QUERYING SQL, NOSQL, AND NEWSQL DATABASES TOGETHER AND AT SCALE

Bapi Chatterjee IBM, India Research Lab, New Delhi, India

DISCLAIMER

- The statements/views expressed in the presentation slides are those of the presenter and should not be attributed to IBM in any manner whatsoever.
- The definitions, facts, numbers, etc. are true to the best of my knowledge at the time when I retrieved them from their respective original sources.
- The presentation does contain contents from external sources and they have been duly acknowledged.

ACKNOWLEDGEMENTS

Srikanta Bedathur Jagannath (IBM IRL, New Delhi)

"BIG DATA" IN THE REAL WORLD

Consider Patient data in Real world

Arrays -> • EKG Traces Time series -> • Blood Oxygen Time series -> • Blood Pressure Arrays -> • EEG Traces

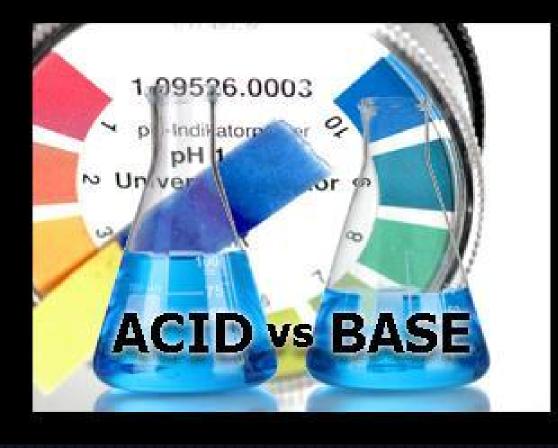
- Demographic
- Caregiver Notes <-Documents
- Medical Charts <- Tables
- Lab test results <- Tables
- X-ray, MRI, ETC <- Images

<- Tables

POLY DB ENGINES

TABLES, TIME SERIES (RDBMS) MySQL, POSTGRESQL, AND ORACLE

- Documents (Document Store)
 Google BigTable, Apache Accumulo, MongoDB
- Arrays, Images (Array DBMS) -C-Store, HStore, SciDB, VoltDB, Graphulo


"POLY"QUERIES

- Complex analytics: Compute the FFT over all heartrate waveforms, grouped by patient and day
- Real-time decision making in SQL with streaming semantics: Raise an alarm if the heart rate over this window exceeds some threshold

SQL::NOSQL::NEWSQL

- SQL: Structured Query Language
- NoSQL: Not (ONLY) SQL
- NEWSQL: NOSQL BUT STILL SQL

SQL::NOSQL

ACID

- Atomicity Either the entire
 transaction complete or none
 Consistency Any transaction
 will take the database from one
 consistent state to another with no
 broken constraints
- Isolation Changes do not

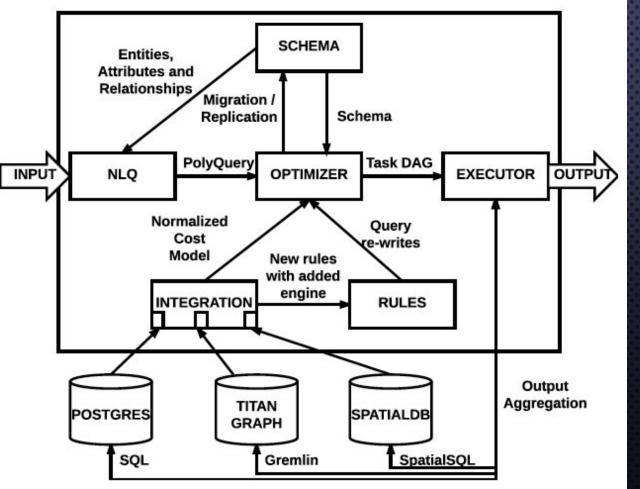
•

- affect other users until committed
- **Durability** Committed
 - transactions can be recovered in
 - case of system failure

BASE

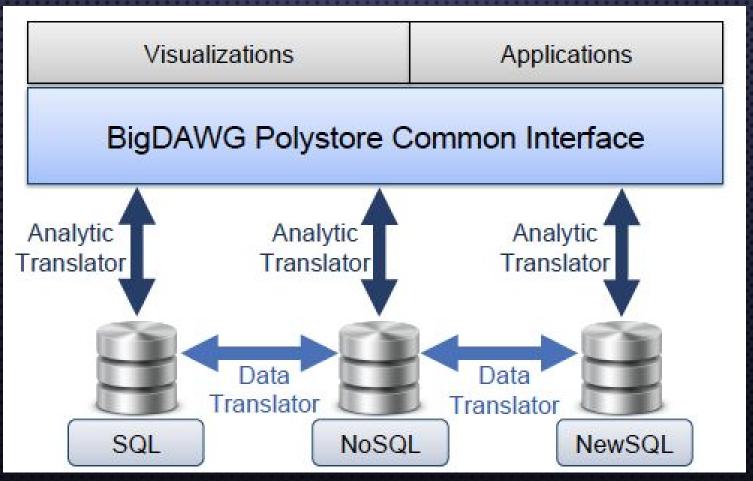
- Basic Availability Availability
 - first even with partial consistency
- Soft State Do away with consistency
- Eventual Consistency –
 Eventually, converge at a consistent state

(All about liveness, safety is ok to have but not an immediate requirement)

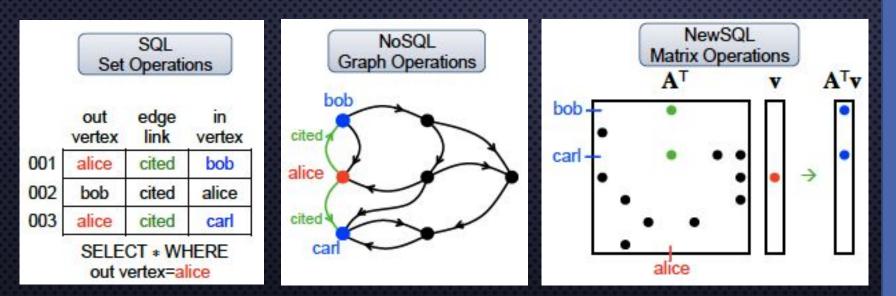

SQL::NOSQL::NEWSQL

HCI	NaOH	NaCl		SQL	NoSQL	NewSQL
			Relational	Y	Ν	Y
			Schema-less	Ν	Y	Ν
A	A	Æ	ACID Transactions	Y	Ν	Y
H* CF	Na* OH	Na ⁺ CI ⁻	Horizontal Scalability	Ν	Y	Y
(a) Acid Copyright ID 2010 Pleaseon Education, Inc.	(b) Base	(c) Salt	Performance Big Volume	Ν	Y	Y

SQL::NOSQL::NEWSQL


	SQL	NoSQL	NewSQL
Example	PostgreSQL	Accumulo	SciDB
Application	Transactions	Search	Analysis
Data Model	Relational Tables	Key-Value Pairs	Sparse Matrices
Math	Set Theory	Graph Theory	Linear Algebra
Consistency			
Volume			
Velocity			
Variety			
Analytics			
Usability			

POLYSTORE



- Describe queries in a common language
- Break down the query execution into individual components
- Know where datasets are and what they contain
- Understand the query execution strength of each engine
- Support data transformation if required, but minimize its overheads
- Re-write queries into corresponding language
- And...deliver performance for complex
 Queries
 Source: Srikanta Bedathur et al., 2016

POLYSTORE: BIGDAWG

POLYSTORE: MATHEMATICS

PolyAlgebra

- Mathematical underpinning for queries in a PolyStore.
- To encompass relational, graph, document, spatial, spatio-temporal, etc.
 Problem: Discovering a

PolyAlgebra.

Problem: Optimizing a Query
 Language based on a
 PolyAlgebra.

POLYSTORE: MATHEMATICS

Integrating Data Model: D4M

- D4M: Dynamic Distributed Dimensional Data Model.
- Foundation of D4M: Associative array.
- Provide a generalization of sparse matrices.
- Constitute a function between a set of tuples and a value space.
- As a data structure, return a value given some number of keys.
- In practice, associative arrays support linear algebraic soperations such as summation, union, intersection, multiplication and element-wise operations.
- Associative arrays have one-to-one relationship with key-value store databases, sparse matrices and adjacency matrices of graphs.

	SQL	NoSQL	NewSQL	Polystore
Example	PostgreSQL	Accumulo	SciDB	BigDAWG
Application	Transactions	Search	Analysis	All
Data Model	Relational Tables	Key-Value Pairs	Sparse Matrices	Associative Arrays
Math	Set Theory	Graph Theory	Linear Algebra	Associative Algebra
Consistency		0		
Volume				
Velocity				
Variety				
Analytics				
Usability				

ASSOCIATIVE ARRAY: INTUITION

	Artist	Date	Duration	Genre
053013ktnA1	Bandayde	2013-05-30	5:14	Electronic
053013ktnA2	Kastle	2013-05-30		Electronic
063012ktnA1	Kitten	2010-06-30	4:38	Rock
082812ktnA1		2012-08-28	3:25	Pop

• Associative arrays are generalization of sparse matrices.

• Intuitively, an array is an Associative array if each row and column has a unique label.

ASSOCIATIVE ARRAY: CONSTRUCTION

In	put L	Jata		
Time	Col1	Col2	Col3	
2001-01-01	a		a	
2001-01-02	b	b		
2001-01-03	-	С	С	1
	ł	}		•

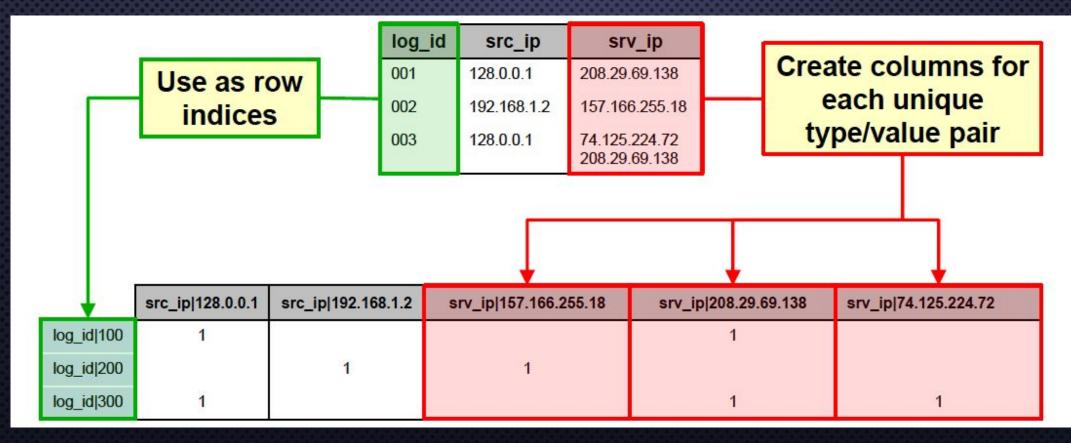
Innut Date

	01-01- 2001	02-01- 2001	03-01- 2001
Col1 a	1		
Col1 b		1	
Col2 b		1	
Col2 c			1
Col3 a	1		
Col3 c			1

Graphs Adjacency Matrix

Matrices

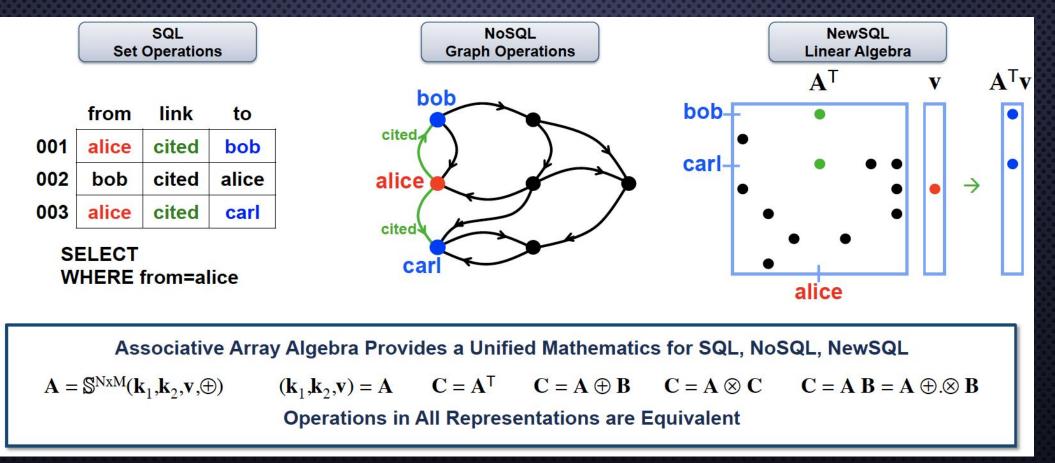
- Straightforward if Boolean
- Same as tables, else


					~	2-1
	Col1 a	Col1 b	Col2 b	Col2 c	Col3 a	Col3 c
01-01-2001	1				1	
02-01-2001		1	1	с. 		
03-01-2001				1		1

ASSOCIATIVE ARRAY: MATHEMATICS

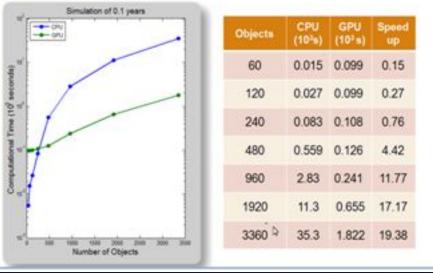
- Closure: All mathematical operations on two (or more) associative arrays return associative array.
- Given associative arrays A, B, and C, associative array addition is denoted by A + B = C.
 - This is equivalent to inserting new rows in a table.
- Given associative arrays A, B, and C, associative array element-wise multiplication is denoted A * B = C
 - This is equivalent to selecting rows from a table.
- In practice, all computations are restricted to the nonzero rows and nonzero columns of the associative array representation of relations.
- In many computations, the only operations that need to be specified are the identities, the additive inverse and multiplicative annihilator.
 - $v + 0 = v; v * 1 = v; v + -v = 0; v * 0 = 0; v \in V$
 - (V, +, *, 0, 1) form a semiring.

A semiring is a set together with two binary operators S(+,*) and additive and multiplicative identity elements 1 and 0, respectively, satisfying the conditions: Additive associativity, Additive commutativity, Multiplicative associativity, Left and right distributivity


EXAMPLE

EXAMPLE

Query Operation	SQL	D4M
Select all	SELECT * FROM T	E(:,:)
Select column	SELECT src_ip FROM T	E(:,StartsWith('src_ip '))
Select sub-column	SELECT src_ip FROM T WHERE src_ip=128.0.0.1	E(:,'src_ip 128.0.0.1 ')
Select sub-matrix	SELECT * FROM T WHERE src_ip=128.0.0.1	E(Row(E(:,'src_ip 128.0.0.1 '))),:)


POLYSTORE: MATRIX ALGEBRA

HPC FOR POLYSTORE QUERIES

- BLAS: Basic Linear Algebra Subprograms
- pMatlab
- Matlab-GPU/CUDA

Benchmark: N-Body Simulation CPU vs GPU

A MathWorks

Thank you!

Bapi Chatterjee, IBM IRL