
CS5590, CS3390, AI5000, AI2000: Quiz-1

6-Sep-2022, Tuesday, 7pm-8:30pm

ROLL NO.

Important Instructions

1. PLEASEWRITE YOUR ROLL NO correctly IN THE BLANKABOVE.

2. In the questions below, �ll the blanks/boxes in this booklet itself such
that the respective statements become true.

3. While �lling the blanks/boxes strictly follow the formatting instruc-
tions in the respective question (if any).

4. In case a box is given for �lling a detailed answer, then marks will be
awarded if and only if the justi�cation is precise.

5. Begin attempting the problems in rough sheets �rst. Then, fair copy
your answers into this question paper while respecting the boundaries
of the blanks/boxes. Hand-writing must be neat and legible.

6. The space provided in blank/box is more than enough with legible
font size. If you are feeling the space is too less, then it simply means
there is a more concise way of writing the answer. The evaluator
shall be strictly following the policy of ignoring writings outside the
blanks/boxes and those that are too tiny to read!

7. After the exam, please submit this question paper booklet to the
invigilator. Do not submit your rough work.

8. There will be no partial marking. Be very cautious to write the
entire mathematically expression correctly. It is not enough to write
95% of expression/formula correctly. You may loose all marks for the
blank/box even if you forget a `-' or `1/2' etc.
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Questions

1. Consider the logistic regression setting taught in the lecture. Here,
the learning task is a problem [[Fill
this blank with either \regression" or \multi-class classi�cation"

or \binary classi�cation". 1/4 mark ]]. Let � : X 7! Rn be a
given feature map. The model employed in logistic regression is the

[[Fill this blank with the appropriate proper

noun. 1/4 mark ]]. The mathematical de�nition of this model is
given by the expression:

:

[[In the above blank, use `w' to denote the parameter of this model.

1/2 mark ]]

The mathematical expression for the loss function used here is:

l(w; x; y) � :

[1 mark]

This loss function can be visualized using the plot below:

[[Fill the plot appropriately to roughly depict the graph of logistic

loss. Clearly label the axes, without which no marks will be given.

1/2 mark ]].

If p� is the underlying (unknown) likelihood relating the inputs and
labels, then, the Bayes optimal, restricted to the functions in the
model, is given by the mathematical expression:

f� =

2



[[No marks will be given if you write general expressions for

Bayes optimal. You need to write the speci�c expression for

the logistic regression set-up. 1 mark ]]. Let the training data be
D � f(x1; y1) ; : : : ; (xm; ym)g. The name of the important assumption
that relates p� to D is . [[Fill this blank
with the appropriate proper noun. 1/2 mark ]]. This assumption
formally means the following:

[1/2 mark]

The ERM problem in this case is the following mathematical opti-
mization problem:

[1/2 mark]

If the ERM solution is denoted by ŵm, then the label for any x 2 X
shall be computed using the formula: .

[1/2 mark]

Now, say, the training data actually is

D =

( "
0
0

#
; 1

!
;

 "
1
0

#
;�1

!
;

 "
0
1

#
;�1

!
;

 "
1
1

#
; 1

!)

and the feature map � is de�ned by

�

 "
z1
z2

#!
� ((z1 + z2)%2)�

1

2
8 z1; z2 2 R:

Here, a%b is the remainder when a is divided by b. For this case, in
the box below, write down the optimal solution1 of the ERM problem
along with justi�cation:

1You are welcome to solve this optimization problem in any way you prefer. For e.g.,

analytically, manually iterating through gradient descent etc.
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[1 mark]

For this speci�c training data and feature map, suppose we wish to
perform linear classi�cation using the 0-1 loss. Then, run the per-
ceptron algorithm in rough using manual calculations and write all
parameter iterates until convergence including initialization in the
box below. For each iterate write down the update equation too. No
other details are required

[1 mark]

2. Consider the linear regression setting taught in lectures with training
data as: D = f(2; 1) ; (4; 5)g (usual convention of set of input,label
pairs). Consider the feature map �(x) = x. Analytically solve the
ERM problem in rough work and write down the �nal ERM solu-
tion in this blank: wERM

� = [[1/2 mark ]]. With this solution,
the explained variance computed on the training set is [[Fill
the blank with appropriate number. 1/2 mark ]]. Now, consider

another feature map,  (x) �

"
x

1

#
. With this feature map, analyti-

cally solve the ERM problem in rough work and write down the �nal

ERM solution in this blank: wERM
 = [[1 mark ]]. With this

solution, the explained variance computed on the training set is
[[Fill the blank with appropriate number. 1/4 mark ]]. Now, con-

sider another feature map, �(x) �

2
64
x

1
�1

3
75. With this feature map,

analytically solve the ERM problem in rough work and write down

the �nal ERM solution you obtained in this blank: wERM
� =

4



[[1 mark ]]. With this solution, the explained variance computed on
the training set is [[Fill the blank with appropriate number. 1/4
mark ]].

3. In the lectures you were taught how to model the Bayes optimal in
a binary classi�cation task using linear functions (over input feature
space). Now suppose you have a multi-class classi�cation problem
with 3 classes: `�', `‡', and `❡'. However, still you are only allowed
to use the linear model taught in lectures. Think about how you can
model the Bayes optimal in a 3-class classi�cation task using these
linear functions. With this way of modelling the Bayes optimal in
mind, according to you, the loss function, l, appropriate for this task
would be de�ned by l(w; x;�) � , l(w; x; z) �

, l(w; x;❡) � . Here,

w denotes the parameter of the linear model.

[1.5 Marks]

Observe that your way of modelling the Bayes optimal with linear
functions has an inherent (`wrong'?) bias. More speci�cally, if the
parameter changes a little then the label for a �xed x changes pref-
erentially to one of the other two classes. In this sense, there is am
implicit (unequal) nearness between di�erent class pairs.

Now, suppose you are allowed to model functions of the form f(x) =
W>�(x), where W is n � 3, where � is a feature map. You may
use the notation W = [w1 w2 w3]; where wi 2 Rn. Think about
how you can model the Bayes optimal in a 3-class classi�cation task
using these `3-dimensional linear functions'. With this way of mod-
elling the Bayes optimal in mind, according to you, the loss func-
tion, l, appropriate for this task would be de�ned by l(W;x;�) �

, l(W;x; z) � ,

l(W;x;❡) � .

[2.5 Marks]
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