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Introduction
Sequential Object and Sequential Specification

Sequential Object

Each object has a state.

Ex: sequence of item in a queue.

Each object has a set of methods which can manipulate its state.

Ex: enq and deq methods.

Sequential Specification

Set of correct histories which can be generated by single threaded
execution.

Pre-condition : state before you call the method.

Post-condition : other state after the method returns.
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Introduction
Example of Sequential Specification
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Sequential vs Concurrent History

Sequential History

Object methods are invoked one at a time by a single process.

The meaning of methods can be given by pre- and post- conditions.

Figure: Sequential History
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Sequential vs Concurrent History

Concurrent History

Object methods can be invoked by concurrent processes.

It is necessary to give a meaning to possible interleavings of
operations invocation.
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Panic!

Because method calls overlap, must characterize all possible
interactions with concurrent calls.

Everything can potentially interact with everything else.

What does it mean for a concurrent object to be correct?

Correctness Criteria: Linearizability.
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Linearizability

Linearizability

Each method should

Take effect
Instantaneously
Between invocation and response events.

Object is correct if it adheres to it’s sequential specification.

Any such concurrent object is Linearizable.
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Proving Linearizability Manually

Challenging even for simple data structures.

Several techniques have been proposed

Linearization Points [HerlihyWing90]
Rely Guarantee [Vafeiadis, et al. 06]
Hindsight Lemma [O’Hearn10]
Base Point Analysis [KfirKeidar15]
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Linearization Points [HerlihyWing90]

Every operation ”appears to happen” at some individual instruction
between invocation and response.

In coarse locks, LP could be anywhere in the critical section.
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Linearization Points [HerlihyWing90]

Every operation ”appears to happen” at some individual instruction
between invocation and response.

In coarse locks, LP could be anywhere in the critical section.

LPs depend on the execution and return value of each operation.

Problem!

How do you know if you have identified the correct LPs indeed?
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Proposed Technique: Validating LPs
Hand-crafted generic technique for validating LPs

Terminology:
Events, Methods
State
History, Execution, Complete History
Abstract data structure (AbDS)
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Proposed Technique: Validating LPs
Hand-crafted generic technique for validating LPs

Construct the sequential history (CS) based on LP

CDS with given LP's
Concurrent execution(H) = CS(H)                    

1) Pre_state of LP = Pre_state of method : lemma 5                                              
2) Invocation of method = Invocation of method

Linearizable : Theorem 8

Start

End

Assumptions

Step1 Step2

Step4

Real-time order is also preserve in CS(H) : lemma 2

No

Yes

Step3

Concurrent execution(H) = CS(H)                    
1) Post_state of LP = Post_state of method : lemma 5                                              

2) Response of method = Response of method

No

Yes

Figure: Iterative steps to prove linearizability of a CDS with given LP’s.
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Proposed Technique: Validating LPs
Hand-crafted generic technique for validating LPs

Assumptions:

Every sequential history S generated by the concurrent data
structure(CDS) is legal.

Each method has a unique atomic LP event within its invocation and
response.
Only the LP events of a method can change AbDS of CDS.
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Proposed Technique: Validating LPs
Hand-crafted generic technique for validating LPs

∀m : 〈 Pre-state of EH .mi .LP = Pre-state of ES .mi 〉 ∧〈 EH .mi .inv =
ES .mi .inv 〉 → 〈 Post-state of EH .mi .LP = Post-state of ES .mi 〉 ∧〈
EH .mi .resp = ES .mi .resp 〉

B DA B DA

B DA C B DA C

inv()
inv()

PostE [EH .mx .LP]

rsp(C , true)
rsp(C , true)

mx

mx .LP

PreM[E S .my ]

my

PreE [EH .mx .LP]

EH E S

(a) (b)

=

=

add(C )add(C )

mx

mx .LP

my

PostM[E S .my ]

EH E S

(d)

add(C )add(C )

=

=(c)

Figure: CDS Specific lemma
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Conclusion

In spite of various approaches for proving linearizability, LPs seem
most intuitive & constructive; but are difficult to identify.

We have developed a hand-crafted technique of proving correctness of
the CDSs by validating it LPs.

This technique will also offer the programmer some insight to develop
more efficient variants of the CDS.

We have shown the correctness of lazy-list and hand-over-hand
locking list in technical report.
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Future Work

We will extend it to the concept of Linearization Blocks.

We will try to develope the automatic tool for validating LPs.
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