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Graphs are Everywhere...

Common real world objects can be modeled as graphs, which build
the pairwise relations between objects.

Graphs are used in the fields: genomics, networks, coding theory,
scheduling, computational devices, networks, organization of similar
and dissimilar objects, etc.

Day by day the size of the above graphs are increasing exponentially.

Generally, these graphs are very large and dynamic in nature.

Fully Dynamic Graphs allow both insertions and deletions.
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Need for a Concurrent Graph Data Structure

Processes acting on a dynamic graph needs to update it frequently and
run computations.

1 If global lock is used, then global bottleneck

2 Partition the graph into disjoint sets. Any update to the graph leads
to re-partitioning → expensive!

Need for Independent access to disjoint parts of graph.
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Problem Statement

Given a initial graph G = (V ,E ), where V is the set of vertices and E is
the set of edges. Threads can perform six basic operations:

1 add Vertex(v)

2 add Edge(u, v)

3 delete Vertex(v)

4 delete Edge(u, v)

5 ContainsEdge(u, v)

6 ContainsVertex(u)

Note: This is a directed unweighted simple graph.
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Difficulties with Fully Dynamic Graphs

Figure : Thread T1 & T3 adding the vertex 10 and the edge(9, 8) respectively, on
the other hand the thread T2 wants to delete the vertex 3.
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Dynamic Graphs

Dynamic graph algorithms perform better than their static
counterparts because of increased data parallelism.

However proving the correctness is more challenging as they allow
concurrent access at a finer granularity and access common data
items.
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Contribution

Representation of concurrent directed graph data structure as an
adjacency list which has been implemented as a concurrent set based on
linked list. [Steve Heller, et al.]
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Methods Exported

1 AddVertex(u) adds a vertex u to G , returning true iff vertex u was
not already in G else false.

2 RemoveVertex(u) deletes vertex u from G , returning true iff u was
present else returns false.

3 AddEdge(u, v) adds a directed edge (u, v) to the concurrent G ,
returning true iff (u, v) was not already present in G else returns false.

4 RemoveEdge(u,v) deletes the directed edge (u, v) from G , returning
true iff (u, v) was already there else returns false.

5 ContainsEdge(u,v) returns true iff G contains the edge (u, v) else
returns false.

6 ContainsVertex(u) returns true iff G contains the vertex u else
returns false.

Concurrent Graph Data Structure IIT Hyderabad Jan 4, 2018 12/48



Methods Exported

1 AddVertex(u) adds a vertex u to G , returning true iff vertex u was
not already in G else false.

2 RemoveVertex(u) deletes vertex u from G , returning true iff u was
present else returns false.

3 AddEdge(u, v) adds a directed edge (u, v) to the concurrent G ,
returning true iff (u, v) was not already present in G else returns false.

4 RemoveEdge(u,v) deletes the directed edge (u, v) from G , returning
true iff (u, v) was already there else returns false.

5 ContainsEdge(u,v) returns true iff G contains the edge (u, v) else
returns false.

6 ContainsVertex(u) returns true iff G contains the vertex u else
returns false.

Concurrent Graph Data Structure IIT Hyderabad Jan 4, 2018 12/48



Methods Exported

1 AddVertex(u) adds a vertex u to G , returning true iff vertex u was
not already in G else false.

2 RemoveVertex(u) deletes vertex u from G , returning true iff u was
present else returns false.

3 AddEdge(u, v) adds a directed edge (u, v) to the concurrent G ,
returning true iff (u, v) was not already present in G else returns false.

4 RemoveEdge(u,v) deletes the directed edge (u, v) from G , returning
true iff (u, v) was already there else returns false.

5 ContainsEdge(u,v) returns true iff G contains the edge (u, v) else
returns false.

6 ContainsVertex(u) returns true iff G contains the vertex u else
returns false.

Concurrent Graph Data Structure IIT Hyderabad Jan 4, 2018 12/48



Methods Exported

1 AddVertex(u) adds a vertex u to G , returning true iff vertex u was
not already in G else false.

2 RemoveVertex(u) deletes vertex u from G , returning true iff u was
present else returns false.

3 AddEdge(u, v) adds a directed edge (u, v) to the concurrent G ,
returning true iff (u, v) was not already present in G else returns false.

4 RemoveEdge(u,v) deletes the directed edge (u, v) from G , returning
true iff (u, v) was already there else returns false.

5 ContainsEdge(u,v) returns true iff G contains the edge (u, v) else
returns false.

6 ContainsVertex(u) returns true iff G contains the vertex u else
returns false.

Concurrent Graph Data Structure IIT Hyderabad Jan 4, 2018 12/48



Methods Exported

1 AddVertex(u) adds a vertex u to G , returning true iff vertex u was
not already in G else false.

2 RemoveVertex(u) deletes vertex u from G , returning true iff u was
present else returns false.

3 AddEdge(u, v) adds a directed edge (u, v) to the concurrent G ,
returning true iff (u, v) was not already present in G else returns false.

4 RemoveEdge(u,v) deletes the directed edge (u, v) from G , returning
true iff (u, v) was already there else returns false.

5 ContainsEdge(u,v) returns true iff G contains the edge (u, v) else
returns false.

6 ContainsVertex(u) returns true iff G contains the vertex u else
returns false.

Concurrent Graph Data Structure IIT Hyderabad Jan 4, 2018 12/48



Methods Exported

1 AddVertex(u) adds a vertex u to G , returning true iff vertex u was
not already in G else false.

2 RemoveVertex(u) deletes vertex u from G , returning true iff u was
present else returns false.

3 AddEdge(u, v) adds a directed edge (u, v) to the concurrent G ,
returning true iff (u, v) was not already present in G else returns false.

4 RemoveEdge(u,v) deletes the directed edge (u, v) from G , returning
true iff (u, v) was already there else returns false.

5 ContainsEdge(u,v) returns true iff G contains the edge (u, v) else
returns false.

6 ContainsVertex(u) returns true iff G contains the vertex u else
returns false.

Concurrent Graph Data Structure IIT Hyderabad Jan 4, 2018 12/48



Construction of Concurrent List based Directed Graph

Figure : Graph and its representationConcurrent Graph Data Structure IIT Hyderabad Jan 4, 2018 13/48



Concurrent List-based Set

Set implemented using linked-list, a collection of items that contains no
duplicate elements and exported methods are:

1 add(x): adds x to the set, returning true if, and only if x was not
already present earlier.

2 remove(x): removes x from the set, returning true if, and only if x
was there.

3 contains(x): returns true if, and only if the set contains x.
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Variants

1 Sequential: Only one thread and No Lock.

2 Coarse-grained synchronization: Uses Single Spin Lock.

3 Fine-grained synchronization: Split the object into independently
synchronized components.

4 Optimistic synchronization: Search without acquiring any locks.

5 Lazy synchronization: Postpone the hard work, a node has a bool
marked field: logically removal (setting a marked bit) and physical
removal (unlinking).

6 Non-blocking synchronization: No locks and use the built-in
atomic operations compareAndSet() for synchronization.
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Correctness and Progress Conditions

Designing of any method or data-structure in the concurrent world, needs
to satisfy these two properties: [Maurice Herlihy, et al]

1 Correctness and Safety: Linearizability

2 Liveness: Progress Conditions
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Working of AddVertex(u) method
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Working of RemoveVertex(u) method
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Working of RemoveVertex(u) method
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Working of RemoveEdge(u, v) method
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Working of RemoveEdge(u, v) method
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Working of AddEdge(u, v) method
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What is Linearizability?

A history is a sequence of invocations and responses made of an
object by a set of threads.

Each invocation of a function will have a subsequent response.

A correctness condition for concurrent objects, by [Maurice Herlihy, et al.]

Definition

Each method call should appear to take effect instantaneously at some
moment between its invocation and response.
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Linearizability Contd...

A history is linearizable if:

its invocations and responses can be reordered to yield a sequential
history;

that sequential history is correct according to the sequential definition
of the object;

if a response preceded an invocation in the original history, it must
still precede it in the sequential reordering.
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Example of Linearizability

Figure : An execution of Concurrent Blocking queue with its linearization points
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Progress Guarantees

Blocking: In this, an arbitrary and unexpected delay by any thread (say,
one holding a lock) can prevent other threads from making progress.

Non-Blocking: This condition ensures that threads competing for a
shared resource do not have their execution indefinitely postponed by
mutual exclusion.
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Blocking Progress Guarantees

Deadlock-free:

A method is said to be deadlock-free, meaning that some thread
trying to acquire the lock eventually succeeds.

The system as a whole makes progress, but does not guarantee
progress to individual threads.

Weakest progress condition.

Starvation-free:

A method is starvation-free if every thread that attempts to acquire
the lock eventually succeeds.
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Non-blocking Progress

An algorithm is Non-blocking: If failure or suspension of any thread
cannot cause failure or suspension of another thread, for some operations.

A non-blocking algorithm can be

Lock-free

Wait-free

Obstruction-free
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Non-Blocking Progress Guarantees Contd..

Lock-freedom

A method is lock-free if some thread that calls a method eventually
returns.

A lock-free data structure doesn’t use any mutex locks.

Wait-freedom

A method is wait-free if every thread that calls that method
eventually returns in a finite number of its steps.

Obstruction-freedom

A method is obstruction-free if every thread that calls that method
returns if that thread executes in isolation for long enough.
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The Relationship among All

Figure : The Periodic Table of Progress Conditions
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Linearization Point of AddVertex(u)

If the method returns successfully (true),

1 Point where new vertex node is reachable from the head

If the method returns unsuccessfully,

1 Point where a vertex node with same key is found in the vertex list
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Linearization Point of RemoveVertex(u)

If the method returns successfully (true),

1 Point where vertex node is logically marked as deleted

If the method returns unsuccessfully,

1 Point where a vertex node with key to be deleted is not found in the
vertex list
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Linearization Point of ContainsVertex(u)
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Linearization Point of AddEdge(u, v)

If the method returns successfully (true),

1 If there is no concurrent successful DeleteVertex u & v, point where
new edge node is logically added or already found

2 If concurrent successful DeleteVertex(u, v), then just before its LP.

If the method returns unsuccessfully,
1 If there is no concurrent successful AddVertex u & v, LP is last of

1 Point if the vertex u is not found in the vertex list
2 Point if the vertex v is not found in the vertex list
3 Point if the edge v is not found in the edge list of u

2 If concurrent successful AddVertex u & v, then just before its LP.
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How to linearise concurrent methods?
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Linearization Point of RemoveEdge(u, v)

If the method returns successfully (true),

1 If there is no concurrent successful DeleteVertex u & v, point where
new edge node is logically deleted

2 If concurrent successful DeleteVertex(u, v), then just before its LP.

If the method returns unsuccessfully,
1 If there is no concurrent successful AddVertex u & v, LP is last of

1 Line 9 if the vertex u is not found in the vertex list
2 Line 17 if the vertex v is not found in the vertex list
3 Line 30 if the edge v is not found in the edge list of u

2 If concurrent successful AddVertex u & v, then just before its LP.
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How to linearise concurrent methods?
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Experimental Setup

24 core Intel Xeon server running at 3.07 GHz core frequency

Each core supports 6 hardware threads, clocked at 1600 MHz.

Each thread randomly performs a set of operations chosen by a particular
workload distribution.

Each data point is obtained after averaging for 5 iterations.
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Results 1

Figure : AddE:50%, DelE: 50% and rest are 0%
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Results 2

Figure : CV:15%, CE:15%, AddE:25%, DelE:10%, AddV:25% & DelV:10%.
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Results 3

Figure : CV:40%, CE:40%, AddE:7%, DelE:3%, AddV:7% & DelV:3%
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Conclusion

- Presented generic constructuction of a fully dynamic concurrent graph
data structure, which allows threads to concurrently add/delete
vertices/edges.

- We constructed it by the composition of the well-known concurrent
list-based set data structure.
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Future Work

1 Using it for other parallel graph algorithms.

2 Currently working on Concurrent Serialization Graph Testing
Scheduler.
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Thank You!
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Questions?
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