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Standard Derivations

‘ d from 7 to unit
- ionality has to be reduce Y- Morg
; et-up where dimensiona " is the paramet
Congxderuthellzciﬁ*esenco%ing of z € R™ be w'z, where w € Rt_ ISO timI;zation ;;&eb;
specifically, t?n \raining data: D = {Z1,. . z,,}. The stochastic op
learnt from the tr ' e

12] ion- in this case is:
formalizing the goal of minimizing reconstruction-error in

e ponst}, — @

: in D (unsupervised
where p* is the underlying likelihood function, whose samples ai{ilu[l[ﬁ‘ill( i i lfe s
learning assumption) and v is the parameter of the. decgdmg o w. X. 1 Mark]].
blank with an appropriate mathematical expression involving v,w, A .

; ithout

Using simple linear algebra (least-squares solution style) arguments Skﬁwnf h?ﬁ;;'l down

loss of generality, one can restrict v = w, |lw|| = 1 in the above problem. 7
these arguments in the box below:

. 5& 3 W t L”

e e
[eth ok whih nowbo & bedt ~ 7 i

T T, L A
MBM%—V — wen E[I1%-0ex1/Y] |t )

K 45,
L E N ‘3 M,. /
\ T X ‘ - M= .

D Xees = 4= S Bt by 0< /0 D
[[writings outside the boz, and illeg
uator 1 Mark]]

Now perform algebraic simp
problem is equivalent to:

ible writings, will be strictly ignored by the eval-
lifications to show that the above stochastic optimization

=il E&z[xxﬂ .

[[Fill in the above blank with an appropriate mathematical expression mvolving
X,p". 0.5 Marks]]. The SAA (ERM) version of the above is:

™
T
max w'l) X, X: w
lwl=1 ™7
([Fill in the above blank with an appropriate mathematical expression nvolving
T1,...,Zm. 0.5 Marks|]. Now, let the n x n matrix in the above blank be denoted by
M. Let U, ..

., Un be the eigen vectors corresponding to the eigenvalues of M , Which
are Aq,..., A\, written in decreasing order. Recall from spectral theorem that u,,...,u,
can be chosen to be unit vectors orthogonal to each other. In particular, they form an
orthogonal basis for R” and hence any w € R" can be re-parametrized as Ua (change of
variables), where U is the orthogonal matrix whose columns are Uy, ..., U,. With this
change of variables, the above optimization problem simplifies as:

b3

p
max 7 A
laff=1 &

[

Fill in the above blank with an appropriate mathematical expression involving
ALy-.y An and entries of a, which are ay,...,0,. 1 Mark]]. By inspection, it is clear

that the optimal solution of this problem is a* — . [[Fill in these blanks with

— ko~



_ In this question you

3

-
at
it s, 03 N o ol Ui v
Marks],. ematical expression involving one or few of Uy, .- Un- 0.5
Consider the ERM problem with I, regularized linear models and a loss function, [:
min Ll +CY (v
wegn 2! 12 N iz—ql <w ¢($i)’yi>
Show tha§ any optimal solution of this problem can be written as a linear combination
of the training datapoints in the feature space. Note your proof in the box below:
WER conbe uTono> L s paglE Lot
L’m@"‘”(”g O O ke 2"(\«‘() "jf‘)}:‘ﬂb‘”ﬁv’ fredaron
(=] g hd(N o)
pho (0 e 5 WL PO i M“ﬁ:( M;MNL)
L s ? wJ—: Q. ( g w, '
[[writings outside the boz, and illegible writings, will be strictly ignored by the eval- Ve
uator 2 Marks]] S A 0 W
Using this, the above optimization problem can be re-written as: 0‘ 8 s >

1 m m T m m T
min 3 S ok ) ) +C U 2 o 0 TP,
i=1j=1 =1 j=1
ng entries of c and dot- ]

riate eTpressions involvt
0.540.5=1 Mark]].

[[Fill in these blanks with approp
products between training datapoints in the feature space.
must re-derive the MCLE problem from first principles. Recall that
th the discriminative models is to find a ¢ € Q such that the

e to the true posterior p*(y/z) for typical inputs
loss | between

the goal in training wi

corresponding posterior g(y /z) is clos
from p*(z). This goal is formalized in the following problem, using a

likelihood functions: . SO
arggxéig Exnpt(z) [ﬂ("(/)‘) /“/('/X /_T)) K(F (3/X) ’V(v/ﬂ)

X. 0.5 Marks]].

[Fill in the blank with appropriate eTpression involving 1,p%, 4,
When [ is KL divergence, the above can be re-written as:

(b)) |

[Fill ip the blank with appropriate. eTpression involving p*,¢,X,Y. 0.5 Marks]].
, the above simplifies as the following stochastic

Using 0 ecalion -
e training set [ Fill the earlier blank with the name of

optimization problem given th
an appropriate standard result in probability theory 0.5Marks||: )R
> Y ( é/)x\ é/

axg max B o) | (VBT Sy ey

([Pl in the blank with an appropriate ezpression involving ,X,Y. 0.5 Marks]|.
lem is the MCLE problem given by:

i[ﬂ@’fﬂ’@)} )"'V(b/w) ey

i=1

 Erota E
argx;'gg Xp()l

The SAA version of this prob
ar rnaxl
g gee m

([Fill in the blank with an appropriate ezpression involving the training datapoints

(Z1,91), - - -+ (Tmy Ym) QN G- 0.5 Marks]].

3
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Simple Exercises

. Consider a regression problem where th

as well as the label space is the set

i ace A
e input sp te for this problem with width=2,

ria

of real numbers. Consider a FFNN mode approploss be the squared-loss. In the box

depth=1, and activation function as ReLU. Let
below, draw an illustration of the FFNN. Clear ok ¢
put, hidden,output neural layers, edge weights (param

ly mark out the artificial neurons, in-
), activations at various neu-

rons in response to some input z [[1 Mark]].

In the box below, write down the ERM problem using the notation in your i11}1stration,
and assuming the training data is {(1,1),(2,2)}. Write a simplified expression. [[0.5

Mark]):

i

W, 9

(([r, 0w) +V,6(82,) - l)ﬁr (u; o (2v) + o o2 )- L)z>

In the box below, write down the output of the backprop algorithm run on this net-
work&data, as analytical expressions in terms of the parameter values at the start of
backprop [[Please do not write any details/deriwation/calculations. Only write the
final ezpressions denoting the output of backprop. 1 Mark]|.

i
2 0
'
./L:‘Jf

Ln), < \v,o
w, = w;‘

m 6,(0,, o,

9,0 = (0,66 + o) 1Y
- o 0 [“‘:) . .
T | eofa) || oenE A
0 Ayt BV
\)l’%’k’i U:‘,O_ 3 Copted ‘2/
bk of. | WO 14»‘:",_70\.3 j(' Auasd pes .

- Consider a binary classification problem with inputs in R2. Consider kernels ki1, ko

over R? defined by k,(z,y) = zTy, kx(z,y) = 1+ z'y. Let the training data be

>={(

o)

2
2

] , —1) } Then the optimal solution of the corresponding ERM




L W S B

problem with hard-margin SVM and kernel k; is given by: 0055 MDT EX [T 1

Mark]). Solve the corresponding ERM problem with hard-margin SVM and kernel
and note the important steps in your derivation in the box below. Highlight the final
optimal solution [[3 Marks|]:

FEMS wwn L[4, -@[3 S’] {»(]

£ Tk AR > I EA

NERRET: 543 7! W

- f\(f‘*\*q'ﬁ\) 7/' éy KM
DA e 3, 10%)%, 4*; /—-"ﬂl sal = ‘\h O

e C) : 3 /! )-

o, G = / .
\ _‘Io(z J
S VA, S —= @yyy

L5/ 8 2
{.‘ "y"(L = ﬁj(';"
b =3
/) ¥

Hint: Optimization with multiple variables is similar to integration with multiple
variables; can be simplified by successwe elimination. Alternatively, use geometric
insights taught in lecture about the optimal solution.

The predicted score (un-thresholded) with this optimal solution for the input [ 2 ] is
~ 2 . [[Fill in this blank with a number. 1 Mark]}.

3. Consider an n-dimensional k-component Gaussian Mixture Model (GMM). The likeli-
hood functions in this model are given by the expression . _,

3 34 = oi "/LCK'A()Z‘-@'R;
M“(;@) e  plz)= & ZTV\“/LIZ‘-V"C )

s M»\L N
In this expression,el' "Qk, Hi» 'Ak) £|' L& k denote the parameters of the GMM.
([14-0.5=1.5 Marks]]. While employing GMM for clustering one makeyadditional as-
sumptions, which provide a relevant meaning to these parameters. In the box below
recall these important assumptions [[1.5 Marks]]:




3

[=AV NS cdn Tds |
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Under what (theoretfcal/asymptotic) conditions on the training data and the training
algorithm is exact recovery of the likelihood functions that appear in these assumptions
possible? List these in the following box [[2 Marks|J:-

@Y\o-gm,\!ae =3
@ MLE ssve f«hﬂo
otieeak ¢
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True-or-False Type Questions

NOTE: Fill in the blanks in this section’ appropriately with either “TRUE” or “FALSE”.
Each blank carries +-0.5 marks when correctly answered and carries -0.1 marks when answered
wrongly. So beware of the NEGATIVE marking. It is recommended you attempt a question
ONLY IF you are sure about the correctness of your answer.

1.

Consider the online learning set-up where there exists a f* € F such that all the examples
(z,y) satisfy f*(z) = y. Let |F| = 8 and number of examples is m = 10. Then, an upper

bound on the number of mistakes the halving algorithm makes in the worst-case in
m = 10 rounds is 3. laﬂuﬁ :

Consider a special case where the number of clusters obtained with a 5-component Gaus-
sian mixture model is 5. Then, the shape of these clusters will be elliptical. 1 AUE .

Consider the online learning set-up where there exists a f* € F such that all the examples
(z,y) satisfy f*(z) = y. Let |F| = 5 and number of examples is m = 10. Then, an upper
bound on the number of mistakes the consistent algorithm makes in the worst-case
in m = 10 rounds is 4._T RUE ‘

Consider a classification problem, where the input space is Euclidean. Vipareeta Buddhi
claims that the kernelized k-NN classification with Gaussian kernel will be exactly same
as k-NN classification with Euclidean distance. His claim is ¢ EUC’. .

. Consider the [, regularized logistic regression model for binary classification with linearly

separable training data (linearly separablw the feature space). The corresponding ERM
problem always has a (finite) solution. ] & | ZE .



10.

11,

12.

13.

14.

15.

16.

17.

18.

19.

.IszR’mdd;(m)ist

. There is no (

. The number of clusterg obtaj

ned wi 8
H J:) c with a & Component Gaugsian mixture model can be

he vector of all

degree d, then the dime Possible monomials inyolyig

nsionality of $(z) is O(d"). ijSE_

g entries of z upto

unknown or to b e
hard-margin SV M tuned) regularization hyperparameter in case of the

There are examples of

mod ;
also be understood ag els that can be understood as parametric models, and can

non-parametric models. I
“Complez concepts can be e

\ zplained usin ] B gt .
ophy behind all the formal m, g appropriate ezamples” — this is thﬁ Ehﬂos—

achine learning set-ups you studied in this course. _[ALSE .
Consider the binary classification task under hinge-loss. Let F;

llneaJE model with margin atleast 1 and Jet F> be the I, regularized liyar model with
margin atleast 2. Then, modelling error with F; is < that with 7. ] R .

be the [, regularized

Qonsider the b:mary clajssiﬁcation task under hinge-loss. Let JF; be the I, regularized
linear model with margin atleast 1 and let F» be the I, regularized linear model with

m%gif ageast 2. Then, standard estimation error bound with F is < that with 7,.

The defmition of clustering we employed in our lecture is: grouping of inputs such that in-
puts within groups are similar to each other than inputs across different groups. LSE

Let ky : X x X — Rand ky : X x X — R be two valid kernels® over the domain, X.

Define a new function k by: k(z) = ki(2)kz(z) V 2z € X x X. Then, k is a valid kernel
over X. VE . L

Typically, models with lower estimation error tend to have higher approximation error
and vice-versa. 7] & Ve .

Sukshma Buddht and Sthula Buddhi both plan to deploy a particular Binary classi-
fication model that has one hyperparameter, 4 € (0,1]. Both of them use 10-fold CV
for estimating . However, Sthula Buddhi considers the range of candidate values for v
as {1,1,..., %}, whereas Sukshma Buddhs, being an expert in numerical optimization,
considers entire interval (0,1] and finds the “best” (upto numerical errors?). Let us as-
sume both have access to the same data and consider the same CV folds. Then, smaller
the difference between the CV errors with the two models, less likely it is that Sthula

Buidhi’s énodel will perform better, when deployed, than Sukshma Buddhi's model.

The backprop algorithm solves the stochastic optimization problem arising in case of
neural-network based logistic regression. L

Linear models are nof, universal approximators, whereas kernel-based models are univer-
sal approximators. LSE .

1Kernel here refers to kernels in SVM etc. and NOT smoothing kernels. Nor it is popcorn kernels ;) .
2Let’s assume that the CV error happens to be a “nice” function to optimize numerically over (0, 1].



20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

4

Typical estimation error bounds for linear models asymptotically decay to zero as num-
ber of samples grows to infinity. However, the bounds are not independent of input-

dimensionality. | AUE .

Typical estimation error bounds for I, regularized linear models are independent of
input-dimensionality. 1RV

#

In kernel-based models, the input-feature-map needs to be designed carefully. l A / SE .

Consider two different 3-arm bandit problems:

P1: g(a1) =1,9(az) =1-¢,q(as) =9 +e.
P2: g(a1) =1,9(a2) =9 —¢,9(as) =9 +e.

where, € = 1e—6. Then, as per the UCB algorithm analysis presented during the lecture,
P1 is a simpler problem than P2. TRY .

Applications of Gaussian mixture models go beyond clustering: for example, they have
potential to be applied in regression tasks. 0

The MLE problem arising in case of parameter estimation with Gaussian mixture models
is popularly solved by Gradient Descent (or SGD). _fFAL Sﬁ

PCA can be understood as a set-up employing I, regularized linear models. Hence it is
expected to be free from the curse of dimensionality. jfﬁ VE, .

l1-class SVM can be employed for support estimation tasks as well as for clustering
tasks. v

Training neural networks implicitly performs representation learning; however this repre-
sentation learning can neither be categorized as supervised learning nor as unsupervised
learning. 7 EUE‘ .

PCA set-up is a special case of the autoassociative neural network set-up. TK Y 6 :

In neural network modelling, the Bayes optimal corresponding to the underlying (un-
known) joint likelihood function in the supervised learning set-up is modelled directly.

L

In kernelized PCA, the top few eigenvectors of the gram matrix are computed instead
of those of the sample correlation/covariance matrix. v

The only difference between online learning and batch learning is that in the former
set-up the training samples arrive sequentially and cannot be revisited. LS

The UCB algorithm performs both exploratic& as well as exploitation; whereas the soft-
max algorithm only performs exploration. AL .

The Gaussian model is not a well-suited model for clustering tasks. TK Uﬁ .
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