CS5660 Offline Exam1

20-Mar-2024 7pm-8:30pm

NOTE: Please write your ROLL NO. clearly on ALL answer sheets. Be extremely precise and formal in your derivations. Answers without justification will NOT be awarded marks. Don't use any advanced/sophisticated results not taught in this course.

1. For an L-smooth and convex function f, prove from first principles that:

$$rac{1}{L}\left\|
abla f(x)-
abla f(y)
ight\|_2^2\leq \left(
abla f(x)-
abla f(y)
ight)^ op (x-y)\leq L\|x-y\|_2^2.$$

Clearly indicate which steps/results use convexity and which use smoothness etc. Hint: Consider functions $\phi_x(y) \equiv f(y) - \nabla f(x)^\top y$.

[1+3 Marks]

Using this inequality, present a convergence analysis of gradient descent for unconstrained minimization of L-smooth, convex objectives. Assume the step-size is $\frac{1}{L}$. Hint: Try to set-up recursion starting with r_{k+1}^2 , then lower bounding $\|\nabla f(x^{(k)})\|$ and solving the recursion.

[4 Marks]

- 2. Attempt this sequence of questions from section 6.4.4 in Beck's book and (almost :) covered in the lectures:
 - (a) Let $f(x) \equiv -\log(x), x \in \mathbb{R}_{++}$. Derive a simplified expression for $prox_{\lambda f}(x)$ for a fixed (given, yet arbitrary) $x \in \mathbb{R}, \lambda > 0$.

[2 Marks]

(b) Consider the function
$$h(x) = -\sum_{i=1}^{n} \log(x_i), x \equiv \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \in \mathbb{R}^n$$
. Derive a simplified expression for $prox_{\lambda h}(x)$ for a fixed (given, yet arbitrary) $x \in \mathbb{R}^n, \lambda > 0$.

(c) Consider the set
$$C_{\alpha} \equiv \left\{ x \equiv \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \in \mathbb{R}^n_{++} \mid x_1 x_2 \dots x_n \ge \alpha \right\}$$
, where $\alpha > 0$. Express this set in terms of h .

[1 Mark]

(d) Present a simple algorithm for computing $\Pi_{C_{\alpha}}(x)$ that uses your simplified expression for $prox_{\lambda h}(x)$.

[4 Marks]

- 3. Let C be a closed convex set and let Π_C denote the projection onto C operator. Express the prox operator of f, where f is:
 - (a) the support function of C,
 - (b) defined by $f(x) = \frac{1}{2} ||x \Pi_C(x)||_2^2$ (projection error),

[2 Marks+2Marks]

[2 Marks]

in terms of Π_C . In case you use any theorem/result from this course, then repeat it's proof/derivation. In case you use any (advanced) theorem/result outside this course, then clearly write down the formal statement (no need to prove).

4. For any closed convex set $C \subset \mathbb{R}^n$ and any function $f : \mathbb{R}^n \mapsto \mathbb{R}$ such that it's prox operator is well-defined, show that

 $\left(\Pi_C\left(prox_f(x)
ight)-prox_f(x)
ight)^{ op}\left(\Pi_C(x)-\Pi_C\left(prox_f(x)
ight)
ight)\geq 0\,\,orall\,\,x\in\mathbb{R}^n.$

[2+2 Marks]