
An Innovative Approach for Achieving Composability in
Concurrent Systems using Multi-Version Object Based

STMs

Sandeep Kulkarni2 Sweta Kumari1 Sathya Peri1

Archit Somani1

1Department of Computer Science Engineering, IIT Hyderabad
2Department of Computer Science, Michigan State University

IIT Hyderbad MV-OSTMs 1 / 37



Outline

1 Introduction to STMs

2 Correctness Criteria of STMs

3 Problem with read-write STM

4 Object Based STMs

5 Motivation towards MV-OSTM

6 Correctness of MV-OSTM

7 Conclusion

8 Future Work

IIT Hyderbad MV-OSTMs 2 / 37



Outline

1 Introduction to STMs

2 Correctness Criteria of STMs

3 Problem with read-write STM

4 Object Based STMs

5 Motivation towards MV-OSTM

6 Correctness of MV-OSTM

7 Conclusion

8 Future Work

IIT Hyderbad MV-OSTMs 3 / 37



Introduction to STMs

Software Transactional Memory

What is a transaction?

Sequence of instructions executing in memory.

Satisfying ACI

What is Software Transactional Memory?

A parallel programming paradigm

Avoids concurrency overheads at programmers level

Execute code optimistically

Methods of STMs :

Read

Write

TryC

IIT Hyderbad MV-OSTMs 4 / 37



Introduction to STMs

Software Transactional Memory

What is a transaction?

Sequence of instructions executing in memory.

Satisfying ACI

What is Software Transactional Memory?

A parallel programming paradigm

Avoids concurrency overheads at programmers level

Execute code optimistically

Methods of STMs :

Read

Write

TryC

IIT Hyderbad MV-OSTMs 4 / 37



Introduction to STMs

Software Transactional Memory

What is a transaction?

Sequence of instructions executing in memory.

Satisfying ACI

What is Software Transactional Memory?

A parallel programming paradigm

Avoids concurrency overheads at programmers level

Execute code optimistically

Methods of STMs :

Read

Write

TryC

IIT Hyderbad MV-OSTMs 4 / 37



Illustration of STMs methods

T2T1

T1’s Local Log T2’s Local Log

Memory

T2T1

T1’s Local Log T2’s Local Log

Memory

Read from
Memory

T2T1

T1’s Local Log T2’s Local Log

Memory

Read from
Memory

T2T1

T2’s Local Log

Memory

T1’s Local Log

Write to local Log

T2T1

T2’s Local Log

Memory

T1’s Local Log

Write to local Log

T2T1

Write to local Log

T2’s Local Log

Memory

T1’s Local Log

T2T1

Memory

T1’s Local Log T2’s Local Log

T2

Validate T1’s Log

T1

Memory

T2’s Local Log

T2T1

T1’s Log Permanent

Memory

T2’s Local Log

T1 Committed

T1

T1’s Log Permanent T2’s Log Validated

T2

Memory

T1 Committed

T1

T1’s Log Permanent

T2

Memory

T1 Committed T2 Aborted

Figure: Working of STM System

IIT Hyderbad MV-OSTMs 5 / 37



Illustration of STMs methods

T2T1

T1’s Local Log T2’s Local Log

Memory

T2T1

T1’s Local Log T2’s Local Log

Memory

Read from
Memory

T2T1

T1’s Local Log T2’s Local Log

Memory

Read from
Memory

T2T1

T2’s Local Log

Memory

T1’s Local Log

Write to local Log

T2T1

T2’s Local Log

Memory

T1’s Local Log

Write to local Log

T2T1

Write to local Log

T2’s Local Log

Memory

T1’s Local Log

T2T1

Memory

T1’s Local Log T2’s Local Log

T2

Validate T1’s Log

T1

Memory

T2’s Local Log

T2T1

T1’s Log Permanent

Memory

T2’s Local Log

T1 Committed

T1

T1’s Log Permanent T2’s Log Validated

T2

Memory

T1 Committed

T1

T1’s Log Permanent

T2

Memory

T1 Committed T2 Aborted

Figure: Working of STM System

IIT Hyderbad MV-OSTMs 5 / 37



Illustration of STMs methods

T2T1

T1’s Local Log T2’s Local Log

Memory

T2T1

T1’s Local Log T2’s Local Log

Memory

Read from
Memory

T2T1

T1’s Local Log T2’s Local Log

Memory

Read from
Memory

T2T1

T2’s Local Log

Memory

T1’s Local Log

Write to local Log

T2T1

T2’s Local Log

Memory

T1’s Local Log

Write to local Log

T2T1

Write to local Log

T2’s Local Log

Memory

T1’s Local Log

T2T1

Memory

T1’s Local Log T2’s Local Log

T2

Validate T1’s Log

T1

Memory

T2’s Local Log

T2T1

T1’s Log Permanent

Memory

T2’s Local Log

T1 Committed

T1

T1’s Log Permanent T2’s Log Validated

T2

Memory

T1 Committed

T1

T1’s Log Permanent

T2

Memory

T1 Committed T2 Aborted

Figure: Working of STM System

IIT Hyderbad MV-OSTMs 5 / 37



Illustration of STMs methods

T2T1

T1’s Local Log T2’s Local Log

Memory

T2T1

T1’s Local Log T2’s Local Log

Memory

Read from
Memory

T2T1

T1’s Local Log T2’s Local Log

Memory

Read from
Memory

T2T1

T2’s Local Log

Memory

T1’s Local Log

Write to local Log

T2T1

T2’s Local Log

Memory

T1’s Local Log

Write to local Log

T2T1

Write to local Log

T2’s Local Log

Memory

T1’s Local Log

T2T1

Memory

T1’s Local Log T2’s Local Log

T2

Validate T1’s Log

T1

Memory

T2’s Local Log

T2T1

T1’s Log Permanent

Memory

T2’s Local Log

T1 Committed

T1

T1’s Log Permanent T2’s Log Validated

T2

Memory

T1 Committed

T1

T1’s Log Permanent

T2

Memory

T1 Committed T2 Aborted

Figure: Working of STM System

IIT Hyderbad MV-OSTMs 5 / 37



Illustration of STMs methods

T2T1

T1’s Local Log T2’s Local Log

Memory

T2T1

T1’s Local Log T2’s Local Log

Memory

Read from
Memory

T2T1

T1’s Local Log T2’s Local Log

Memory

Read from
Memory

T2T1

T2’s Local Log

Memory

T1’s Local Log

Write to local Log

T2T1

T2’s Local Log

Memory

T1’s Local Log

Write to local Log

T2T1

Write to local Log

T2’s Local Log

Memory

T1’s Local Log

T2T1

Memory

T1’s Local Log T2’s Local Log

T2

Validate T1’s Log

T1

Memory

T2’s Local Log

T2T1

T1’s Log Permanent

Memory

T2’s Local Log

T1 Committed

T1

T1’s Log Permanent T2’s Log Validated

T2

Memory

T1 Committed

T1

T1’s Log Permanent

T2

Memory

T1 Committed T2 Aborted

Figure: Working of STM System

IIT Hyderbad MV-OSTMs 5 / 37



Illustration of STMs methods

T2T1

T1’s Local Log T2’s Local Log

Memory

T2T1

T1’s Local Log T2’s Local Log

Memory

Read from
Memory

T2T1

T1’s Local Log T2’s Local Log

Memory

Read from
Memory

T2T1

T2’s Local Log

Memory

T1’s Local Log

Write to local Log

T2T1

T2’s Local Log

Memory

T1’s Local Log

Write to local Log

T2T1

Write to local Log

T2’s Local Log

Memory

T1’s Local Log

T2T1

Memory

T1’s Local Log T2’s Local Log

T2

Validate T1’s Log

T1

Memory

T2’s Local Log

T2T1

T1’s Log Permanent

Memory

T2’s Local Log

T1 Committed

T1

T1’s Log Permanent T2’s Log Validated

T2

Memory

T1 Committed

T1

T1’s Log Permanent

T2

Memory

T1 Committed T2 Aborted

Figure: Working of STM System

IIT Hyderbad MV-OSTMs 5 / 37



Illustration of STMs methods

T2T1

T1’s Local Log T2’s Local Log

Memory

T2T1

T1’s Local Log T2’s Local Log

Memory

Read from
Memory

T2T1

T1’s Local Log T2’s Local Log

Memory

Read from
Memory

T2T1

T2’s Local Log

Memory

T1’s Local Log

Write to local Log

T2T1

T2’s Local Log

Memory

T1’s Local Log

Write to local Log

T2T1

Write to local Log

T2’s Local Log

Memory

T1’s Local Log

T2T1

Memory

T1’s Local Log T2’s Local Log

T2

Validate T1’s Log

T1

Memory

T2’s Local Log

T2T1

T1’s Log Permanent

Memory

T2’s Local Log

T1 Committed

T1

T1’s Log Permanent T2’s Log Validated

T2

Memory

T1 Committed

T1

T1’s Log Permanent

T2

Memory

T1 Committed T2 Aborted

Figure: Working of STM System

IIT Hyderbad MV-OSTMs 5 / 37



Illustration of STMs methods

T2T1

T1’s Local Log T2’s Local Log

Memory

T2T1

T1’s Local Log T2’s Local Log

Memory

Read from
Memory

T2T1

T1’s Local Log T2’s Local Log

Memory

Read from
Memory

T2T1

T2’s Local Log

Memory

T1’s Local Log

Write to local Log

T2T1

T2’s Local Log

Memory

T1’s Local Log

Write to local Log

T2T1

Write to local Log

T2’s Local Log

Memory

T1’s Local Log

T2T1

Memory

T1’s Local Log T2’s Local Log

T2

Validate T1’s Log

T1

Memory

T2’s Local Log

T2T1

T1’s Log Permanent

Memory

T2’s Local Log

T1 Committed

T1

T1’s Log Permanent T2’s Log Validated

T2

Memory

T1 Committed

T1

T1’s Log Permanent

T2

Memory

T1 Committed T2 Aborted

Figure: Working of STM System

IIT Hyderbad MV-OSTMs 5 / 37



Illustration of STMs methods

T2T1

T1’s Local Log T2’s Local Log

Memory

T2T1

T1’s Local Log T2’s Local Log

Memory

Read from
Memory

T2T1

T1’s Local Log T2’s Local Log

Memory

Read from
Memory

T2T1

T2’s Local Log

Memory

T1’s Local Log

Write to local Log

T2T1

T2’s Local Log

Memory

T1’s Local Log

Write to local Log

T2T1

Write to local Log

T2’s Local Log

Memory

T1’s Local Log

T2T1

Memory

T1’s Local Log T2’s Local Log

T2

Validate T1’s Log

T1

Memory

T2’s Local Log

T2T1

T1’s Log Permanent

Memory

T2’s Local Log

T1 Committed

T1

T1’s Log Permanent T2’s Log Validated

T2

Memory

T1 Committed

T1

T1’s Log Permanent

T2

Memory

T1 Committed T2 Aborted

Figure: Working of STM System

IIT Hyderbad MV-OSTMs 5 / 37



Illustration of STMs methods

T2T1

T1’s Local Log T2’s Local Log

Memory

T2T1

T1’s Local Log T2’s Local Log

Memory

Read from
Memory

T2T1

T1’s Local Log T2’s Local Log

Memory

Read from
Memory

T2T1

T2’s Local Log

Memory

T1’s Local Log

Write to local Log

T2T1

T2’s Local Log

Memory

T1’s Local Log

Write to local Log

T2T1

Write to local Log

T2’s Local Log

Memory

T1’s Local Log

T2T1

Memory

T1’s Local Log T2’s Local Log

T2

Validate T1’s Log

T1

Memory

T2’s Local Log

T2T1

T1’s Log Permanent

Memory

T2’s Local Log

T1 Committed

T1

T1’s Log Permanent T2’s Log Validated

T2

Memory

T1 Committed

T1

T1’s Log Permanent

T2

Memory

T1 Committed T2 Aborted

Figure: Working of STM System

IIT Hyderbad MV-OSTMs 5 / 37



Illustration of STMs methods

T2T1

T1’s Local Log T2’s Local Log

Memory

T2T1

T1’s Local Log T2’s Local Log

Memory

Read from
Memory

T2T1

T1’s Local Log T2’s Local Log

Memory

Read from
Memory

T2T1

T2’s Local Log

Memory

T1’s Local Log

Write to local Log

T2T1

T2’s Local Log

Memory

T1’s Local Log

Write to local Log

T2T1

Write to local Log

T2’s Local Log

Memory

T1’s Local Log

T2T1

Memory

T1’s Local Log T2’s Local Log

T2

Validate T1’s Log

T1

Memory

T2’s Local Log

T2T1

T1’s Log Permanent

Memory

T2’s Local Log

T1 Committed

T1

T1’s Log Permanent T2’s Log Validated

T2

Memory

T1 Committed

T1

T1’s Log Permanent

T2

Memory

T1 Committed T2 Aborted

Figure: Working of STM System

IIT Hyderbad MV-OSTMs 5 / 37



Illustration of STMs methods

T2T1

T1’s Local Log T2’s Local Log

Memory

T2T1

T1’s Local Log T2’s Local Log

Memory

Read from
Memory

T2T1

T1’s Local Log T2’s Local Log

Memory

Read from
Memory

T2T1

T2’s Local Log

Memory

T1’s Local Log

Write to local Log

T2T1

T2’s Local Log

Memory

T1’s Local Log

Write to local Log

T2T1

Write to local Log

T2’s Local Log

Memory

T1’s Local Log

T2T1

Memory

T1’s Local Log T2’s Local Log

T2

Validate T1’s Log

T1

Memory

T2’s Local Log

T2T1

T1’s Log Permanent

Memory

T2’s Local Log

T1 Committed

T1

T1’s Log Permanent T2’s Log Validated

T2

Memory

T1 Committed

T1

T1’s Log Permanent

T2

Memory

T1 Committed T2 Aborted

Figure: Working of STM System

IIT Hyderbad MV-OSTMs 5 / 37



Outline

1 Introduction to STMs

2 Correctness Criteria of STMs

3 Problem with read-write STM

4 Object Based STMs

5 Motivation towards MV-OSTM

6 Correctness of MV-OSTM

7 Conclusion

8 Future Work



Correctness of STM System

Correcness criteria for STMs (Opacity)

A history H is opaque if there exists a serial history S s.t.
1 Operations of H and S are same
2 S respects real time order ≺RT

H and
3 ∀ trans(Ti ) ∈ S are legal in S

IIT Hyderbad MV-OSTMs 7 / 37



Correctness of STM System

Correcness criteria for STMs (Opacity)

A history H is opaque if there exists a serial history S s.t.
1 Operations of H and S are same
2 S respects real time order ≺RT

H and
3 ∀ trans(Ti ) ∈ S are legal in S

IIT Hyderbad MV-OSTMs 7 / 37



Correctness of STM System

Example of opacity

H: r1(x,0)w2(x,10)w2(y,10)C2r1(y,A)A1

w2(x , 10) w2(y , 10)

A1
r1(x , 0)

C2

T1

T2

r1(y ,A)

Figure: Opaque History H

A1r1(y ,A)r1(x , 0)T1

w2(x , 10) w2(y , 10)
C2

T2

Figure: Equivalent serial history S: T1, T2

IIT Hyderbad MV-OSTMs 8 / 37



Correctness of STM System

Example of opacity

H: r1(x,0)w2(x,10)w2(y,10)C2r1(y,A)A1

w2(x , 10) w2(y , 10)

A1
r1(x , 0)

C2

T1

T2

r1(y ,A)

Figure: Opaque History H

A1r1(y ,A)r1(x , 0)T1

w2(x , 10) w2(y , 10)
C2

T2

Figure: Equivalent serial history S: T1, T2

IIT Hyderbad MV-OSTMs 8 / 37



Outline

1 Introduction to STMs

2 Correctness Criteria of STMs

3 Problem with read-write STM

4 Object Based STMs

5 Motivation towards MV-OSTM

6 Correctness of MV-OSTM

7 Conclusion

8 Future Work

IIT Hyderbad MV-OSTMs 9 / 37



Problem with read-write STM

k2 k5 k7 k8 k9

Figure: A sample concurrent object

r1(k5) w2(k5) r1(k5)w2(k7)

T2

r2(k2) r2(k5) r1(k8)r1(k2)

T1

r1(k2) r2(k7)

Figure: Tree Structure : conflicts are (r1(k5), w2(k5)) and (w2(k5), r1(k5)

IIT Hyderbad MV-OSTMs 10 / 37



Problem at read-write level

r1(k5) w2(k5) r1(k5)w2(k7)

T2

r2(k2) r2(k5) r2(k7)r1(k2) r1(k8)r1(k2)

T1

Figure: Tree Structure

T2T1

Figure: Cycle (Not Serial)

IIT Hyderbad MV-OSTMs 11 / 37



Problem at read-write level

r1(k5) w2(k5) r1(k5)w2(k7)

T2

r2(k2) r2(k5) r2(k7)r1(k2) r1(k8)r1(k2)

T1

Figure: Tree Structure

T2T1

Figure: Cycle (Not Serial)

IIT Hyderbad MV-OSTMs 11 / 37



Outline

1 Introduction to STMs

2 Correctness Criteria of STMs

3 Problem with read-write STM

4 Object Based STMs

5 Motivation towards MV-OSTM

6 Correctness of MV-OSTM

7 Conclusion

8 Future Work

IIT Hyderbad MV-OSTMs 12 / 37



OSTM
Introduction

Object-based STMs (OSTM) operate on higher level objects rather
than primitive read & writes which act upon memory locations.

OSTM model can adapted:

OSTM for stacks may export t push, t pop & t peek.
OSTM for sets may export t begin(), t insert(), t del(), t lookup() and
tryC().

IIT Hyderbad MV-OSTMs 13 / 37



OSTM
Introduction

Object-based STMs (OSTM) operate on higher level objects rather
than primitive read & writes which act upon memory locations.

OSTM model can adapted:

OSTM for stacks may export t push, t pop & t peek.
OSTM for sets may export t begin(), t insert(), t del(), t lookup() and
tryC().

IIT Hyderbad MV-OSTMs 13 / 37



OSTM
Execution at layer-1

k2 k5 k7 k8 k9

Figure: A sample representing a OSTM object

Layer-1: Lookups & Deletes

Layer-0: Reads

r2(k2) r2(k5) r2(k7) w2(k7) r1(k2)

d2(k7)

T2

c2

r1(k5) r1(k5)w2(k5)

l1(k5) l1(k8)

r1(k2) r1(k8)

T1

& Writes

Figure: Tree Structure : no conflict at Layer-1

IIT Hyderbad MV-OSTMs 14 / 37



OSTM
Execution at layer-1

d2(k7)

T2

l1(k5) l1(k8)

T1

Figure: Pruned Tree

l1(k8) d2(k7)

T2

l1(k5)

T1

Figure: Sequential Schedule

T2T1

Figure: Serial History

IIT Hyderbad MV-OSTMs 15 / 37



OSTM
Execution at layer-1

d2(k7)

T2

l1(k5) l1(k8)

T1

Figure: Pruned Tree

l1(k8) d2(k7)

T2

l1(k5)

T1

Figure: Sequential Schedule

T2T1

Figure: Serial History

IIT Hyderbad MV-OSTMs 15 / 37



OSTM
Execution at layer-1

d2(k7)

T2

l1(k5) l1(k8)

T1

Figure: Pruned Tree

l1(k8) d2(k7)

T2

l1(k5)

T1

Figure: Sequential Schedule

T2T1

Figure: Serial History
IIT Hyderbad MV-OSTMs 15 / 37



OSTM
Problem with OSTM

T1

T2

A1

C2

Lu1(ht, k2, nil)

Ins2(ht, k2, v2) Del2(ht, k1, nil)

Lu1(ht, k1,Abort)

Figure: Single version OSTM

IIT Hyderbad MV-OSTMs 16 / 37



Outline

1 Introduction to STMs

2 Correctness Criteria of STMs

3 Problem with read-write STM

4 Object Based STMs

5 Motivation towards MV-OSTM

6 Correctness of MV-OSTM

7 Conclusion

8 Future Work

IIT Hyderbad MV-OSTMs 17 / 37



Proposed Algorithm : MV-OSTM
Advantages of multi-version over single version OSTM

T1

T2

A1

C2

Lu1(ht, k2, nil)

Ins2(ht, k2, v2) Del2(ht, k1, nil)

Lu1(ht, k1,Abort)

Figure: Single version OSTM

T1

T2

C2

C1Lu1(ht, k2, nil)

Ins2(ht, k2, v2) Del2(ht, k1, nil)

Lu1(ht, k1, nil)

Figure: Multi-version OSTM (MV-OSTM) : (T1, T2)

IIT Hyderbad MV-OSTMs 18 / 37



Proposed Algorithm : MV-OSTM
Advantages of multi-version over single version OSTM

T1

T2

A1

C2

Lu1(ht, k2, nil)

Ins2(ht, k2, v2) Del2(ht, k1, nil)

Lu1(ht, k1,Abort)

Figure: Single version OSTM

T1

T2

C2

C1Lu1(ht, k2, nil)

Ins2(ht, k2, v2) Del2(ht, k1, nil)

Lu1(ht, k1, nil)

Figure: Multi-version OSTM (MV-OSTM) : (T1, T2)

IIT Hyderbad MV-OSTMs 18 / 37



Proposed Algorithm : MV-OSTM
Illustration of data structure

a) Underlying DS

k7 k8 +∞k1−∞ k5

IIT Hyderbad MV-OSTMs 19 / 37



Proposed Algorithm : MV-OSTM
Illustration of data structure cont’d..

VL(Version List)

RVL(Return Value List)

b) DS for maintaining Versions

k1

0 v0 rvl1T

201675 2827 30

15 v5 F rvl2 25 v10 F

12 18 23 35

rvl3

IIT Hyderbad MV-OSTMs 20 / 37



Proposed Algorithm : MV-OSTM
Lookup method

VL(Version List)

RVL(Return Value List)

k1

0 v0 rvl1T

13

201675 2827 30

15 v5 F rvl2 25 v10 F

12 18 23 35

rvl3

Figure: Lookup on key k1 by T13

IIT Hyderbad MV-OSTMs 21 / 37



Proposed Algorithm : MV-OSTM
Lookup method cont’d..

VL(Version List)

RVL(Return Value List)

k1

0 v0 rvl1T

13

201675 2827 30

15 v5 F rvl2 25 v10 F

12 18 23 35

rvl3

Figure: T13 searching appropriate place in version list of k1

IIT Hyderbad MV-OSTMs 22 / 37



Proposed Algorithm : MV-OSTM
Lookup method cont’d..

VL(Version List)

RVL(Return Value List)

k1

0 v0 rvl1T

13 201675 2827 30

15 v5 F rvl2 25 v10 F

12 18 23 35

rvl3

Figure: T13 successfully added into rvl1

IIT Hyderbad MV-OSTMs 23 / 37



Proposed Algorithm : MV-OSTM
tryC : Insert method

VL(Version List)

RVL(Return Value List)

k1

0 v0 rvl1T

13

40

201675 2827 30

15 v5 F rvl2 25 v10 F

12 18 23 35

rvl3

Figure: Insert a version of key k1 by T40

IIT Hyderbad MV-OSTMs 24 / 37



Proposed Algorithm : MV-OSTM
tryC : Insert method cont’d..

VL(Version List)

RVL(Return Value List)

k1

0 v0 rvl1T

13

40

201675 2827 30

15 v5 F rvl2 25 v10 F

12 18 23 35

rvl3

Figure: T40 searching appropriate place in version list of k1

IIT Hyderbad MV-OSTMs 25 / 37



Proposed Algorithm : MV-OSTM
tryC : Insert method cont’d..

k1

0 v0 rvl1T

13 201675 2827 30

15 v5 F rvl2

12 18 23 35

40 F rvl3v1525 F rvl3v10

Figure: T40 successfully created a new version of k1

IIT Hyderbad MV-OSTMs 26 / 37



Proposed Algorithm : MV-OSTM
tryC : Insert method cont’d..

VL(Version List)

RVL(Return Value List)

k1

0 v0 rvl1T

13

40

201675 2827 30

15 v5 F rvl2 25 v10 F

12 18 23

rvl3

45c

Figure: Insert a version of key k1 by T40

IIT Hyderbad MV-OSTMs 27 / 37



Proposed Algorithm : MV-OSTM
tryC : Insert method cont’d..

VL(Version List)

RVL(Return Value List)

k1

0 v0 rvl1T

13

40

201675 2827 30

15 v5 F rvl2 25 v10 F

12 18 23

rvl3

45c

Figure: T40 searching appropriate place in version list of k1

IIT Hyderbad MV-OSTMs 28 / 37



Proposed Algorithm : MV-OSTM
tryC : Insert method cont’d..

VL(Version List)

RVL(Return Value List)

k1

0 v0 rvl1T

13

40

201675 2827 30

15 v5 F rvl2 25 v10 F

12 18 23

rvl3

45c

Figure: Abort T40 : T45 committed before T40

IIT Hyderbad MV-OSTMs 29 / 37



Outline

1 Introduction to STMs

2 Correctness Criteria of STMs

3 Problem with read-write STM

4 Object Based STMs

5 Motivation towards MV-OSTM

6 Correctness of MV-OSTM

7 Conclusion

8 Future Work

IIT Hyderbad MV-OSTMs 30 / 37



Correctness of MV-OSTM

Theorem

Any history H generated by MV-OSTM algorithm with a given version
order �, if OPG (H,�) is acyclic, then H is opaque.

IIT Hyderbad MV-OSTMs 31 / 37



Outline

1 Introduction to STMs

2 Correctness Criteria of STMs

3 Problem with read-write STM

4 Object Based STMs

5 Motivation towards MV-OSTM

6 Correctness of MV-OSTM

7 Conclusion

8 Future Work

IIT Hyderbad MV-OSTMs 32 / 37



Conclusion

MV-OSTM is opaque.

We have proposed a new STM as MV-OSTM which providing the
greater concurrency in terms of the number of aborts with the help of
multiple versions and composability.

Lookup operation always succeeds.

Delete operation is logically deletes, in that sense it’s lazy.

Transactions are composable [Harris et.al, 2005], [Ziv et.al, 2015].

IIT Hyderbad MV-OSTMs 33 / 37



Conclusion

MV-OSTM is opaque.

We have proposed a new STM as MV-OSTM which providing the
greater concurrency in terms of the number of aborts with the help of
multiple versions and composability.

Lookup operation always succeeds.

Delete operation is logically deletes, in that sense it’s lazy.

Transactions are composable [Harris et.al, 2005], [Ziv et.al, 2015].

IIT Hyderbad MV-OSTMs 33 / 37



Conclusion

MV-OSTM is opaque.

We have proposed a new STM as MV-OSTM which providing the
greater concurrency in terms of the number of aborts with the help of
multiple versions and composability.

Lookup operation always succeeds.

Delete operation is logically deletes, in that sense it’s lazy.

Transactions are composable [Harris et.al, 2005], [Ziv et.al, 2015].

IIT Hyderbad MV-OSTMs 33 / 37



Conclusion

MV-OSTM is opaque.

We have proposed a new STM as MV-OSTM which providing the
greater concurrency in terms of the number of aborts with the help of
multiple versions and composability.

Lookup operation always succeeds.

Delete operation is logically deletes, in that sense it’s lazy.

Transactions are composable [Harris et.al, 2005], [Ziv et.al, 2015].

IIT Hyderbad MV-OSTMs 33 / 37



Conclusion

MV-OSTM is opaque.

We have proposed a new STM as MV-OSTM which providing the
greater concurrency in terms of the number of aborts with the help of
multiple versions and composability.

Lookup operation always succeeds.

Delete operation is logically deletes, in that sense it’s lazy.

Transactions are composable [Harris et.al, 2005], [Ziv et.al, 2015].

IIT Hyderbad MV-OSTMs 33 / 37



Outline

1 Introduction to STMs

2 Correctness Criteria of STMs

3 Problem with read-write STM

4 Object Based STMs

5 Motivation towards MV-OSTM

6 Correctness of MV-OSTM

7 Conclusion

8 Future Work

IIT Hyderbad MV-OSTMs 34 / 37



Progress
Future Work

Garbage Collection.

We will extend it for K-version MV-OSTM.

We will implement our proposed protocol and compare the
performance with existing Object-Based STMs [Hassan et.al, 2014].

Nesting : open [Yang et.al, 2007] and close.

IIT Hyderbad MV-OSTMs 35 / 37



Progress
Future Work

Garbage Collection.

We will extend it for K-version MV-OSTM.

We will implement our proposed protocol and compare the
performance with existing Object-Based STMs [Hassan et.al, 2014].

Nesting : open [Yang et.al, 2007] and close.

IIT Hyderbad MV-OSTMs 35 / 37



Progress
Future Work

Garbage Collection.

We will extend it for K-version MV-OSTM.

We will implement our proposed protocol and compare the
performance with existing Object-Based STMs [Hassan et.al, 2014].

Nesting : open [Yang et.al, 2007] and close.

IIT Hyderbad MV-OSTMs 35 / 37



Progress
Future Work

Garbage Collection.

We will extend it for K-version MV-OSTM.

We will implement our proposed protocol and compare the
performance with existing Object-Based STMs [Hassan et.al, 2014].

Nesting : open [Yang et.al, 2007] and close.

IIT Hyderbad MV-OSTMs 35 / 37



References

1 Harris, Tim and Marlow, Simon and Peyton-Jones, Simon and Herlihy, Maurice.
Composable memory transactions, Proceedings of the tenth ACM SIGPLAN symposium
on Principles and practice of parallel programming, 2005

2 Gerhard Weikum and Gottfried Vossen. 2001. Transactional Information Systems:
Theory, Algorithms, and the Practice of Concurrency Control and Recovery. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA

3 Ziv, Ofri and Aiken, Alex and Golan-Gueta, Guy and Ramalingam, G and Sagiv, Mooly,
Composing concurrency control, Proceedings of the 36th ACM SIGPLAN Conference on
Programming Language Design and Implementation, 2015

4 Kuznetsov, Petr and Peri, Sathya, Non-interference and Local Correctness in
Transactional Memory, ICDCN, 2014

5 Hassan, Ahmed and Palmieri, Roberto and Ravindran, Binoy, Optimistic Transactional
Boosting, Proceedings of the 19th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, PPoPP ’14

6 Priyanka Kumar, Sathya Peri, and K. Vidyasankar. A TimeStamp Based Multi-version
STM Algorithm. In ICDCN, pages 212–226, 2014

7 Ni, Yang and Menon, Vijay S. and Adl-Tabatabai, Ali-Reza and Hosking, Antony L. and
Hudson, Richard L. and Moss, J. Eliot B. and Saha, Bratin and Shpeisman, Tatiana,
Open Nesting in Software Transactional Memory, PPoPP ’07

IIT Hyderbad MV-OSTMs 36 / 37



IIT Hyderbad MV-OSTMs 37 / 37


	Introduction to STMs
	Correctness Criteria of STMs
	Problem with read-write STM
	Object Based STMs
	Motivation towards MV-OSTM
	Correctness of MV-OSTM
	Conclusion
	Future Work

