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Introduction to STMs

Software Transactional Memory

What is a transaction?

Sequence of instructions executing in memory.

Satisfying ACI

What is Software Transactional Memory?

A parallel programming paradigm

Avoids concurrency overheads at programmers level

Execute code optimistically

Methods of STMs :

Read

Write

TryC
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Correctness of STM System

Correcness criteria for STMs (Opacity)

A history H is opaque if there exists a serial history S s.t.
1 Operations of H and S are same
2 S respects real time order ≺RT

H and
3 ∀ trans(Ti ) ∈ S are legal in S
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Correctness of STM System

Example of opacity
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Problem with read-write STM

k2 k5 k7 k8 k9

Figure: A sample concurrent object

r1(k5) w2(k5) r1(k5)w2(k7)

T2

r2(k2) r2(k5) r1(k8)r1(k2)

T1

r1(k2) r2(k7)

Figure: Tree Structure : conflicts are (r1(k5), w2(k5)) and (w2(k5), r1(k5)
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Problem at read-write level
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OSTM
Introduction

Object-based STMs (OSTM) operate on higher level objects rather
than primitive read & writes which act upon memory locations.

OSTM model can adapted:

OSTM for stacks may export t push, t pop & t peek.
OSTM for sets may export t begin(), t insert(), t del(), t lookup() and
tryC().
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OSTM
Execution at layer-1

k2 k5 k7 k8 k9

Figure: A sample representing a OSTM object

Layer-1: Lookups & Deletes

Layer-0: Reads

r2(k2) r2(k5) r2(k7) w2(k7) r1(k2)

d2(k7)

T2

c2

r1(k5) r1(k5)w2(k5)

l1(k5) l1(k8)

r1(k2) r1(k8)

T1

& Writes

Figure: Tree Structure : no conflict at Layer-1
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OSTM
Execution at layer-1

d2(k7)

T2

l1(k5) l1(k8)

T1

Figure: Pruned Tree

l1(k8) d2(k7)

T2

l1(k5)

T1

Figure: Sequential Schedule

T2T1

Figure: Serial History
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OSTM
Problem with OSTM

T1

T2

A1

C2

Lu1(ht, k2, nil)

Ins2(ht, k2, v2) Del2(ht, k1, nil)

Lu1(ht, k1,Abort)

Figure: Single version OSTM

IIT Hyderbad MV-OSTMs 16 / 37



Outline

1 Introduction to STMs

2 Correctness Criteria of STMs

3 Problem with read-write STM

4 Object Based STMs

5 Motivation towards MV-OSTM

6 Correctness of MV-OSTM

7 Conclusion

8 Future Work

IIT Hyderbad MV-OSTMs 17 / 37



Proposed Algorithm : MV-OSTM
Advantages of multi-version over single version OSTM

T1

T2

A1

C2

Lu1(ht, k2, nil)

Ins2(ht, k2, v2) Del2(ht, k1, nil)

Lu1(ht, k1,Abort)

Figure: Single version OSTM

T1

T2

C2

C1Lu1(ht, k2, nil)

Ins2(ht, k2, v2) Del2(ht, k1, nil)

Lu1(ht, k1, nil)

Figure: Multi-version OSTM (MV-OSTM) : (T1, T2)
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Proposed Algorithm : MV-OSTM
Illustration of data structure

a) Underlying DS

k7 k8 +∞k1−∞ k5
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Proposed Algorithm : MV-OSTM
Illustration of data structure cont’d..

VL(Version List)

RVL(Return Value List)

b) DS for maintaining Versions

k1

0 v0 rvl1T

201675 2827 30

15 v5 F rvl2 25 v10 F

12 18 23 35

rvl3
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Proposed Algorithm : MV-OSTM
Lookup method

VL(Version List)

RVL(Return Value List)

k1

0 v0 rvl1T

13

201675 2827 30

15 v5 F rvl2 25 v10 F

12 18 23 35

rvl3

Figure: Lookup on key k1 by T13
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Proposed Algorithm : MV-OSTM
Lookup method cont’d..
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Proposed Algorithm : MV-OSTM
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Figure: T13 successfully added into rvl1
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Proposed Algorithm : MV-OSTM
tryC : Insert method

VL(Version List)

RVL(Return Value List)

k1

0 v0 rvl1T
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15 v5 F rvl2 25 v10 F
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Figure: Insert a version of key k1 by T40
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Proposed Algorithm : MV-OSTM
tryC : Insert method cont’d..
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Proposed Algorithm : MV-OSTM
tryC : Insert method cont’d..

k1

0 v0 rvl1T

13 201675 2827 30

15 v5 F rvl2

12 18 23 35

40 F rvl3v1525 F rvl3v10

Figure: T40 successfully created a new version of k1
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Proposed Algorithm : MV-OSTM
tryC : Insert method cont’d..

VL(Version List)

RVL(Return Value List)

k1

0 v0 rvl1T

13

40

201675 2827 30

15 v5 F rvl2 25 v10 F

12 18 23

rvl3

45c

Figure: Insert a version of key k1 by T40

IIT Hyderbad MV-OSTMs 27 / 37



Proposed Algorithm : MV-OSTM
tryC : Insert method cont’d..

VL(Version List)

RVL(Return Value List)

k1

0 v0 rvl1T

13

40

201675 2827 30

15 v5 F rvl2 25 v10 F

12 18 23

rvl3

45c

Figure: T40 searching appropriate place in version list of k1
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Proposed Algorithm : MV-OSTM
tryC : Insert method cont’d..
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Figure: Abort T40 : T45 committed before T40
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Correctness of MV-OSTM

Theorem

Any history H generated by MV-OSTM algorithm with a given version
order �, if OPG (H,�) is acyclic, then H is opaque.
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Conclusion

MV-OSTM is opaque.

We have proposed a new STM as MV-OSTM which providing the
greater concurrency in terms of the number of aborts with the help of
multiple versions and composability.

Lookup operation always succeeds.

Delete operation is logically deletes, in that sense it’s lazy.

Transactions are composable [Harris et.al, 2005], [Ziv et.al, 2015].
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Progress
Future Work

Garbage Collection.

We will extend it for K-version MV-OSTM.

We will implement our proposed protocol and compare the
performance with existing Object-Based STMs [Hassan et.al, 2014].

Nesting : open [Yang et.al, 2007] and close.
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