
Proving Correctness of Concurrent Objects by Validating
Linearization Points

Nandini Singhal, Muktikanta Sa, Ajay Singh,
Archit Somani, Sathya Peri

Department of Computer Science Engineering, IIT Hyderabad

IIT Hyderbad Validating Linearization Points 1 / 28

Outline

1 Introduction
Sequential Object and Sequential Specification
Sequential vs Concurrent History

2 Linearizability

3 Proposed Technique: Validating LPs

4 Conclusion

5 Future Work

IIT Hyderbad Validating Linearization Points 2 / 28

Outline

1 Introduction
Sequential Object and Sequential Specification
Sequential vs Concurrent History

2 Linearizability

3 Proposed Technique: Validating LPs

4 Conclusion

5 Future Work

IIT Hyderbad Validating Linearization Points 3 / 28

Introduction
Sequential Object and Sequential Specification

Sequential Object

Each object has a state.

Ex: sequence of item in a queue.

Each object has a set of methods which can manipulate its state.

Ex: enq and deq methods.

Sequential Specification

Set of correct histories which can be generated by single threaded
execution.

Pre-condition : state before you call the method.

Post-condition : other state after the method returns.

IIT Hyderbad Validating Linearization Points 4 / 28

Introduction
Sequential Object and Sequential Specification

Sequential Object

Each object has a state.

Ex: sequence of item in a queue.

Each object has a set of methods which can manipulate its state.

Ex: enq and deq methods.

Sequential Specification

Set of correct histories which can be generated by single threaded
execution.

Pre-condition : state before you call the method.

Post-condition : other state after the method returns.

IIT Hyderbad Validating Linearization Points 4 / 28

Introduction
Sequential Object and Sequential Specification

Sequential Object

Each object has a state.

Ex: sequence of item in a queue.

Each object has a set of methods which can manipulate its state.

Ex: enq and deq methods.

Sequential Specification

Set of correct histories which can be generated by single threaded
execution.

Pre-condition : state before you call the method.

Post-condition : other state after the method returns.

IIT Hyderbad Validating Linearization Points 4 / 28

Introduction
Sequential Object and Sequential Specification

Sequential Object

Each object has a state.

Ex: sequence of item in a queue.

Each object has a set of methods which can manipulate its state.

Ex: enq and deq methods.

Sequential Specification

Set of correct histories which can be generated by single threaded
execution.

Pre-condition : state before you call the method.

Post-condition : other state after the method returns.

IIT Hyderbad Validating Linearization Points 4 / 28

Introduction
Sequential Object and Sequential Specification

Sequential Object

Each object has a state.

Ex: sequence of item in a queue.

Each object has a set of methods which can manipulate its state.

Ex: enq and deq methods.

Sequential Specification

Set of correct histories which can be generated by single threaded
execution.

Pre-condition : state before you call the method.

Post-condition : other state after the method returns.

IIT Hyderbad Validating Linearization Points 4 / 28

Introduction
Example of Sequential Specification

IIT Hyderbad Validating Linearization Points 5 / 28

Introduction
Example of Sequential Specification

IIT Hyderbad Validating Linearization Points 5 / 28

Outline

1 Introduction
Sequential Object and Sequential Specification
Sequential vs Concurrent History

2 Linearizability

3 Proposed Technique: Validating LPs

4 Conclusion

5 Future Work

IIT Hyderbad Validating Linearization Points 6 / 28

Sequential vs Concurrent History

Sequential History

Object methods are invoked one at a time by a single process.

The meaning of methods can be given by pre- and post- conditions.

Figure: Sequential History

IIT Hyderbad Validating Linearization Points 7 / 28

Sequential vs Concurrent History

Sequential History

Object methods are invoked one at a time by a single process.

The meaning of methods can be given by pre- and post- conditions.

Figure: Sequential History

IIT Hyderbad Validating Linearization Points 7 / 28

Sequential vs Concurrent History

Sequential History

Object methods are invoked one at a time by a single process.

The meaning of methods can be given by pre- and post- conditions.

Figure: Sequential History

IIT Hyderbad Validating Linearization Points 7 / 28

Sequential vs Concurrent History

Concurrent History

Object methods can be invoked by concurrent processes.

It is necessary to give a meaning to possible interleavings of
operations invocation.

IIT Hyderbad Validating Linearization Points 8 / 28

Sequential vs Concurrent History

Concurrent History

Object methods can be invoked by concurrent processes.

It is necessary to give a meaning to possible interleavings of
operations invocation.

IIT Hyderbad Validating Linearization Points 8 / 28

Sequential vs Concurrent History

Concurrent History

Object methods can be invoked by concurrent processes.

It is necessary to give a meaning to possible interleavings of
operations invocation.

IIT Hyderbad Validating Linearization Points 8 / 28

Panic!

Because method calls overlap, must characterize all possible
interactions with concurrent calls.

Everything can potentially interact with everything else.

What does it mean for a concurrent object to be correct?

Correctness Criteria: Linearizability.

IIT Hyderbad Validating Linearization Points 9 / 28

Panic!

Because method calls overlap, must characterize all possible
interactions with concurrent calls.

Everything can potentially interact with everything else.

What does it mean for a concurrent object to be correct?

Correctness Criteria: Linearizability.

IIT Hyderbad Validating Linearization Points 9 / 28

Panic!

Because method calls overlap, must characterize all possible
interactions with concurrent calls.

Everything can potentially interact with everything else.

What does it mean for a concurrent object to be correct?

Correctness Criteria: Linearizability.

IIT Hyderbad Validating Linearization Points 9 / 28

Panic!

Because method calls overlap, must characterize all possible
interactions with concurrent calls.

Everything can potentially interact with everything else.

What does it mean for a concurrent object to be correct?

Correctness Criteria: Linearizability.

IIT Hyderbad Validating Linearization Points 9 / 28

Outline

1 Introduction
Sequential Object and Sequential Specification
Sequential vs Concurrent History

2 Linearizability

3 Proposed Technique: Validating LPs

4 Conclusion

5 Future Work

IIT Hyderbad Validating Linearization Points 10 / 28

Linearizability

Linearizability

Each method should

Take effect
Instantaneously
Between invocation and response events.

Object is correct if it adheres to it’s sequential specification.

Any such concurrent object is Linearizable.

IIT Hyderbad Validating Linearization Points 11 / 28

Linearizability

Linearizability

Each method should

Take effect
Instantaneously
Between invocation and response events.

Object is correct if it adheres to it’s sequential specification.

Any such concurrent object is Linearizable.

IIT Hyderbad Validating Linearization Points 11 / 28

Linearizability

Linearizability

Each method should

Take effect
Instantaneously
Between invocation and response events.

Object is correct if it adheres to it’s sequential specification.

Any such concurrent object is Linearizable.

IIT Hyderbad Validating Linearization Points 11 / 28

Linearizability

IIT Hyderbad Validating Linearization Points 12 / 28

Linearizability

IIT Hyderbad Validating Linearization Points 12 / 28

Linearizability

IIT Hyderbad Validating Linearization Points 12 / 28

Linearizability

IIT Hyderbad Validating Linearization Points 12 / 28

Linearizability

IIT Hyderbad Validating Linearization Points 12 / 28

Linearizability

IIT Hyderbad Validating Linearization Points 12 / 28

Linearizability

IIT Hyderbad Validating Linearization Points 12 / 28

Linearizability

IIT Hyderbad Validating Linearization Points 12 / 28

Linearizability

IIT Hyderbad Validating Linearization Points 12 / 28

Linearizability

IIT Hyderbad Validating Linearization Points 12 / 28

Linearizability

IIT Hyderbad Validating Linearization Points 12 / 28

Proving Linearizability Manually

Challenging even for simple data structures.

Several techniques have been proposed

Linearization Points [HerlihyWing90]
Rely Guarantee [Vafeiadis, et al. 06]
Hindsight Lemma [O’Hearn10]
Base Point Analysis [KfirKeidar15]

IIT Hyderbad Validating Linearization Points 13 / 28

Proving Linearizability Manually

Challenging even for simple data structures.

Several techniques have been proposed

Linearization Points [HerlihyWing90]
Rely Guarantee [Vafeiadis, et al. 06]
Hindsight Lemma [O’Hearn10]
Base Point Analysis [KfirKeidar15]

IIT Hyderbad Validating Linearization Points 13 / 28

Linearization Points [HerlihyWing90]

Every operation ”appears to happen” at some individual instruction
between invocation and response.

In coarse locks, LP could be anywhere in the critical section.

IIT Hyderbad Validating Linearization Points 14 / 28

Linearization Points [HerlihyWing90]

Every operation ”appears to happen” at some individual instruction
between invocation and response.

In coarse locks, LP could be anywhere in the critical section.

IIT Hyderbad Validating Linearization Points 14 / 28

Linearization Points [HerlihyWing90]

Every operation ”appears to happen” at some individual instruction
between invocation and response.

In coarse locks, LP could be anywhere in the critical section.

IIT Hyderbad Validating Linearization Points 14 / 28

Linearization Points [HerlihyWing90]

Every operation ”appears to happen” at some individual instruction
between invocation and response.

In coarse locks, LP could be anywhere in the critical section.

IIT Hyderbad Validating Linearization Points 14 / 28

Linearization Points [HerlihyWing90]

Every operation ”appears to happen” at some individual instruction
between invocation and response.

In coarse locks, LP could be anywhere in the critical section.

IIT Hyderbad Validating Linearization Points 14 / 28

Linearization Points [HerlihyWing90]

Every operation ”appears to happen” at some individual instruction
between invocation and response.

In coarse locks, LP could be anywhere in the critical section.

IIT Hyderbad Validating Linearization Points 14 / 28

Linearization Points [HerlihyWing90]

Every operation ”appears to happen” at some individual instruction
between invocation and response.

In coarse locks, LP could be anywhere in the critical section.

LPs depend on the execution and return value of each operation.

Problem!

How do you know if you have identified the correct LPs indeed?

IIT Hyderbad Validating Linearization Points 15 / 28

Linearization Points [HerlihyWing90]

Every operation ”appears to happen” at some individual instruction
between invocation and response.

In coarse locks, LP could be anywhere in the critical section.

LPs depend on the execution and return value of each operation.

Problem!

How do you know if you have identified the correct LPs indeed?

IIT Hyderbad Validating Linearization Points 15 / 28

Outline

1 Introduction
Sequential Object and Sequential Specification
Sequential vs Concurrent History

2 Linearizability

3 Proposed Technique: Validating LPs

4 Conclusion

5 Future Work

IIT Hyderbad Validating Linearization Points 16 / 28

Proposed Technique: Validating LPs
Hand-crafted generic technique for validating LPs

Terminology:
Events, Methods
State
History, Execution, Complete History
Abstract data structure (AbDS)

IIT Hyderbad Validating Linearization Points 17 / 28

Proposed Technique: Validating LPs
Hand-crafted generic technique for validating LPs

Construct the sequential history (CS) based on LP

CDS with given LP's
Concurrent execution(H) = CS(H)

1) Pre_state of LP = Pre_state of method : lemma 5
2) Invocation of method = Invocation of method

Linearizable : Theorem 8

Start

End

Assumptions

Step1 Step2

Step4

Real-time order is also preserve in CS(H) : lemma 2

No

Yes

Step3

Concurrent execution(H) = CS(H)
1) Post_state of LP = Post_state of method : lemma 5

2) Response of method = Response of method

No

Yes

Figure: Iterative steps to prove linearizability of a CDS with given LP’s.

IIT Hyderbad Validating Linearization Points 18 / 28

Proposed Technique: Validating LPs
Hand-crafted generic technique for validating LPs

Assumptions:

Every sequential history S generated by the concurrent data
structure(CDS) is legal.

Each method has a unique atomic LP event within its invocation and
response.
Only the LP events of a method can change AbDS of CDS.

IIT Hyderbad Validating Linearization Points 19 / 28

Proposed Technique: Validating LPs
Hand-crafted generic technique for validating LPs

Assumptions:

Every sequential history S generated by the concurrent data
structure(CDS) is legal.
Each method has a unique atomic LP event within its invocation and
response.

Only the LP events of a method can change AbDS of CDS.

IIT Hyderbad Validating Linearization Points 19 / 28

Proposed Technique: Validating LPs
Hand-crafted generic technique for validating LPs

Assumptions:

Every sequential history S generated by the concurrent data
structure(CDS) is legal.
Each method has a unique atomic LP event within its invocation and
response.
Only the LP events of a method can change AbDS of CDS.

IIT Hyderbad Validating Linearization Points 19 / 28

Proposed Technique: Validating LPs
Hand-crafted generic technique for validating LPs

Construct the sequential history (CS) based on LP

CDS with given LP's
Concurrent execution(H) = CS(H)

1) Pre_state of LP = Pre_state of method : lemma 5
2) Invocation of method = Invocation of method

Linearizable : Theorem 8

Start

End

Assumptions

Step1 Step2

Step4

Real-time order is also preserve in CS(H) : lemma 2

No

Yes

Step3

Concurrent execution(H) = CS(H)
1) Post_state of LP = Post_state of method : lemma 5

2) Response of method = Response of method

No

Yes

Figure: Iterative steps to prove linearizability of a CDS with given LP’s.

IIT Hyderbad Validating Linearization Points 20 / 28

Proposed Technique: Validating LPs
Hand-crafted generic technique for validating LPs

IIT Hyderbad Validating Linearization Points 21 / 28

Proposed Technique: Validating LPs
Hand-crafted generic technique for validating LPs

IIT Hyderbad Validating Linearization Points 21 / 28

Proposed Technique: Validating LPs
Hand-crafted generic technique for validating LPs

∀m : 〈 Pre-state of EH .mi .LP = Pre-state of ES .mi 〉 ∧〈 EH .mi .inv =
ES .mi .inv 〉 → 〈 Post-state of EH .mi .LP = Post-state of ES .mi 〉 ∧〈
EH .mi .resp = ES .mi .resp 〉

B DA B DA

B DA C B DA C

inv()
inv()

PostE [EH .mx .LP]

rsp(C , true)
rsp(C , true)

mx

mx .LP

PreM[E S .my]

my

PreE [EH .mx .LP]

EH E S

(a) (b)

=

=

add(C)add(C)

mx

mx .LP

my

PostM[E S .my]

EH E S

(d)

add(C)add(C)

=

=(c)

Figure: CDS Specific lemma
IIT Hyderbad Validating Linearization Points 22 / 28

Outline

1 Introduction
Sequential Object and Sequential Specification
Sequential vs Concurrent History

2 Linearizability

3 Proposed Technique: Validating LPs

4 Conclusion

5 Future Work

IIT Hyderbad Validating Linearization Points 23 / 28

Conclusion

In spite of various approaches for proving linearizability, LPs seem
most intuitive & constructive; but are difficult to identify.

We have developed a hand-crafted technique of proving correctness of
the CDSs by validating it LPs.

This technique will also offer the programmer some insight to develop
more efficient variants of the CDS.

We have shown the correctness of lazy-list and hand-over-hand
locking list in technical report.

IIT Hyderbad Validating Linearization Points 24 / 28

Conclusion

In spite of various approaches for proving linearizability, LPs seem
most intuitive & constructive; but are difficult to identify.

We have developed a hand-crafted technique of proving correctness of
the CDSs by validating it LPs.

This technique will also offer the programmer some insight to develop
more efficient variants of the CDS.

We have shown the correctness of lazy-list and hand-over-hand
locking list in technical report.

IIT Hyderbad Validating Linearization Points 24 / 28

Conclusion

In spite of various approaches for proving linearizability, LPs seem
most intuitive & constructive; but are difficult to identify.

We have developed a hand-crafted technique of proving correctness of
the CDSs by validating it LPs.

This technique will also offer the programmer some insight to develop
more efficient variants of the CDS.

We have shown the correctness of lazy-list and hand-over-hand
locking list in technical report.

IIT Hyderbad Validating Linearization Points 24 / 28

Conclusion

In spite of various approaches for proving linearizability, LPs seem
most intuitive & constructive; but are difficult to identify.

We have developed a hand-crafted technique of proving correctness of
the CDSs by validating it LPs.

This technique will also offer the programmer some insight to develop
more efficient variants of the CDS.

We have shown the correctness of lazy-list and hand-over-hand
locking list in technical report.

IIT Hyderbad Validating Linearization Points 24 / 28

Outline

1 Introduction
Sequential Object and Sequential Specification
Sequential vs Concurrent History

2 Linearizability

3 Proposed Technique: Validating LPs

4 Conclusion

5 Future Work

IIT Hyderbad Validating Linearization Points 25 / 28

Future Work

We will extend it to the concept of Linearization Blocks.

We will try to develope the automatic tool for validating LPs.

IIT Hyderbad Validating Linearization Points 26 / 28

Future Work

We will extend it to the concept of Linearization Blocks.

We will try to develope the automatic tool for validating LPs.

IIT Hyderbad Validating Linearization Points 26 / 28

References

1 John Derrick, Gerhard Schellhorn, and Heike Wehrheim. Verifying linearisability with
potential linearisation points. In Proceedings of the 17th International Conference on
Formal Methods, FM’11, pages 323–337, Berlin, Heidelberg, 2011. Springer-Verlag.

2 Maurice P. Herlihy and Jeannette M. Wing. Linearizability: a correctness condition for
concurrent objects. ACM Trans. Program. Lang. Syst., 12(3):463–492, 1990.

3 Kfir Lev-Ari, Gregory V. Chockler, and Idit Keidar. On correctness of data structures
under reads-write concurrency. In Distributed Computing - 28th International Symposium,
DISC 2014, Austin, TX, USA, October 12-15, 2014. Proceedings, pages 273–287, 2014.

4 Kfir Lev-Ari, Gregory V. Chockler, and Idit Keidar. A constructive approach for proving
data structures linearizability. In Distributed Computing - 29th International Symposium,
DISC 2015, Tokyo, Japan, October 7-9, 2015, Proceedings, pages 356–370, 2015.

5 Peter W. O’Hearn, Noam Rinetzky, Martin T. Vechev, Eran Yahav, and Greta Yorsh.
Verifying linearizability with hindsight. In Proceedings of the 29th ACM SIGACT-SIGOPS
Symposium on Principles of Distributed Computing, PODC ’10, pages 85–94, New York,
NY, USA, 2010. ACM.

6 Viktor Vafeiadis, Maurice Herlihy, Tony Hoare, and Marc Shapiro. Proving correctness of
highly-concurrent linearisable objects. In Proceedings of the ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, PPOPP 2006, New York, New York,
USA, March 29-31, 2006, pages 129–136, 2006.

IIT Hyderbad Validating Linearization Points 27 / 28

IIT Hyderbad Validating Linearization Points 28 / 28

	Introduction
	Sequential Object and Sequential Specification
	Sequential vs Concurrent History

	Linearizability
	Proposed Technique: Validating LPs
	Conclusion
	Future Work

