
Distributed Synthetic Minority Oversampling Technique
Avnish Kumar Rastogi, Nitin Narang, Mohammad Ajmal

ICDCN 2018

 7TH INTERNATIONAL WORKSHOP ON COMPUTING AND
NETWORKING FOR IOT AND BEYOND

Agenda	

1.  Paper Overview, What and Why of the Problem

2.  Algorithm Overview and Implementation Approach

3.  Algorithm Evaluation and Results

5 Minutes

10 Minutes

5 Minutes

E-Commerce

Product Launches

Fraud Detection Image Detection

Voice and Speech Processing

Context Based Intelligence

Unbalanced
Datasets

Problem - Predictive Analytics – Highly Unbalanced data	
Supervised Learning from Imbalanced Data Sets
•  18 real-valued features in a dataset of over 3.4 billion records with majority vs. minority distribution of 98:2

Solution to Class Imbalance
•  Under-Sampling - extract a smaller set of majority instances while preserving all the

minority instances
•  Stratified sampling
•  Over sampling - increases the number of minority instances by over-sampling

ML Algorithms using standard classifiers are overwhelmed by the majority
class and ignore the minority. But we are interested in Minority identification L

•  Very High Accuracy by predicting all as majority class

•  Poor identification of minority class…. Outliers, ….

v Over sampling by duplication
v  SMOTE – Synthetic Minority Over Sampling of Minority (Normal,

Borderline, Borderline-2 and SVM)

Over-Sampling but How?	

Chawla, Nitesh An insight into imbalanced Big
Data classification: outcomes and challenges,
March 2017 Complex Intelligent Systems pp
105-120

Key Challenge
•  Implementation in python – single machine
•  On-Going Research for distributed implementation – Map-Reduce.

Small
Data Set

Ø Identify neighbors of a minority sample
Ø For each of the neighbor, generate random point near the sample

•  Decision Tree Classifiers, random under-sampling and over-sampling with SMOTE significantly improve accuracy.

•  Neural Network classifier with over-sampling with SMOTE gives the best accuracy among all re-sampling techniques.

SMOTE – Basic Algorithm	

Proposed by Nitesh Chawla in 2001

Difficulties with Big Data	

v Data is huge

v Does not fit single machine

v Divide it between different nodes

v Destroys distribution of data and small drifts

A

B

C D

Technical Problem	

o  Cluster the points

o  Find k Nearest Neighbors for each sample

o  Up sample by generating points randomly between - sample &
neighbor

Distributed SMOTE High Level Design	

Input	 K-Means++	 M-Trees	 Generate
Data	

Create
Output	

Clustering	

v  We used parallel K-means++ algorithm for clustering the points in “N”

buckets

v  Algorithm proposed by Bahman Bahmani and others in “Scalable
KMeans++”

M-Trees	

Proposed by P.Ciaccia, M.Patella, F.Rabitti, P.Zezula in their research
published as Indexing Metric Spaces with M-tree

M Tree indexes a metric space where, the distance function “d”
satisfies:
q  d(Ox, Oy) = d(Oy, Ox)

q  d(Ox, Oy) > 0 if Ox ≠ Oy and d(Ox, Ox) = 0

q  d(Ox, Oy) ≤ d(Ox, Oz) + d(Oz, Oy) – Triangle Inequality

M-Tree – What is it? 	

•  M-Tree partitions objects on the basis of their relative distance

•  Fixed sized nodes, called the capacity of the nodes

•  Leaf Nodes – Data nodes

R1

R2

M-Tree … 	

•  Routing Node - internal (non-leaf) node
o  Pointer to the sub tree
o  Radius of the tree
o  Distance with the parent

•  Covering Node – Nodes that contain data node

•  Covering Radius -> d (Oj, Or) ≤ r(Or)
Maximum distance of all the points from the
router stored/contained within the router

Oj

Or

Covering radius, R

Or

Oj Ok

Build M-Tree	

q  Mark the first point as router
•  For all the other points, calculate the distance from the

router
•  Add them as leaf Nodes to the router.
•  Update the radius of the router
•  If num of nodes >= capacity

 select two routers from the group of nodes
 split the nodes into two groups

Splitting Policy	

Max-Min Policy

q  Choose the point with maximum distance from router as R1

q  Divide the group using “Generalized Hyperplane Approach”
Assign object Oj ∈ N to the nearest routing object
if d(Oj,Op1) ≤ d(Oj,Op2) then assign Oj to N1, else assign Oj to N2.

Search K Neighbours M-Tree	

Go to individual routers	

	dminT(Or) = max {d(Or – O) – r(Or), 0}	

For all these selected routing nodes, we select data nodes where	

	d(Op, O) ≤ d(Op, Oj) + d (Oj, Q) 	

	=> d (Oj, O) ≥ d(Op-O) – d (Op, Oj)	

	=> | d(Op, Q) – d(Oj, Op) | ≤ dk where dK is the farthest distance of the nearest neighbour 	

Or

O

r(Or)

•  Infrastructure and Datasets
•  Validate Accuracy of generated data
•  Ability to process large Datasets

17

Results	

Datasets	

Datasets Used

Model Parameters

Datasets	 # Rows	 # Attributes	 Class (maj:min)	 %Class	

ECBDL 14 2.89 million	 631	 2849275: 48637	 98.3% : 1.7%	

KEEL abalone 19 4174	 8	 4142:32	 99.23% : 0.77%	

KEEL yeast4 1484	 8	 1433:51	 96.56% : 3.44%	

UCI SatImage 6435	 36	 5809:626	 90.27% : 9.73%	

Model 	 Parameters	

Distributed Random Forest (h2o)	 Number of Tress : 50	
Maximum Tree Depth 20	
NBins: 20	
Sample Rat : 0.63	

Default Random Forest	 Number of trees 10	

Cluster Configuration	

•  Number of Machines/Nodes 4

•  Machine Centos 6.6 Linux

•  Cores 8

•  RAM 20 GB

•  Spark/Hadoop Distributed Framework

Results (Abalone Dataset/Yeast4)	

3	 2	

26	 804	

4	 1	

89	 741	

Technique	 AUC	 Recall	 GM	 Confusion
Matrix	

Python SMOTE	 0.78	 0.60	 0.76	

Spark SMOTE	 0.85	 0.80	 0.84	

Technique	 AUC	 Recall	 GM	 Confusion
Matrix	

Python SMOTE	 0.90	 0.85	 0.90	

Spark SMOTE	 0.92	 0.85	 0.91	

6	 1	

14	 276	

5	 2	

11	 279	

Results (UCI/ECBDL)	

Technique	 AUC	 Recall	 GM	 Confusion
Matrix	

Python SMOTE	 0.78	 0.75	 0.76	

Spark SMOTE	 0.78	 0.83	 0.87	

160	 51	

113	 1676	

175	 36	

169	 1620	

Technique	 AUC	 Recall	 GM	 Confusion
Matrix	

Python SMOTE	 0.79	 0.78	 0.78	

Spark SMOTE	 0.89	 0.81	 0.81	

11442	 3129	

184402	 670401	

11746	 2823	

166637	 688166	

Conclusions 	

•  Python SMOTE being monolithic has challenges with scale on large
datasets

•  Our implementation of SMOTE gives comparable results (quality of
synthetic minority data generation) to existing SMOTE implementation
(in python/R)

•  Further work needs to be done to extend this algorithm to Borderline,

Borderline-2 and SVM versions of SMOTE

•  Q & A

Questions ?	

Thank You

