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Problem - Predictive Analytics – Highly Unbalanced data	
Supervised Learning from Imbalanced Data Sets 
•  18 real-valued features in a dataset of over 3.4 billion records with majority vs. minority distribution of 98:2  

Solution to Class Imbalance  
•  Under-Sampling - extract a smaller set of majority instances while preserving all the 

minority instances 
•  Stratified sampling  
•  Over sampling - increases the number of minority instances by over-sampling 

ML Algorithms using standard classifiers are overwhelmed by the majority 
class and ignore the minority. But we are interested in Minority identification L  

•  Very High Accuracy by predicting all as majority class 

•  Poor identification of minority class…. Outliers, ….  

v Over sampling by duplication  
v  SMOTE – Synthetic Minority Over Sampling of Minority (Normal, 

Borderline, Borderline-2 and SVM)  



Over-Sampling but How?	

Chawla, Nitesh An insight into imbalanced Big 
Data classification: outcomes and challenges, 
March 2017 Complex Intelligent Systems pp 
105-120 
 
 

Key Challenge 
•  Implementation in python – single machine 
•  On-Going Research for distributed implementation – Map-Reduce.  

Small  
Data Set 

Ø Identify neighbors of a minority sample 
Ø For each of the neighbor, generate random point near the sample 

•  Decision Tree Classifiers, random under-sampling and over-sampling with SMOTE significantly improve accuracy. 
 
•  Neural Network classifier with over-sampling with SMOTE gives the best accuracy among all re-sampling techniques.  



SMOTE – Basic Algorithm	

Proposed by Nitesh Chawla in 2001 

 



Difficulties with Big Data	

v Data is huge 

v Does not fit single machine 

v Divide it between different nodes  

v Destroys distribution of data and small drifts 
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Technical Problem	

o  Cluster the points 

o  Find k Nearest Neighbors for each sample 

o  Up sample by generating points randomly between - sample & 
neighbor 

   



Distributed SMOTE High Level Design	

Input	 K-Means++	 M-Trees	 Generate 
Data	

Create 
Output	



Clustering	

 
v  We used parallel K-means++ algorithm for clustering the points in “N” 

buckets  

v  Algorithm proposed by Bahman Bahmani and others in “Scalable 
KMeans++” 



M-Trees	

Proposed by P.Ciaccia, M.Patella, F.Rabitti, P.Zezula in their research 
published as Indexing Metric Spaces with M-tree 
 
M Tree indexes a metric space where, the distance function “d” 
satisfies: 
q     d( Ox, Oy) =  d( Oy, Ox)  

q     d( Ox, Oy)  > 0 if Ox ≠ Oy and d( Ox, Ox) = 0  

q     d( Ox, Oy) ≤ d( Ox, Oz) + d( Oz, Oy) – Triangle Inequality 



M-Tree – What is it? 	

•   M-Tree partitions objects on the basis of their relative distance 

•   Fixed sized nodes, called the capacity of the nodes 

•   Leaf Nodes – Data nodes  

R1 

R2 



M-Tree … 	

•  Routing Node - internal (non-leaf) node 
o   Pointer to the sub tree  
o   Radius of the tree  
o   Distance with the parent  

•  Covering Node – Nodes that contain data node 

•  Covering Radius -> d (Oj, Or) ≤  r(Or) 
Maximum distance of all the points from the 
router stored/contained within the router 

 
Oj 

Or 

Covering radius, R 

Or 

Oj Ok 



Build M-Tree	

q   Mark the first point as router  
•   For all the other points, calculate the distance from the 

router  
•    Add them as leaf Nodes to the router.  
•    Update the radius of the router 
•    If num of nodes >= capacity  

 select two routers from the group of nodes 
 split the nodes into two groups 



Splitting Policy	

Max-Min Policy  

q   Choose the point with maximum distance from router as R1 

 

q    Divide the group using “Generalized Hyperplane Approach”  
Assign object Oj ∈ N to the nearest routing object 
if d(Oj,Op1 ) ≤ d(Oj,Op2 ) then assign Oj to N1, else assign Oj to N2. 



Search K Neighbours M-Tree	

Go to individual routers	

	dminT(Or) = max {d(Or – O) – r(Or), 0}	

For all these selected routing nodes, we select data nodes where	

	d(Op, O) ≤ d(Op, Oj) + d ( Oj, Q) 	

	=> d (Oj, O) ≥ d(Op-O) – d (Op, Oj)	

	=>  | d(Op, Q) – d(Oj, Op) | ≤ dk where dK   is the farthest distance of the nearest neighbour 	

Or 

O 
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•  Infrastructure and Datasets 
•  Validate Accuracy of generated data  
•  Ability to process large Datasets  
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Results	



Datasets	

Datasets Used 
 
 
 
 
 
 
 
Model Parameters 
  
 

Datasets	 # Rows	 # Attributes	 Class (maj:min)	 %Class	

ECBDL 14 2.89 million	 631	 2849275: 48637	 98.3% : 1.7%	

KEEL abalone 19 4174	 8	 4142:32	 99.23% : 0.77%	

KEEL yeast4 1484	 8	 1433:51	 96.56% : 3.44%	

UCI SatImage 6435	 36	 5809:626	 90.27% : 9.73%	

Model 	 Parameters	

Distributed Random Forest (h2o)	 Number of Tress : 50	
Maximum Tree Depth 20	
NBins: 20	
Sample Rat : 0.63	

Default Random Forest	 Number of trees 10	



Cluster Configuration	

•   Number of Machines/Nodes    4 

•  Machine      Centos 6.6 Linux 

•  Cores      8 

•  RAM      20 GB 

•  Spark/Hadoop     Distributed Framework 



Results (Abalone Dataset/Yeast4)	

3	 2	

26	 804	

4	 1	

89	 741	

Technique	 AUC	 Recall	 GM	 Confusion 
Matrix	

Python SMOTE	 0.78	 0.60	 0.76	

Spark SMOTE	 0.85	 0.80	 0.84	

Technique	 AUC	 Recall	 GM	 Confusion 
Matrix	

Python SMOTE	 0.90	 0.85	 0.90	

Spark SMOTE	 0.92	 0.85	 0.91	

6	 1	

14	 276	

5	 2	

11	 279	



Results (UCI/ECBDL)	

Technique	 AUC	 Recall	 GM	 Confusion 
Matrix	

Python SMOTE	 0.78	 0.75	 0.76	

Spark SMOTE	 0.78	 0.83	 0.87	

160	 51	

113	 1676	

175	 36	

169	 1620	

Technique	 AUC	 Recall	 GM	 Confusion 
Matrix	

Python SMOTE	 0.79	 0.78	 0.78	

Spark SMOTE	 0.89	 0.81	 0.81	

11442	 3129	

184402	 670401	

11746	 2823	

166637	 688166	



Conclusions 	

•  Python SMOTE being monolithic has challenges with scale on large 
datasets 

•  Our implementation of SMOTE gives comparable results (quality of 
synthetic minority data generation) to existing SMOTE implementation 
(in python/R) 

 
•  Further work needs to be done to extend this algorithm to Borderline, 

Borderline-2 and SVM versions of SMOTE 
 

 



•  Q & A 

Questions ?	



Thank You 


