
1 Standard Derivations 

1. Consider the PCA set-up where dimensionality has to be reduced from n to unit 

specifically, let the encoding of a E R" be w't, where w E R" i8 the parameter to 

learnt from the training data: D = {t1,..., Tmj. The stochastic optimization problem 

formalizing the goal of minimizing reconstruction-error in this case is: 

More 
to 

- O 
min 

wER",vER" 
ExX-ux11. 

where p' is the underlying likelihood function, whose samples are in D (unsupervised 

earning assumption) and v is the parameter of the decoding model ||Fll in the above 

olark with an appropriate mathematical erpression involving v, w, X. 1 Mark|] 

Using simple linear algebra (least-squares solution style) arguments show that, without 
SS Ot generality, one can restrict v = w, |w = 1 in the above problem. Note down 
these arguments in the box below: 
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Now perform algebraic simplifications to show that the above stochastic optimization problem is equivalent to: 

max w 
l|w||=1 

Fill in the above blank with an appropriate mathematical ecpression 7nvolvng X,p". 0.5 Marks|]. The SAA (ERM) version of the above is: 

max w2 X;¥; w. 
Ilw=1 mi 

[Fill in the above blank with an appropriate mathematical erpression involving T1,.. ,Tm. 0.5 Marks|. Now, let the n x n matrix in the above blank be denoted by M. Let .., un be the eigen vectors corresponding to the eigenvalues of M, which 
are A1,... , An Written in decreasing order. Recall from spectral theorem that U1.. , un can be chosen to be unit vectors orthogonal to each other. In particular, they form ana orthogonal basis for R" and hence any w ER" can be re-parametrized as Ua (change of 
variables), where U is the orthogonal matrix whose columns are 1,..., Un. With this 
change of variables, the above optimization problem simplifies as: 
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Fl in the above blank with an appropriate mathematical erpression involving 1 n and entries of a, which are a1,... ,an. 1 Mark]. By inspection, it is clear 

that the optimal solution of this problem is a* = (Fil in these blanks with 
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2 appropriate numbers. 0.5 Marks||. Hence, the optimal w = U,. [Fill in the blank 

with an appropriate mathematical erpression involving one or few of U1, , U7. U.9 

Marks] 

2. Consider the ERM problem with l2 regularized linear models and a loss function, 

min 
wER" 

ll+CI(w d(z:), JA) 
i=1 

Show that any optimal solution of this problem can be written as a linear combination 

of the training datapoints in the feature space. Note your proof in the box below: 
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Using this, the above optimization problem can be re-written as: 
O raks. 

m 
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aER =1j=1 
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|Fl in these blanks with appropriate expressions involving entries of a and dot 

products between training datapoints in the feature space. 
0.5+0.5=1 Mark||. 

3. In this question you must re-derive the MCLE problem from first principles. Recall that 

the goal in training with the discriminative models is to find a q E Q such that the 

corresponding posterior q(y/c) is close to the true posterior p'(y/z) for typical inputs 

from p'(c). This goal is formalized in the following problem, using a loss between 

likelihood functions: 

Sec Sechion 2.3 
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[Fill in the blank with appropriate erpression involuing 1, p', g, X. 0.5 Marks|. 

When l is KL divergence, the above can be re-written as: 

[Fll ip the blank with appropriate erpression involving p', g, X, Y. 0.5 Marks]. 

Usingtotak epecation Dule, the above simplifies as the following stochastic 

optimization problem given the training set [|Fill the earlier blank with the name of 

an appropriate standard result in probability theory 0.5Marks]: 

arg max (x,y)~p°(a,) |(V)_. ) 

[Fl in the blank with an appropriate expression involving g,X,Y. 0.5 Marks. 

The SAA version of this problem is the MCLE problem given by: 

arg max 

[Fill in the blank with an appropriate expression involving the training datapoints 

(11)..,(m, Vm) and q. 0.5 Marks||. 



2 Simple Exercises 

.Consider a regression problem where the input space as well as the label space is the set 

or real numbers. Consider a FFNN model appropriate for this problem with width=2, 

aepth=1, and activation function as ReLU. Let loss be the squared-loss. In the box 

Delow, draw an illustration of the FFNN. Clearly mark out the artificial neurons, in-

aen,output neural layers, edge weights (parameters), activations at various neu-

rons in response to some input c l1 Mark). 
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In the box below, write down the ERM problem using the notation in your illustration, 

and assuming the training data is {(1,1), (2,2)}. Write a simplified expression. [[0.5 

Mark 

i )+»a)-1)+(ro) +u)-2) 
In the box below, write down the output of the backprop algorithm run on this net 
work&data, as analytical expressions in terms of the parameter values at the start of 
backprop [[Please do not write any details/derivation/calculations. Only write the 
final erpressions denoting the output of backprop. 1 Mark] 

&ot g(,,,)=(0,o-)+ YT-)-1). 
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2. Consider a binary classification problem with inputs in R2. Consider kernels k1, k2 
over R defined by ki(c, y) = T'y, ka(c, y) = 1+o'y. Let the training data be 

-G2)E|) Then the optimal solution of the corresponding ERM 



problem with hard-margin SVM and kernel ki is given by: DeNoT Ex1ST 
Mark)). Solve the corresponding BRM problem with hard-margin SVM and kernel ka 
and note the important steps in your derivation in the box below. Highlight the final 

optimal solution [(3 Marks]: 

EK minI 
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Hint: Optimization with multiple variables is similar to integration with multiple 

variables; can be simplified by successive elimination. Alternatively, use geometric 

insights taught in lecture about the optimal solution. 

The predicted score (un-thresholded) with this optimal solution for the input 

.[Fill in this blank with a number. 1 Mark| 

3. Consider an n-dimensional k-component Gaussian Mixture Model (GMM). The likeli-

hood functions in this model are given by the expression 

epin3-1) 
Saur Naa 

In this expression, ,,4k 2 
[1+0.5-1.5 Marks. While employing GMM for clustering one makej additional as-
sumptions, which provide a relevant meaning to these parameters. In the box below 

recall these important assumptions [[1.5 Marks]]: 

denote the parameters of the GMM. 
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Under what (theoretical/asymptotic) conditions on the training data and the training 
algorithm is exact recovery of the likelihood functions that appear in these assumptions 
possible? List these in the following box [2 Marks|. 
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3 True-or-False Type Questions 
NOTE: Fill in the blanks in this section appropriately with either "TRUE" or "FALSE". Each blank carries +0.5 marks when correctly answered and carries -0.1 marks when answered 
wrongly. So beware of the NEGATIVE marking. It is recommended you attempt a question ONLY IF you are sure about the correctness of your answer. 

1. Consider the online learning set-up where there exists a f* E Fsuch that all the examples (7,y) satisfy f"(c) = y. Let |F| =8 and number of examples is m = 10. Then, an upper 
bound on the number of mistakes the halving algorithm makes in the worst-case in 
m= 10 rounds is 3.RUE 

2. Consider a special case where the number of clusters obtained with a 5-component Gaus-

sian mixture model is 5. Then, the shape of these clusters will be elliptical. TRUE 

3. Consider the online learning set-up where there exists af ¬ Fsuch that all the examples 
(, y) satisfy f"(c) = y. Let |F| = 5 and number of examples is m = 10. Then, an upper 

bound on the number of mistakes the consistent algorithm makes în the worst-case 
in m = 10 rounds is 4. 1KU k 

4. Consider a classification problem, where the input space is Euclidean. Vipareeta Buddhi 

claims that the kernelized k-NN classification with Gaussian kernel will be exactly samne 
as k-NN classification with Euclidean distance. His claim is UE 

5. Consider the l regularized logistic regression model for binary classification with linearly 
separable training data (linearly separable in the feature space). The corresponding ERM 
problem always has a (finite) solution. UE 
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6 The number of clusters obtained with a 5-component Gaussian mixture model can be 6ALE. 
7. If E R" and o(T) is the vector of all possible monomials involving entries of c upto degree d, then the dimensionality of p(r) is O(d"). FALSE_ 8. A kernel is a valid kernel iff its value is always non-negative/positive. FRLLEE 9. There is no (unknown or to be tuned) regularization byperparameter in case ot tne hard-margin SVM. 1 AUE 

10. There are examples of models that can be understood as parametric models, and can also be understood as non-parametric models. S0E 
L.Compler concepts can be eaplained using appropriate exanples" - this is the philos ophy behind all the formal machine learning set-ups you studied in this course.ALSE 
12. Consider the binary classification task under hinge-loss. Let Fi be the l regularized linear model with margin atleast 1 and let Fa be the l2 regularized linear model with 

margin atleast 2. Then, modelling error with Fi is that with F2 KUE. 
13. Consider the binary classification task under hinge-loss. Let Fi be the lh regularized linear model with margin atleast 1 and let F be the l2 regularized linear model with 

margin atleast 2. Then, standard estimation error bound with Fi is that with F2. 

FALSE 
14. The definition of clustering we employed in our lecture is: grouping of inputs such that in-

puts within groups are similar to each other than inputs across diferent groups. FALSE 

15. Let k: XxX+Rand ka : *x R ^R be two valid kernels over the domain, X. 
Define a new function k by: k(2) = ki(z)ko(«) ¥ z ¬ *x*. Then, k is a valid kernel 
over X. KUE 

16. Typically, models with lower estimation error tend to have higher approximation error 
and vice-versa. UE 

17. Sukshma Buddhi and Sthula Buddhi both plan to deploy a particular Binary classi-
fication model that has one hyperparameter, y¬ (0,1]. Both of them use 10-fold CV 
for estimating 7. However, Sthula Buddhi considers the range of candidate values for 
as {1, , whereas Sukshma Buddhi, being an expert in numerical optimization, 
considers entire interval (0,1] ánd finds the "best" (upto numerical errors*). Let us as-
sume both have access to the same data and consider the same CV folds. Then, smaller 
the difference between the CV errors with the two models, less likely it is that Sthula 
Buddhi's model will perform better, when deployed, than Sukshma Buddhi's model. 

FALSE 
18. The backprop algorithm solves the stochastic optimization problem arising in case of 

neural-network based logistic regression. ALLSE 

19. Linear models are not, universal approximators, whereas kernel-based models are univer-
sal approximators. FALSE 

Kernel here refers to kernels in SVM etc. and NOT smoothing kernels. Nor it is popcorn kernels ;). 
Let's assume that the CV error happens to be a "nice" function to optimize numerically over (0,1]. 



20. Typical estimation error bounds for linear models asymptotically decay to zero as num 

ber of samples grows to infinity. However, the bounds are not independent of input-

dimensionality. KUE 
21. Typical estimation error bounds for a regularized linear models are independent of 

input-dimensionality. UE 
22. In kernel-based models, the input-feature-map needs to be designed carefully.ULSE-

23. Consider two diferent 3-arm bandit problems: 

P1: glay) = 1, g(aa) = 1 - 6,9(as) = 9+ e. 

P2: g(a) = 1,g(am) =9-6,g(a) = 9+ 
where, ele-6. Then, as per the UCB algorithm analysis presented during the lecture, 
P1 is a simpler problem than P2. 1SUE 

24. Applications of Gaussian mixture models go beyond clustering: for example, they have 

potential to be applied in regression tasks. 1sbE 

25. The MLE problem arising in case of parameter estimation with Gaussian mixture models 

is popularly solved by Gradient Descent (or SGD).EALSE 
26. PCA can be understood as a set-up employing ia regularized linear models. Hence it is 

expected to be free from the curse of dimensionality. 1UE 

27. 1-class sVM can be employed for support estimation tasks as well as for clustering 

tasks. RUE_ 

28. Trainingg neural networks implicitly performs representation learning; however this repre-

sentation learning can neither be categorized as supervised learning nor as unsupervised 

learning. 1KUE 

29. PCA set-up is a special case of the autoassociative neural network set-up.. 

30. In neural network modelling, the Bayes optimal corresponding to the underlying (un-
kngwn) joint likelihood function in the supervised learning set-up is modelled directly. 

FALSE 
31. In kernelized PCA, the top few eigenvectors of the gram matrix are computed instead 

of those of the sample correlation/covariance matrix. 1KUE. 

32. The only difference between online learning and batch learning is that in the former 
set-up the training samples arrive sequentially and cannot be revisited. LSE 

33. The UCB algorithm performs both exploration as well as exploitation, whereas the soft 
max algorithm only performs exploration. FALSE 

34. The Gaussian model is not a well-suited model for clustering tasks. IKVE. 
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