CS5660 Offline Exam1

20-Mar-2024 7pm-8:30pm

NOTE: Please write your ROLL NO. clearly on ALL answer sheets. Be extremely precise and formal in your derivations. Answers without justification will NOT be awarded marks. Don't use any advanced/sophisticated results not taught in this course.

1. For an L-smooth and convex function f, prove from first principles that:

$$
\frac{1}{L}\|\nabla f(x)-\nabla f(y)\|_{2}^{2} \leq(\nabla f(x)-\nabla f(y))^{\top}(x-y) \leq L\|x-y\|_{2}^{2}
$$

Clearly indicate which steps/results use convexity and which use smoothness etc. Hint: Consider functions $\phi_{x}(y) \equiv$ $f(y)-\nabla f(x)^{\top} y$.

$$
\text { [1+ } 3 \text { Marks] }
$$

Using this inequality, present a convergence analysis of gradient descent for unconstrained minimization of $L-$ smooth, convex objectives. Assume the step-size is $\frac{1}{L}$. Hint: Try to set-up recursion starting with r_{k+1}^{2}, then lower bounding $\left\|\nabla f\left(x^{(k)}\right)\right\|$ and solving the recursion.
2. Attempt this sequence of questions from section 6.4.4 in Beck's book and (almost :) covered in the lectures:
(a) Let $f(x) \equiv-\log (x), x \in \mathbb{R}_{++}$. Derive a simplified expression for $\operatorname{prox}_{\lambda f}(x)$ for a fixed (given, yet arbitrary) $x \in \mathbb{R}, \lambda>0$.
[2 Marks]
(b) Consider the function $h(x)=-\sum_{i=1}^{n} \log \left(x_{i}\right), x \equiv\left[\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right] \in \mathbb{R}^{n}$. Derive a simplified expression for $p r o x_{\lambda h}(x)$ for a fixed (given, yet arbitrary) $x \in \mathbb{R}^{n}, \lambda>0$.
[1 Mark]
(c) Consider the set $C_{\alpha} \equiv\left\{\left.x \equiv\left[\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right] \in \mathbb{R}_{++}^{n} \right\rvert\, x_{1} x_{2} \ldots x_{n} \geq \alpha\right\}$, where $\alpha>0$. Express this set in terms of h.
[1 Mark]
(d) Present a simple algorithm for computing $\Pi_{C_{\alpha}}(x)$ that uses your simplified expression for $\operatorname{prox}_{\lambda h}(x)$.
[4 Marks]
3. Let C be a closed convex set and let Π_{C} denote the projection onto C operator. Express the prox operator of f, where f is:
(a) the support function of C,
[2 Marks+2Marks]
(b) defined by $f(x)=\frac{1}{2}\left\|x-\Pi_{C}(x)\right\|_{2}^{2}$ (projection error),
in terms of Π_{C}. In case you use any theorem/result from this course, then repeat it's proof/derivation. In case you use any (advanced) theorem/result outside this course, then clearly write down the formal statement (no need to prove).
4. For any closed convex set $C \subset \mathbb{R}^{n}$ and any function $f: \mathbb{R}^{n} \mapsto \mathbb{R}$ such that it's prox operator is well-defined, show that

$$
\left(\Pi_{C}\left(\operatorname{prox}_{f}(x)\right)-\operatorname{prox}_{f}(x)\right)^{\top}\left(\Pi_{C}(x)-\Pi_{C}\left(\operatorname{prox}_{f}(x)\right)\right) \geq 0 \forall x \in \mathbb{R}^{n} .
$$

