed a generic methodology for linearizability by
identifying new property known as Hindsight lemma. Their technique is non-constructive in nature. Both these techniques don’t
depend on the notion of LPs.

Recently Lev-Ari et al. [9, 10] proposed a constructive methodology for proving correctness of CDSs. They have developed a
very interesting notion of base-points and base-conditions to prove linearizability. Their methodology manually identifies the base
conditions, commuting steps, and base point preserving steps and gives a roadmap for proving correctness by writing semi-formal
proofs. Their seminal technique, does not depend on the notion of LPs, can help practitioners and researchers from other fields to
develop correct CDSs.
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In spite of several such techniques having been proposed for proving linearizability, LPs continue to remain most popular tool for
illustrating correctness of CDSs among practitioners. LPs are popular since they seem intuitive and more importantly are constructive
in nature. In fact, we believe using the notion of LPs, new CDS can be designed as well. But one of the main challenges with the
LP based approach is to identify the correct LPs of a CDS. Identifying the correct LPs can be deceptively wrong in many cases. For
instance, it is not obvious to a novice developer that the LP of an unsuccessful contains method of lazy-list could be outside the
contains method (as explained above). In fact in many cases, the LP identified and as a result even the CDS could be wrong.

The problem of proving correctness of CDS (either with or without LPs) has been quite well explored in the verification community
in the past few years. Several efficient automatic proving tools and techniques have been developed [11, 1, 14, 18, 19, 3] to address
this issue. In fact, many of these tools can also show correctness without the information of LPs. But very little can be gleaned from
these techniques to identify the correct LPs of a CDS by a programmer. Nor do they provide any insight to a programmer to develop
new CDSs which are correct. The objective of the most of these techniques has been to efficiently automate proving correctness of
already developed CDSs.

Considering the complexity of developing a CDS and verifying its correctness, we address the most basic problem of this domain
in this paper: given the set of LPs of a CDS, how to show its correctness? We have developed a hand-crafted technique
of proving correctness of the CDSs by validating it LPs which is inspired by rely-guarantee approach [8, 15]. Our technique can be
applied to prove the correctness of several commonly used CDSs developed in literature such as Lock-free Linked based Sets [16],
hoh-locking-list [2, 6] , lazy-list [5, 6], Skiplists [17] etc. Our technique will also work for CDSs in which the LPs of a method might lie
outside the method such as lazy-list. To show the efficacy of this technique, we show the correctness of lazy-list and hand-over-hand
locking list (hoh-locking-list) [2, 6].

As observed earlier, identifying the correct LPs is very tricky and erroneous. But since our technique is hand-crafted, we believe
that the process of proving correctness might provide insight to identify the correct LPs, if the currently chosen LP is incorrect. We
also believe that this technique might also offer the programmer some insight to develop more efficient variants of the CDS.

Contribution. In the proposed technique, we consider executions corresponding to the histories. For a history H, an execution
EH is a totally ordered sequence of atomic events which are executed by the threads invoking the methods of the history. Thus
an execution starts from an initial global state and then goes from one global state to the other as it executes atomic events. With
each global state, we associate the notion of abstract data-structure or AbDS. This represent the state of the CDS if it had executed
sequentially.

Our technique starts with assumptions as detailed in Section 3 over the CDS with given LPs. Then for any concurrent history
H, we construct a sequential history CS(H) by ordering all the methods of H by their LPs (which are all atomic and hence totally
ordered). The details of this construction are described in Section 3.1. Since CS(H) is generated sequentially, it can be seen that it
satisfies the sequential-specification of the CDS, hence legal[7](Assumption 1.2).

All the method invocations of CS(H) respect the method ordering of H (Lemma 2). If we can show that all the response events
in H and CS(H) are the same then H is linearizable. The proof of this equivalence naturally depends on the properties of the CDS
being considered. We have identified a lemma (Lemma 5) as a part of our proof technique, which if shown to be true for all the
methods of the CDS, implies linearizability of the CDS. In this lemma, we consider the pre-state of the LP of a method mi in a history
H. As the name suggests, pre-state is the global state of the CDS just before the LP event. This lemma requires that the AbDS in
the pre-state to be the result of some sequential execution of the methods of the CDS. Similarly, the AbDS in the post-state of the
LP must be as a result of some sequential execution the methods with mi being the final method in the sequence. We show that if
the CDS ensures this equivalence between concurrent and sequential execution then it is linearizable (as detailed in Theorem 8).

The Lemma 5 serves as a template and has to be proved individually for each CDS subjected for testing the correctness. We show
that any CDS for which this lemma is true and satisfies our assumptions on the LPs, is linearizable.

Roadmap. In Section 2, we describe the minimal system model that is necessary to understand the proof technique. In Section 3,
we give an high level overview of the proof technique. Finally, we conclude in Section 4. The detailed proofs and model can be found
in technical report[13].

2 System model

In this paper, we assume that our system consists of finite set of p processors, accessed by a finite set of n threads that run in a
completely asynchronous manner and communicate using deterministic shared objects. The threads communicate with each other by
invoking higher-level methods on the shared objects and obtaining the corresponding responses. Consequently, we make no assumption
about the relative speeds of the threads. We also assume that none of these processors and threads fail. We refer to a shared objects
as a concurrent data-structure or CDS.

Events & Methods. We assume that the threads execute atomic events. Similar to Lev-Ari et. al.’s work, [10, 9] we assume that
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Figure 1: Figure (a) illustrates an example of a concurrent execution EH . Then, mi.LP is the LP event of the method mi. The global state immediately after this

event is represented as Post-state of (EH .mi.LP ) and the global state immediately before this event is represented as Pre-state of (EH .mi.LP ). Figure (b) represents

sequential execution ES corresponding to (a) with post-state of method mi as the state after its rsp event and pre-state of method mi as the state before its inv
event.

these events by different threads are (1) atomic read, write on shared/local memory objects; (2) atomic read-modify-write or rmw
operations such compare & swap etc. on CDSs (3) method invocation or inv event & response or rsp event on CDSs.

A thread executing a method mi, starts with the inv event, say invi, executes the events in the mi until the final rsp event
rspi. The rsp event rspi of mi is said to match the inv event invi. On the other hand, if the invocation event invi does not have
a response event rspi in the execution, then we say that both the inv event invi and the method mi are pending. The method
inv & rsp events are typically associated with invocation and response parameters. The invocation parameters are passed as input
while response parameters are obtained as output to and from the CDS respectively. We represent the method mi with invocation
and response parameters as: mi(inv-params ↓, rsp-params ↑) where inv-params ↓ are all the parameters passed during invocation
and rsp-params ↑ are all the parameters returned by the data-structure. In most cases, we ignore these invocation and response
parameters unless they are required for the context and denote the method as mi. In such a case, we simply denote mi.inv,mi.rsp
as the inv and rsp events.

Global States, Execution and Histories. We define the global state or state of the system as the collection of local and shared
variables across all the threads in the system. The system starts with an initial global state. Each event possibly changes the global
state of the system leading to a new global state.

We denote an execution of a concurrent threads as a finite sequence of totally ordered atomic events. A history corresponding to
an execution consists only of method inv and rsp events (in other words, a history views the methods as black boxes without going
inside the internals). For a history H, we denote the corresponding execution as EH . We denote the set of methods invoked by
threads in a history H (or the corresponding execution EH) by H.mths (or EH .mths). Similarly, if a method mx is invoked by a
thread in a history H (or EH), we refer to it as H.mx (or EH .mx). Although all the events of an execution are totally ordered in
EH , the methods are only partially ordered. We say that a method mx is ordered before method my in real-time if the rsp event of
mx precedes the inv event of my, i.e. (mx.rsp <H my.inv). We denote the set of all real-time orders between the methods of H by
≺rt

H .
Given an event e of an execution E, we denote global state just before the e as the pre-state of e and denote it as PreE[e].

Similarly, the state immediately after e as the post-state of e or PostE[e]. The notion of pre & post states can be extended to
methods as well. We denote the pre-state of a method m or PreM [m] as the global state just before the invocation event of m
whereas the post-state of m or PostM [m] as the global state just after the return event of m. Given a method mi with its LP
event as LP, Figure 1 illustrates the global states immediately before and after mi.LP which are denoted as PreE[EH .mi.LP ] and
PostE[EH .mi.LP ] respectively in execution EH .

Notations on Histories. We now define a few notations on histories which can be extended to the corresponding executions. We
say two histories H1 and H2 are equivalent if the set of events in H1 are the same as H2, i.e., H1.evts = H2.evts and denote it as
H1 ≈ H2.

History H as well-formed if a thread Ti does not invoke the next method on a CDS until it obtains the matching response for the
previous invocation. We assume that all the executions & histories considered in this paper are well-formed. We say the history H
is complete if for every method inv event there is a matching rsp event, i.e., there are no pending methods in H. The history H is
said to be sequential if every inv event, except possibly the last, is immediately followed by the matching rsp event. In other words,
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all the methods of H are totally ordered by real-time and hence ≺rt
H is a total order. Note that a complete history is not sequential

and the vice-versa. It can be seen that in a well-formed history H, for every thread Ti, we have that H|Ti is sequential.

Sequential Specification. The sequential-specification [7] of a CDS d is defined as the set of (all possible) sequential histories
involving the methods of d. Since all the histories in the sequential-specification of d are sequential, this set captures the behavior
of d under sequential execution which is believed to be correct. A sequential history S is said to be legal if for every CDS d whose
method is invoked in S, S|d is in the sequential-specification of d.

3 Linearizability Proof Technique

To prove correctness of a CDS d, we associate with it an abstract data-structure or AbDS as explained above. The AbDS captures
the behavior of d if it had executed sequentially. The exact definition of AbDS depends on the actual CDS being implemented. In
the case of lazy-list, AbDS is the set of unmarked nodes reachable from the head while the CDS is the set of all the nodes in the
system. Vafeiadis et. al [15] while proving the correctness of the lazy-list refer to AbDS as abstract set or AbS.

Assumption 1 We make following assumptions for such a CDS d before proceeding to step by step explanation of the proof technique.

1.1 In any sequential execution, any method of the CDS can be invoked in any global state and yet get a response.

1.2 Every sequential history S generated by the CDS is legal.

1.3 Every method mi(inv-params ↓, rsp-params ↑) of the CDS in EH has a unique LP event within the inv and rsp events of mi

for the given inv-params, rsp-params. The LP event can be uniquely identified based on the inv-params, rsp-params of mi.

1.4 Only the LP events of the methods can change the contents AbDS of the given CDS d.

Assumption 1.1 refers to total methods [6, Chap 10]. It can be seen that the Assumptions 1.3 & 1.4 characterize the LP events.
Any event that does not satisfy these assumptions is most likely not an LP. To the best of our knowledge, the assumptions are generic
and are satisfied by many of the commonly used CDSs such as Lock-free Linked based Sets [16], hoh-locking-list [2, 6] , lazy-list [5, 6],
Skiplists [17] etc. In fact, these assumptions are similar in spirit to the definition of valid LP by Zhu et al [19].

To prove linearizability of a CDS d that satisfies above mentioned assumptions, we have to show that every history generated by
d is linearizable. To show this, we consider an arbitrary history H generated by d. For simplicity, we assume that H is complete.
From the events of H, we construct a sequential history denoted as CS(H). H is linearizable if (1) CS(H) is equivalent to H; (2)
CS(H) respects the real-time order of H and (3) CS(H) is legal. We show how these can be proved using the LPs provided.

3.1 Constructing Sequential History

Given a complete history H consisting of method inv & rsp events of a CDS d, we construct CS(H) as follows: Since H is complete,
from Assumption 1.3, we can uniquely identify LP event of all the methods. We have a single (hypothetical) thread invoking each
method of H (with the same parameters) on d in the order of their LP events. Only after getting the response for the currently
invoked method, the thread invokes the next method. From Assumption 1.1, which says that the methods are total, we get that for
every method invocation d will issue a response.

Thus we can see that the output of these method invocations is the sequential history CS(H). From Assumption 1.2, we get that
CS(H) is legal. The histories H and CS(H) have the same inv events for all the methods. But, the rsp events could possibly be
different. Hence, they may not be equivalent to each other unless we prove otherwise.

For showing H to be linearizable, we further need to show CS(H) is equivalent to H and respects the real-time order H. Now,
suppose CS(H) is equivalent to H. Then from the construction of CS(H), it can be seen that CS(H) satisfies the real-time order of
H. The following lemma proves it.

Lemma 2 Consider a history H be a history generated by a CDS d. Let CS(H) be the constructed sequential history. If H is
equivalent to CS(H) then CS(H) respects the real-time order of H. Formally, 〈∀H : (H ≈ CS(H)) =⇒ (≺rt

H⊆≺rt
CS(H))〉.

Now it remains to prove that H is equivalent to CS(H) for showing linearizability of H. But this proof depends on the properties
of the CDS d being implemented and is specific to d. Now we give a generic outline for proving the equivalence between H and
CS(H) for any CDS.
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3.2 Details of the Generic Proof Technique

As discussed above, to prove the correctness of a concurrent (& complete) history H representing an execution of a CDS d, it is
sufficient to show that H is equivalent to CS(H). To show this, we have developed a generic proof technique.

It can be obviously seen that to prove the correctness, this proof depends on the properties of the CDS d being considered. To
this end, we have identified a CDS-specific lemma which captures the properties required of the CDS d. Proving this CDS-specific
lemma for each CDS would imply equivalence of H between CS(H) and hence linearizability of the CDS. To achieve this, we first
prove a set of CDS-independent lemmas which would lead us to the CDS-specific lemma.

In the following lemmas, we assume that all the histories and execution considered here are generated from the CDS d. The CDS
d satisfies the Assumptions 1.1, 1.2, 1.3, 1.4. Since we are only considering CDS d, we refer to its abstract data-structure as AbDS
and refer to its state in a global state S as S.AbDS. We enumerate all the methods of a sequential history S as: m1,m2...mn. All
the methods of a concurrent history H are enumerated as m1,m2...mn based on the order of their LPs.

Lemma 3 Consider a sequential execution ES of the methods of d. Then, the contents of AbDS in the global state after the
rsp event of mx is the same as the AbDS before the inv event of the consecutive method mx+1. Formally, 〈∀mx ∈ ES.mths :
PostM [ES.mx].AbDS = PreM [ES.mx+1].AbDS〉.

Lemma 4 Consider a concurrent execution EH of the methods of d. Then, the contents of AbDS in the post-state of LP of mx is
the same as the AbDS in pre-state of the next LP belonging to mx+1. Formally, 〈∀mx ∈ EH .mths : PostE[EH .mx.LP ].AbDS =
PreE[EH .mx+1.LP ].AbDS〉.

Lemma 3 can be observed from the definition of Sequential Execution. Also, from Assumption 1.4, we know that any event
between the post-state of mi.LP and the pre-state of mi+1.LP will not change the AbDS. Hence we get this Lemma 4. Now, we
formulate equivalence between sequential and concurrent execution (ES and EH) using Lemma 5. It can be considered to be a
template for each CDS. Based on the CDS involved, this lemma has to be appropriately proved.

B DA B DA

B DA C B DA C

inv()
inv()

PostE[EH .mx.LP ]

rsp(C, true)
rsp(C, true)

mx

mx.LP

PreM [ES.my]

my

PreE[EH .mx.LP ]

EH ES

(a) (b)

=

=

add(C)add(C)

mx

mx.LP

my

PostM [ES.my]

EH ES

(d)

add(C)add(C)

=

=(c)

Figure 2: The pictorial representation of the CDS specific lemma over the lazy list. Assume method add(C) executes over the initial list A,B,D. Figure (a) & (b)
represent the same inv and pre-state for add(C) in concurrent and sequential execution respectively. Then for add(C) execution to be correct its respective post-state

and rsp should be same in concurrent and sequential executions as depicted in Figure (c) & (d). Note, wlog add(C) is mx and my in EH & ES respectively.

CDS-Specific Lemma 5 Consider a concurrent history H and a sequential history S. Let mx,my be methods in H and S respec-
tively. Suppose the following are true (1) The AbDS in the pre-state of mx’s LP in H is the same as the AbDS in the pre-state
of my in S; (2) The inv events of mx and my are the same. Then (1) the rsp event of mx in H must be same as rsp event of
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my in S; (2) The AbDS in the post-state of mx’s LP in H must be the same as the AbDS in the post-state of my in S. For-
mally, 〈∀mx ∈ EH .mths,∀my ∈ ES.mths : (PreE[EH .mx.LP ].AbDS = PreM [ES.my].AbDS) ∧ (EH .mx.inv = ES.my.inv) =⇒
(PostE[EH .mx.LP ].AbDS = PostM [ES.my].AbDS) ∧ (EH .mx.rsp = ES.my.rsp)〉.

Figure 2 pictorially represents the statement of the Lemma 5. Readers familiar with the work of Zhu et. al [19] can see that this
lemma is similar to Theorem 1 on showing linearizability of CDS d. We prove this lemma specifically for lazy-list and hoh-locking-list.

Next, in the following lemmas we consider the methods of H and CS(H). As observed in Section 3.1, for any method mx in CS(H)
there is a corresponding method mx in H having the same inv event, i.e., H.mx.inv = CS(H).mx.inv. We use this observation in
the following lemmas the detailed proof can be read in technical report[13].

Lemma 6 For any method mx in H and CS(H) the AbDS in the pre-state of the LP of mx in H is the same as the AbDS in the
pre-state of mx in CS(H). Formally, 〈∀mx ∈ EH .mths,ECS(H).mths : PreE[EH .mx.LP ].AbDS = PreM [ECS(H).mx].AbDS〉.

Lemma 7 The return values for all the methods in H & CS(H) are the same. Formally, 〈∀mx ∈ EH .mths,ECS(H).mths :
EH .mx.rsp = ECS(H).mx.rsp〉.

Theorem 8 All histories H generated by the CDS d are linearizable.

Proof. From Lemma 7, we get that for all the methods mx, the rsp events in H and CS(H) are the same. This implies that H and
CS(H) are equivalent to each other. Combining this with Lemma 2, we get that CS(H) respects the real-time order of H. We had
already observed that from the construction of CS(H) and Assumption 1.2, CS(H) is legal. Hence H is linearizable. 2

Analysis of the Proof Technique: Theorem 8 shows that proving CDS specific Lemma 5 implies that the CDS d under consideration
is linearizable. Lemma 5 states that for a concurrent execution the contents of the AbDS in the pre-state of the LP event of a method
mx should be the same as the pre-state of the method of some sequential execution. Thus, if the contents of AbDS in the pre-state
of the LP event (satisfying the assumptions 1.3 & 1.4) cannot be produced by some sequential execution of the methods of d then it
is most likely the case that design of algorithm of the d is incorrect implying LPs may also be faulty.

Further Lemma 5 requires that the AbDS after the execution of the LP of mx in EH , must again be same as the AbDS after the
method mx in some sequential execution of of d. If this is not the case, then it implies that some other events of the mx, are also
modifying the AbDS and hence indicating some error in the analysis.

Extending this thought, we also believe that the intuition gained in proving this lemma for d might give the programmers new
insights in the working of the CDS which can result in designing new variants of it having some desirable properties.

4 Conclusion and Future Work

In this paper we address the problem: given the set of LPs of a CDS, how to show its correctness? We have developed a hand-crafted
technique of proving correctness of the CDSs by validating it LPs. We believe that our technique can be applied to prove the
correctness of several commonly used CDSs developed in literature such as Lock-free Linked based Sets [16], lazy-list [5, 6], Skiplists
[17] etc. Our technique will also work for CDSs in which the LPs of a method might lie outside the method such as lazy-list. To show
the efficacy of this technique, we show the correctness of lazy-list and hand-over-hand locking list (hoh-locking-list) [2, 6].

An important point to be noted with our approach: we assumed that only LP events change the AbDS (Assumption 1.4). Although
this is true in case of many CDSs considered, this is not always true. As an example consider a shared array which has an lock for
each entry and is modified by multiple threads concurrently. Threads wishing to update several entries in a linearizable manner can
obtain locks on the relevant entries of the array using two-phase locking (2PL) and then perform the updates. In this case, one can
choose any event between the last locking and the first unlocking as the LP. But then, the LP event is not where all the updates to
the shared entries of the array takes place. So with this kind of 2PL usage, our technique will not directly work. In that case, we
believe that we have to consider the notion of Linearization Blocks instead of Linearization Points. We plan to explore this notion in
future. On the other hand, we believe that our technique will work for those CDSs which has at least one wait-free method (like the
contains method in the case of lazy-list).
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