
Building Efficient Concurrent Graph Object through
Composition of List-based Set

Sathya Peri Muktikanta Sa Nandini Singhal

Department of Computer Science & Engineering

Indian Institute of Technology Hyderabad

AADDA Workshop in Conjunction with ICDCN 2018

January 4, 2018

Concurrent Graph Data Structure IIT Hyderabad Jan 4, 2018 1/48



Outline of the Presentation

1 Motivation

2 Problem Definition

3 Our Methodology

4 Working of the methods

5 Correctness

6 Empirical Results

7 Conclusion & Future Work

Concurrent Graph Data Structure IIT Hyderabad Jan 4, 2018 2/48



Outline of the Presentation

1 Motivation

2 Problem Definition

3 Our Methodology

4 Working of the methods

5 Correctness

6 Empirical Results

7 Conclusion & Future Work



Graphs are Everywhere...

Common real world objects can be modeled as graphs, which build
the pairwise relations between objects.

Graphs are used in the fields: genomics, networks, coding theory,
scheduling, computational devices, networks, organization of similar
and dissimilar objects, etc.

Day by day the size of the above graphs are increasing exponentially.

Generally, these graphs are very large and dynamic in nature.

Fully Dynamic Graphs allow both insertions and deletions.

Concurrent Graph Data Structure IIT Hyderabad Jan 4, 2018 4/48



Graphs are Everywhere...

Common real world objects can be modeled as graphs, which build
the pairwise relations between objects.

Graphs are used in the fields: genomics, networks, coding theory,
scheduling, computational devices, networks, organization of similar
and dissimilar objects, etc.

Day by day the size of the above graphs are increasing exponentially.

Generally, these graphs are very large and dynamic in nature.

Fully Dynamic Graphs allow both insertions and deletions.

Concurrent Graph Data Structure IIT Hyderabad Jan 4, 2018 4/48



Need for a Concurrent Graph Data Structure

Processes acting on a dynamic graph needs to update it frequently and
run computations.

1 If global lock is used, then global bottleneck

2 Partition the graph into disjoint sets. Any update to the graph leads
to re-partitioning → expensive!

Need for Independent access to disjoint parts of graph.

Concurrent Graph Data Structure IIT Hyderabad Jan 4, 2018 5/48



Need for a Concurrent Graph Data Structure

Processes acting on a dynamic graph needs to update it frequently and
run computations.

1 If global lock is used, then global bottleneck

2 Partition the graph into disjoint sets. Any update to the graph leads
to re-partitioning → expensive!

Need for Independent access to disjoint parts of graph.

Concurrent Graph Data Structure IIT Hyderabad Jan 4, 2018 5/48



Need for a Concurrent Graph Data Structure

Processes acting on a dynamic graph needs to update it frequently and
run computations.

1 If global lock is used, then global bottleneck

2 Partition the graph into disjoint sets. Any update to the graph leads
to re-partitioning → expensive!

Need for Independent access to disjoint parts of graph.

Concurrent Graph Data Structure IIT Hyderabad Jan 4, 2018 5/48



Outline of the Presentation

1 Motivation

2 Problem Definition

3 Our Methodology

4 Working of the methods

5 Correctness

6 Empirical Results

7 Conclusion & Future Work



Problem Statement

Given a initial graph G = (V ,E ), where V is the set of vertices and E is
the set of edges. Threads can perform six basic operations:

1 add Vertex(v)

2 add Edge(u, v)

3 delete Vertex(v)

4 delete Edge(u, v)

5 ContainsEdge(u, v)

6 ContainsVertex(u)

Note: This is a directed unweighted simple graph.

Concurrent Graph Data Structure IIT Hyderabad Jan 4, 2018 7/48



Problem Statement

Given a initial graph G = (V ,E ), where V is the set of vertices and E is
the set of edges. Threads can perform six basic operations:

1 add Vertex(v)

2 add Edge(u, v)

3 delete Vertex(v)

4 delete Edge(u, v)

5 ContainsEdge(u, v)

6 ContainsVertex(u)

Note: This is a directed unweighted simple graph.

Concurrent Graph Data Structure IIT Hyderabad Jan 4, 2018 7/48



Problem Statement

Given a initial graph G = (V ,E ), where V is the set of vertices and E is
the set of edges. Threads can perform six basic operations:

1 add Vertex(v)

2 add Edge(u, v)

3 delete Vertex(v)

4 delete Edge(u, v)

5 ContainsEdge(u, v)

6 ContainsVertex(u)

Note: This is a directed unweighted simple graph.

Concurrent Graph Data Structure IIT Hyderabad Jan 4, 2018 7/48



Problem Statement

Given a initial graph G = (V ,E ), where V is the set of vertices and E is
the set of edges. Threads can perform six basic operations:

1 add Vertex(v)

2 add Edge(u, v)

3 delete Vertex(v)

4 delete Edge(u, v)

5 ContainsEdge(u, v)

6 ContainsVertex(u)

Note: This is a directed unweighted simple graph.

Concurrent Graph Data Structure IIT Hyderabad Jan 4, 2018 7/48



Problem Statement

Given a initial graph G = (V ,E ), where V is the set of vertices and E is
the set of edges. Threads can perform six basic operations:

1 add Vertex(v)

2 add Edge(u, v)

3 delete Vertex(v)

4 delete Edge(u, v)

5 ContainsEdge(u, v)

6 ContainsVertex(u)

Note: This is a directed unweighted simple graph.

Concurrent Graph Data Structure IIT Hyderabad Jan 4, 2018 7/48



Difficulties with Fully Dynamic Graphs

Figure : Thread T1 & T3 adding the vertex 10 and the edge(9, 8) respectively, on
the other hand the thread T2 wants to delete the vertex 3.

Concurrent Graph Data Structure IIT Hyderabad Jan 4, 2018 8/48



Dynamic Graphs

Dynamic graph algorithms perform better than their static
counterparts because of increased data parallelism.

However proving the correctness is more challenging as they allow
concurrent access at a finer granularity and access common data
items.

Concurrent Graph Data Structure IIT Hyderabad Jan 4, 2018 9/48



Dynamic Graphs

Dynamic graph algorithms perform better than their static
counterparts because of increased data parallelism.

However proving the correctness is more challenging as they allow
concurrent access at a finer granularity and access common data
items.

Concurrent Graph Data Structure IIT Hyderabad Jan 4, 2018 9/48



Outline of the Presentation

1 Motivation

2 Problem Definition

3 Our Methodology

4 Working of the methods

5 Correctness

6 Empirical Results

7 Conclusion & Future Work



Contribution

Representation of concurrent directed graph data structure as an
adjacency list which has been implemented as a concurrent set based on
linked list. [Steve Heller, et al.]

Concurrent Graph Data Structure IIT Hyderabad Jan 4, 2018 11/48



Methods Exported

1 AddVertex(u) adds a vertex u to G , returning true iff vertex u was
not already in G else false.

2 RemoveVertex(u) deletes vertex u from G , returning true iff u was
present else returns false.

3 AddEdge(u, v) adds a directed edge (u, v) to the concurrent G ,
returning true iff (u, v) was not already present in G else returns false.

4 RemoveEdge(u,v) deletes the directed edge (u, v) from G , returning
true iff (u, v) was already there else returns false.

5 ContainsEdge(u,v) returns true iff G contains the edge (u, v) else
returns false.

6 ContainsVertex(u) returns true iff G contains the vertex u else
returns false.

Concurrent Graph Data Structure IIT Hyderabad Jan 4, 2018 12/48



Methods Exported

1 AddVertex(u) adds a vertex u to G , returning true iff vertex u was
not already in G else false.

2 RemoveVertex(u) deletes vertex u from G , returning true iff u was
present else returns false.

3 AddEdge(u, v) adds a directed edge (u, v) to the concurrent G ,
returning true iff (u, v) was not already present in G else returns false.

4 RemoveEdge(u,v) deletes the directed edge (u, v) from G , returning
true iff (u, v) was already there else returns false.

5 ContainsEdge(u,v) returns true iff G contains the edge (u, v) else
returns false.

6 ContainsVertex(u) returns true iff G contains the vertex u else
returns false.

Concurrent Graph Data Structure IIT Hyderabad Jan 4, 2018 12/48



Methods Exported

1 AddVertex(u) adds a vertex u to G , returning true iff vertex u was
not already in G else false.

2 RemoveVertex(u) deletes vertex u from G , returning true iff u was
present else returns false.

3 AddEdge(u, v) adds a directed edge (u, v) to the concurrent G ,
returning true iff (u, v) was not already present in G else returns false.

4 RemoveEdge(u,v) deletes the directed edge (u, v) from G , returning
true iff (u, v) was already there else returns false.

5 ContainsEdge(u,v) returns true iff G contains the edge (u, v) else
returns false.

6 ContainsVertex(u) returns true iff G contains the vertex u else
returns false.

Concurrent Graph Data Structure IIT Hyderabad Jan 4, 2018 12/48



Methods Exported

1 AddVertex(u) adds a vertex u to G , returning true iff vertex u was
not already in G else false.

2 RemoveVertex(u) deletes vertex u from G , returning true iff u was
present else returns false.

3 AddEdge(u, v) adds a directed edge (u, v) to the concurrent G ,
returning true iff (u, v) was not already present in G else returns false.

4 RemoveEdge(u,v) deletes the directed edge (u, v) from G , returning
true iff (u, v) was already there else returns false.

5 ContainsEdge(u,v) returns true iff G contains the edge (u, v) else
returns false.

6 ContainsVertex(u) returns true iff G contains the vertex u else
returns false.

Concurrent Graph Data Structure IIT Hyderabad Jan 4, 2018 12/48



Methods Exported

1 AddVertex(u) adds a vertex u to G , returning true iff vertex u was
not already in G else false.

2 RemoveVertex(u) deletes vertex u from G , returning true iff u was
present else returns false.

3 AddEdge(u, v) adds a directed edge (u, v) to the concurrent G ,
returning true iff (u, v) was not already present in G else returns false.

4 RemoveEdge(u,v) deletes the directed edge (u, v) from G , returning
true iff (u, v) was already there else returns false.

5 ContainsEdge(u,v) returns true iff G contains the edge (u, v) else
returns false.

6 ContainsVertex(u) returns true iff G contains the vertex u else
returns false.

Concurrent Graph Data Structure IIT Hyderabad Jan 4, 2018 12/48



Methods Exported

1 AddVertex(u) adds a vertex u to G , returning true iff vertex u was
not already in G else false.

2 RemoveVertex(u) deletes vertex u from G , returning true iff u was
present else returns false.

3 AddEdge(u, v) adds a directed edge (u, v) to the concurrent G ,
returning true iff (u, v) was not already present in G else returns false.

4 RemoveEdge(u,v) deletes the directed edge (u, v) from G , returning
true iff (u, v) was already there else returns false.

5 ContainsEdge(u,v) returns true iff G contains the edge (u, v) else
returns false.

6 ContainsVertex(u) returns true iff G contains the vertex u else
returns false.

Concurrent Graph Data Structure IIT Hyderabad Jan 4, 2018 12/48



Construction of Concurrent List based Directed Graph

Figure : Graph and its representationConcurrent Graph Data Structure IIT Hyderabad Jan 4, 2018 13/48



Concurrent List-based Set

Set implemented using linked-list, a collection of items that contains no
duplicate elements and exported methods are:

1 add(x): adds x to the set, returning true if, and only if x was not
already present earlier.

2 remove(x): removes x from the set, returning true if, and only if x
was there.

3 contains(x): returns true if, and only if the set contains x.

Concurrent Graph Data Structure IIT Hyderabad Jan 4, 2018 14/48



Variants

1 Sequential: Only one thread and No Lock.

2 Coarse-grained synchronization: Uses Single Spin Lock.

3 Fine-grained synchronization: Split the object into independently
synchronized components.

4 Optimistic synchronization: Search without acquiring any locks.

5 Lazy synchronization: Postpone the hard work, a node has a bool
marked field: logically removal (setting a marked bit) and physical
removal (unlinking).

6 Non-blocking synchronization: No locks and use the built-in
atomic operations compareAndSet() for synchronization.

Concurrent Graph Data Structure IIT Hyderabad Jan 4, 2018 15/48



Correctness and Progress Conditions

Designing of any method or data-structure in the concurrent world, needs
to satisfy these two properties: [Maurice Herlihy, et al]

1 Correctness and Safety: Linearizability

2 Liveness: Progress Conditions

Concurrent Graph Data Structure IIT Hyderabad Jan 4, 2018 16/48



Correctness and Progress Conditions

Designing of any method or data-structure in the concurrent world, needs
to satisfy these two properties: [Maurice Herlihy, et al]

1 Correctness and Safety: Linearizability

2 Liveness: Progress Conditions

Concurrent Graph Data Structure IIT Hyderabad Jan 4, 2018 16/48



Correctness and Progress Conditions

Designing of any method or data-structure in the concurrent world, needs
to satisfy these two properties: [Maurice Herlihy, et al]

1 Correctness and Safety: Linearizability

2 Liveness: Progress Conditions

Concurrent Graph Data Structure IIT Hyderabad Jan 4, 2018 16/48



Outline of the Presentation

1 Motivation

2 Problem Definition

3 Our Methodology

4 Working of the methods

5 Correctness

6 Empirical Results

7 Conclusion & Future Work



Working of AddVertex(u) method

Concurrent Graph Data Structure IIT Hyderabad Jan 4, 2018 18/48



Working of AddVertex(u) method

Concurrent Graph Data Structure IIT Hyderabad Jan 4, 2018 18/48



Working of AddVertex(u) method

Concurrent Graph Data Structure IIT Hyderabad Jan 4, 2018 18/48



Working of AddVertex(u) method

Concurrent Graph Data Structure IIT Hyderabad Jan 4, 2018 18/48



Working of AddVertex(u) method

Concurrent Graph Data Structure IIT Hyderabad Jan 4, 2018 18/48



Working of AddVertex(u) method

Concurrent Graph Data Structure IIT Hyderabad Jan 4, 2018 18/48



Working of AddVertex(u) method

Concurrent Graph Data Structure IIT Hyderabad Jan 4, 2018 18/48



Working of AddVertex(u) method

Concurrent Graph Data Structure IIT Hyderabad Jan 4, 2018 18/48



Working of RemoveVertex(u) method

Concurrent Graph Data Structure IIT Hyderabad Jan 4, 2018 19/48



Working of RemoveVertex(u) method

Concurrent Graph Data Structure IIT Hyderabad Jan 4, 2018 19/48



Working of RemoveVertex(u) method

Concurrent Graph Data Structure IIT Hyderabad Jan 4, 2018 19/48



Working of RemoveVertex(u) method

Concurrent Graph Data Structure IIT Hyderabad Jan 4, 2018 19/48



Working of RemoveVertex(u) method

Concurrent Graph Data Structure IIT Hyderabad Jan 4, 2018 19/48



Working of RemoveVertex(u) method

Concurrent Graph Data Structure IIT Hyderabad Jan 4, 2018 19/48



Working of RemoveVertex(u) method

Concurrent Graph Data Structure IIT Hyderabad Jan 4, 2018 19/48



Working of RemoveVertex(u) method

Concurrent Graph Data Structure IIT Hyderabad Jan 4, 2018 19/48



Working of RemoveVertex(u) method

Concurrent Graph Data Structure IIT Hyderabad Jan 4, 2018 19/48



Working of RemoveVertex(u) method

Concurrent Graph Data Structure IIT Hyderabad Jan 4, 2018 19/48



Working of RemoveVertex(u) method

Concurrent Graph Data Structure IIT Hyderabad Jan 4, 2018 19/48



Working of RemoveVertex(u) method

Concurrent Graph Data Structure IIT Hyderabad Jan 4, 2018 19/48



Working of RemoveVertex(u) method

Concurrent Graph Data Structure IIT Hyderabad Jan 4, 2018 19/48



Working of RemoveVertex(u) method

Concurrent Graph Data Structure IIT Hyderabad Jan 4, 2018 19/48



Working of RemoveVertex(u) method

Concurrent Graph Data Structure IIT Hyderabad Jan 4, 2018 19/48



Working of RemoveVertex(u) method

Concurrent Graph Data Structure IIT Hyderabad Jan 4, 2018 19/48



Working of RemoveVertex(u) method

Concurrent Graph Data Structure IIT Hyderabad Jan 4, 2018 19/48



Working of RemoveVertex(u) method

Concurrent Graph Data Structure IIT Hyderabad Jan 4, 2018 19/48



Working of RemoveEdge(u, v) method

Concurrent Graph Data Structure IIT Hyderabad Jan 4, 2018 20/48



Working of RemoveEdge(u, v) method

Concurrent Graph Data Structure IIT Hyderabad Jan 4, 2018 20/48



Working of RemoveEdge(u, v) method

Concurrent Graph Data Structure IIT Hyderabad Jan 4, 2018 20/48



Working of RemoveEdge(u, v) method

Concurrent Graph Data Structure IIT Hyderabad Jan 4, 2018 20/48



Working of RemoveEdge(u, v) method

Concurrent Graph Data Structure IIT Hyderabad Jan 4, 2018 20/48



Working of RemoveEdge(u, v) method

Concurrent Graph Data Structure IIT Hyderabad Jan 4, 2018 20/48



Working of RemoveEdge(u, v) method

Concurrent Graph Data Structure IIT Hyderabad Jan 4, 2018 20/48



Working of RemoveEdge(u, v) method

Concurrent Graph Data Structure IIT Hyderabad Jan 4, 2018 20/48



Working of RemoveEdge(u, v) method

Concurrent Graph Data Structure IIT Hyderabad Jan 4, 2018 20/48



Working of AddEdge(u, v) method

Concurrent Graph Data Structure IIT Hyderabad Jan 4, 2018 21/48



Working of AddEdge(u, v) method

Concurrent Graph Data Structure IIT Hyderabad Jan 4, 2018 21/48



Working of AddEdge(u, v) method

Concurrent Graph Data Structure IIT Hyderabad Jan 4, 2018 21/48



Working of AddEdge(u, v) method

Concurrent Graph Data Structure IIT Hyderabad Jan 4, 2018 21/48



Working of AddEdge(u, v) method

Concurrent Graph Data Structure IIT Hyderabad Jan 4, 2018 21/48



Outline of the Presentation

1 Motivation

2 Problem Definition

3 Our Methodology

4 Working of the methods

5 Correctness

6 Empirical Results

7 Conclusion & Future Work



What is Linearizability?

A history is a sequence of invocations and responses made of an
object by a set of threads.

Each invocation of a function will have a subsequent response.

A correctness condition for concurrent objects, by [Maurice Herlihy, et al.]

Definition

Each method call should appear to take effect instantaneously at some
moment between its invocation and response.

Concurrent Graph Data Structure IIT Hyderabad Jan 4, 2018 23/48



What is Linearizability?

A history is a sequence of invocations and responses made of an
object by a set of threads.

Each invocation of a function will have a subsequent response.

A correctness condition for concurrent objects, by [Maurice Herlihy, et al.]

Definition

Each method call should appear to take effect instantaneously at some
moment between its invocation and response.

Concurrent Graph Data Structure IIT Hyderabad Jan 4, 2018 23/48



Linearizability Contd...

A history is linearizable if:

its invocations and responses can be reordered to yield a sequential
history;

that sequential history is correct according to the sequential definition
of the object;

if a response preceded an invocation in the original history, it must
still precede it in the sequential reordering.

Concurrent Graph Data Structure IIT Hyderabad Jan 4, 2018 24/48



Linearizability Contd...

A history is linearizable if:

its invocations and responses can be reordered to yield a sequential
history;

that sequential history is correct according to the sequential definition
of the object;

if a response preceded an invocation in the original history, it must
still precede it in the sequential reordering.

Concurrent Graph Data Structure IIT Hyderabad Jan 4, 2018 24/48



Linearizability Contd...

A history is linearizable if:

its invocations and responses can be reordered to yield a sequential
history;

that sequential history is correct according to the sequential definition
of the object;

if a response preceded an invocation in the original history, it must
still precede it in the sequential reordering.

Concurrent Graph Data Structure IIT Hyderabad Jan 4, 2018 24/48



Example of Linearizability

Figure : An execution of Concurrent Blocking queue with its linearization points

Concurrent Graph Data Structure IIT Hyderabad Jan 4, 2018 25/48



Progress Guarantees

Blocking: In this, an arbitrary and unexpected delay by any thread (say,
one holding a lock) can prevent other threads from making progress.

Non-Blocking: This condition ensures that threads competing for a
shared resource do not have their execution indefinitely postponed by
mutual exclusion.

Concurrent Graph Data Structure IIT Hyderabad Jan 4, 2018 26/48



Progress Guarantees

Blocking: In this, an arbitrary and unexpected delay by any thread (say,
one holding a lock) can prevent other threads from making progress.

Non-Blocking: This condition ensures that threads competing for a
shared resource do not have their execution indefinitely postponed by
mutual exclusion.

Concurrent Graph Data Structure IIT Hyderabad Jan 4, 2018 26/48



Blocking Progress Guarantees

Deadlock-free:

A method is said to be deadlock-free, meaning that some thread
trying to acquire the lock eventually succeeds.

The system as a whole makes progress, but does not guarantee
progress to individual threads.

Weakest progress condition.

Starvation-free:

A method is starvation-free if every thread that attempts to acquire
the lock eventually succeeds.

Concurrent Graph Data Structure IIT Hyderabad Jan 4, 2018 27/48



Blocking Progress Guarantees

Deadlock-free:

A method is said to be deadlock-free, meaning that some thread
trying to acquire the lock eventually succeeds.

The system as a whole makes progress, but does not guarantee
progress to individual threads.

Weakest progress condition.

Starvation-free:

A method is starvation-free if every thread that attempts to acquire
the lock eventually succeeds.

Concurrent Graph Data Structure IIT Hyderabad Jan 4, 2018 27/48



Non-blocking Progress

An algorithm is Non-blocking: If failure or suspension of any thread
cannot cause failure or suspension of another thread, for some operations.

A non-blocking algorithm can be

Lock-free

Wait-free

Obstruction-free

Concurrent Graph Data Structure IIT Hyderabad Jan 4, 2018 28/48



Non-Blocking Progress Guarantees Contd..

Lock-freedom

A method is lock-free if some thread that calls a method eventually
returns.

A lock-free data structure doesn’t use any mutex locks.

Wait-freedom

A method is wait-free if every thread that calls that method
eventually returns in a finite number of its steps.

Obstruction-freedom

A method is obstruction-free if every thread that calls that method
returns if that thread executes in isolation for long enough.

Concurrent Graph Data Structure IIT Hyderabad Jan 4, 2018 29/48



Non-Blocking Progress Guarantees Contd..

Lock-freedom

A method is lock-free if some thread that calls a method eventually
returns.

A lock-free data structure doesn’t use any mutex locks.

Wait-freedom

A method is wait-free if every thread that calls that method
eventually returns in a finite number of its steps.

Obstruction-freedom

A method is obstruction-free if every thread that calls that method
returns if that thread executes in isolation for long enough.

Concurrent Graph Data Structure IIT Hyderabad Jan 4, 2018 29/48



Non-Blocking Progress Guarantees Contd..

Lock-freedom

A method is lock-free if some thread that calls a method eventually
returns.

A lock-free data structure doesn’t use any mutex locks.

Wait-freedom

A method is wait-free if every thread that calls that method
eventually returns in a finite number of its steps.

Obstruction-freedom

A method is obstruction-free if every thread that calls that method
returns if that thread executes in isolation for long enough.

Concurrent Graph Data Structure IIT Hyderabad Jan 4, 2018 29/48



The Relationship among All

Figure : The Periodic Table of Progress Conditions

Concurrent Graph Data Structure IIT Hyderabad Jan 4, 2018 30/48



Linearization Point of AddVertex(u)

If the method returns successfully (true),

1 Point where new vertex node is reachable from the head

If the method returns unsuccessfully,

1 Point where a vertex node with same key is found in the vertex list

Concurrent Graph Data Structure IIT Hyderabad Jan 4, 2018 31/48



Linearization Point of AddVertex(u)

If the method returns successfully (true),

1 Point where new vertex node is reachable from the head

If the method returns unsuccessfully,

1 Point where a vertex node with same key is found in the vertex list

Concurrent Graph Data Structure IIT Hyderabad Jan 4, 2018 31/48



Linearization Point of RemoveVertex(u)

If the method returns successfully (true),

1 Point where vertex node is logically marked as deleted

If the method returns unsuccessfully,

1 Point where a vertex node with key to be deleted is not found in the
vertex list

Concurrent Graph Data Structure IIT Hyderabad Jan 4, 2018 32/48



Linearization Point of RemoveVertex(u)

If the method returns successfully (true),

1 Point where vertex node is logically marked as deleted

If the method returns unsuccessfully,

1 Point where a vertex node with key to be deleted is not found in the
vertex list

Concurrent Graph Data Structure IIT Hyderabad Jan 4, 2018 32/48



Linearization Point of ContainsVertex(u)

Concurrent Graph Data Structure IIT Hyderabad Jan 4, 2018 33/48



Linearization Point of AddEdge(u, v)

If the method returns successfully (true),

1 If there is no concurrent successful DeleteVertex u & v, point where
new edge node is logically added or already found

2 If concurrent successful DeleteVertex(u, v), then just before its LP.

If the method returns unsuccessfully,
1 If there is no concurrent successful AddVertex u & v, LP is last of

1 Point if the vertex u is not found in the vertex list
2 Point if the vertex v is not found in the vertex list
3 Point if the edge v is not found in the edge list of u

2 If concurrent successful AddVertex u & v, then just before its LP.

Concurrent Graph Data Structure IIT Hyderabad Jan 4, 2018 34/48



Linearization Point of AddEdge(u, v)

If the method returns successfully (true),

1 If there is no concurrent successful DeleteVertex u & v, point where
new edge node is logically added or already found

2 If concurrent successful DeleteVertex(u, v), then just before its LP.

If the method returns unsuccessfully,
1 If there is no concurrent successful AddVertex u & v, LP is last of

1 Point if the vertex u is not found in the vertex list
2 Point if the vertex v is not found in the vertex list
3 Point if the edge v is not found in the edge list of u

2 If concurrent successful AddVertex u & v, then just before its LP.

Concurrent Graph Data Structure IIT Hyderabad Jan 4, 2018 34/48



How to linearise concurrent methods?

Concurrent Graph Data Structure IIT Hyderabad Jan 4, 2018 35/48



Linearization Point of RemoveEdge(u, v)

If the method returns successfully (true),

1 If there is no concurrent successful DeleteVertex u & v, point where
new edge node is logically deleted

2 If concurrent successful DeleteVertex(u, v), then just before its LP.

If the method returns unsuccessfully,
1 If there is no concurrent successful AddVertex u & v, LP is last of

1 Line 9 if the vertex u is not found in the vertex list
2 Line 17 if the vertex v is not found in the vertex list
3 Line 30 if the edge v is not found in the edge list of u

2 If concurrent successful AddVertex u & v, then just before its LP.

Concurrent Graph Data Structure IIT Hyderabad Jan 4, 2018 36/48



Linearization Point of RemoveEdge(u, v)

If the method returns successfully (true),

1 If there is no concurrent successful DeleteVertex u & v, point where
new edge node is logically deleted

2 If concurrent successful DeleteVertex(u, v), then just before its LP.

If the method returns unsuccessfully,
1 If there is no concurrent successful AddVertex u & v, LP is last of

1 Line 9 if the vertex u is not found in the vertex list
2 Line 17 if the vertex v is not found in the vertex list
3 Line 30 if the edge v is not found in the edge list of u

2 If concurrent successful AddVertex u & v, then just before its LP.

Concurrent Graph Data Structure IIT Hyderabad Jan 4, 2018 36/48



How to linearise concurrent methods?

Concurrent Graph Data Structure IIT Hyderabad Jan 4, 2018 37/48



How to linearise concurrent methods?

Concurrent Graph Data Structure IIT Hyderabad Jan 4, 2018 37/48



How to linearise concurrent methods?

Concurrent Graph Data Structure IIT Hyderabad Jan 4, 2018 37/48



How to linearise concurrent methods?

Concurrent Graph Data Structure IIT Hyderabad Jan 4, 2018 37/48



How to linearise concurrent methods?

Concurrent Graph Data Structure IIT Hyderabad Jan 4, 2018 37/48



Outline of the Presentation

1 Motivation

2 Problem Definition

3 Our Methodology

4 Working of the methods

5 Correctness

6 Empirical Results

7 Conclusion & Future Work



Experimental Setup

24 core Intel Xeon server running at 3.07 GHz core frequency

Each core supports 6 hardware threads, clocked at 1600 MHz.

Each thread randomly performs a set of operations chosen by a particular
workload distribution.

Each data point is obtained after averaging for 5 iterations.

Concurrent Graph Data Structure IIT Hyderabad Jan 4, 2018 39/48



Results 1

Figure : AddE:50%, DelE: 50% and rest are 0%

Concurrent Graph Data Structure IIT Hyderabad Jan 4, 2018 40/48



Results 2

Figure : CV:15%, CE:15%, AddE:25%, DelE:10%, AddV:25% & DelV:10%.

Concurrent Graph Data Structure IIT Hyderabad Jan 4, 2018 41/48



Results 3

Figure : CV:40%, CE:40%, AddE:7%, DelE:3%, AddV:7% & DelV:3%

Concurrent Graph Data Structure IIT Hyderabad Jan 4, 2018 42/48



Outline of the Presentation

1 Motivation

2 Problem Definition

3 Our Methodology

4 Working of the methods

5 Correctness

6 Empirical Results

7 Conclusion & Future Work



Conclusion

- Presented generic constructuction of a fully dynamic concurrent graph
data structure, which allows threads to concurrently add/delete
vertices/edges.

- We constructed it by the composition of the well-known concurrent
list-based set data structure.

Concurrent Graph Data Structure IIT Hyderabad Jan 4, 2018 44/48



Future Work

1 Using it for other parallel graph algorithms.

2 Currently working on Concurrent Serialization Graph Testing
Scheduler.

Concurrent Graph Data Structure IIT Hyderabad Jan 4, 2018 45/48



Thank You!

Concurrent Graph Data Structure IIT Hyderabad Jan 4, 2018 46/48



For Further Reading..

Michael A. Bender, et al. A New Approach to Incremental Cycle Detection and Related Problems. ACM Transactions on

Algorithms, Vol. 8, No. 1, Article 3, Publication date: January 2012.

Maurice P. et al. Linearizability: A Correctness Condition for Concurrent Objects. ACM Transactions on Programming

Languages and Systems, Vol. 12, No. 3, July 1990, Pages 463-492.

M. Herlihy. et al. Obstruction-free synchronization: double-ended queues as an example. Proc. IEEE ICDCS, 522-529,

2003

Y. Riany. et al. Towards a practical snapshot algorithm. Theoretical Computer Science, 269(1-2): 163-201, 2001.

Maurice Herlihy and Nir Shavit. The Art of Multiprocesor Programming, Revised Print. Imprinted Morgan

Kaufmann,Elsevier, May 2012.

Peter S. Pacheco. An Introduction to Parallel Programming, 1st Edition. Imprinted Morgan Kaufmann,Elsevier, May

2011.

Bernhard Haeupler Telikepalli Kavitha, Roger Mathew, Siddhartha Sen, and Robert E. Tarjan, Incremental cycle

detection, toplogical ordering, and strong component maintenance. ACM Transactions on Algorithms, 8 (2012), pp.
3:13:33

A. Natarajan and N. Mittal, Fast concurrent lock-free binary search trees 19th PPoPP, 2014, pp. 317328.

E. Szpilrajn Sur lextension de lordre partiel. Fundamenta Mathematicae, 16 (1930), pp. 386 389

D.J. Pearce, P.H.J. Kelly, and C. Hankin, Online cycle detection and difference propagation for pointer analysis

Proceedings of the 3rd International Workshop on Source Code Analysis and Manipulation, Sept. 2003, pp. 312

Donald E. Knuth, The Art of Computer Programming, Volume 1: Fundamental Algorithms ,Addison Wesley, Reading,

MA, 2nd ed., 1973.

A.B. Kahn, Topological sorting of large networks, Communications of the ACM, 5 (1962),pp. 558562.

Boppana, Ravi; Halldrsson, Magns M. Approximating maximum independent sets by excluding subgraphs , (1992) BIT

32 (2): 180196,

Arnab Sinha, Sharad Malik, Runtime checking of serializability in software transactional memory, Parallel & Distributed

Processing (IPDPS), 2010

[m3]Robert Hood, et. al. Parallel program debugging with on-the-fly anomaly detection, Proceeding of the 1990

ACM/IEEE conference on Supercomputing Pages 74-81.

Khanh Do Ba, Wait-Free and Obstruction-Free Snapshot, Dartmouth Computer Science Technical Report TR2006-578,

June 2006.

Y. Afek, H. Attiya, D. Dolev, E. Gafni, M. Merritt and N. Shavit. Atomic snapshots of shared memory. Proc. ACM

PODC , 114, 1990.

J. H. Anderson. Composite registers. Proc. ACM PODC , 1529, 1990.

Concurrent Graph Data Structure IIT Hyderabad Jan 4, 2018 47/48



Questions?

Concurrent Graph Data Structure IIT Hyderabad Jan 4, 2018 48/48


	Motivation
	Problem Definition
	Our Methodology
	Working of the methods
	Correctness
	Empirical Results 
	Conclusion & Future Work

