
CS5590: Exam - 1

7:45pm-9:15pm, 03-Sep-2019

ROLL NO.

Note: Fill in the blanks/boxes appropriately such that the respective statements become true.
While �lling the blanks/boxes strictly follow the instructions in the respective question appearing
immediately after/before the blank/box. You are free to use any standard mathematical symbols
like �; e;�; k � k; log;max etc. Answers that are not simpli�ed enough, (correct) answers in wrong
format, illegible writings, and those outside the blanks/boxes, will be ignored by the evaluator. Please
attempt the problems in rough sheets �rst and prepare answers for all the blanks/boxes in rough.
Then fair copy them in this sheet while respecting the boundaries of the blanks/boxes.

1. Consider a binary classi�cation problem with input space X = Rn, and output space Y =
f�1; 1g. Consider a training set given by = f(x0; 1) ; (�x0;�1)g ; where x0 2 X ( 6= 0) is a given
�xed point. It is proposed to employ the logistic loss and the linear inductive bias (without the
norm-bound). Then, the simpli�ed expression for the ERM problem is:

min
w2Rn

� �
:

Your expression in the previous blank must involve w; x0 only.

[1 Mark]

In the box below argue that this optimization problem as no solution:

[1 Mark]

Now, the inductive bias is changed to linear functions with norm-bound given by hyperparam-
eter W = 1. Then, the optimal solution, ŵ, of the corresponding ERM problem in it's original
form involving the hyperparameter1 W is given by: ŵ = . This expression must involve

x0 alone.

[0.5 Mark]

The above exercise highlights yet another advantage of the norm-bounded linear functions over
the set of all linear functions!

1Here, the ERM is not re-written in the Tikhonov form i.e., it is NOT rewritten in the regularized risk minimization

form.
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2. Assume you have a classi�cation problem with 3 classes: `z', `y', and `¡'. The loss function, l,
you would employ if you were restricted to model only one real-valued function, f , is given by
l(x;z; f) � , l(x; y; f) � , l(x;¡; f) � .

[1.5 Marks; Practice set problem!]

Suppose you re allowed to model 3 real-valued functions, say, f; g; h. Then, the loss function
you would employ is given by: l (x;z; (f; g; h)) � .

[2 Marks; Practice set problem!]

3. Consider a regression problem where the input space, X = Rn, and the output space, Y = R.
It is proposed to use the inductive bias as the set of all a�ne functions:

G �
n
g j 9 w 2 Rn; b 2 R 3 g(x) = w>x� b 8 x 2 X

o
:

The parameters are w 2 Rn; b 2 R. The loss to be used is the square loss. Let the input vectors
in the training set be arranged as column vectors in the matrix Xn�m, where m is the training
set size. Let ym�1 denote the vector with entries as the corresponding outputs in the training
set. Let us denote the q-dimensional vector with all entries as unity by 1q. Then, the simpli�ed
expression for the ERM optimization problem written in terms of X; y; 1m; w; b is given by:

min
w2Rn;b2R

"
1

m

 !#
:

Your expression in the previous blank must not use explicit symbols for columns, entries of
X; y. In other words, please employ vector operations rather than scalar ones.

[1 Mark]

Now, if the inductive bias is changed to norm-bounded a�ne functions:

GW �
n
g j 9 w 2 Rn; b 2 R; kwk �W 3 g(x) = w>x� b 8 x 2 X

o
;

the simpli�ed expression for the ERM problem in Tikhonov form2 turns out to be:

min
w2Rn;b2R

" #
:

Your expression in the previous blank must be in terms of X; y; 1m; w; b; � only, where � is the
hyperparameter (that replaces W ).

[0.5 Mark]

Now, by repeating the analysis done in the lecture for the case of linear/ridge regression, or
otherwise, �nd an analytical expression for the optimal solution, (ŵ; b̂), of this problem. The
optimal ŵ satis�es the following linear equalities:

 !
ŵ =

 !

Your expression for the �rst of the previous two blanks must be only in terms of X;�; In; 1m;m,
where In is the identity matrix of size n. And, the second must be in terms of X; y; 1m;m.

2Regularized risk minimization form.
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[1 Mark]

In the following box, please write a formal proof of why the matrix in the �rst of the previous
two blanks, denoted by, say, P , is positive de�nite.

Hence, the optimal ŵ = P�1q, where q denotes the vector in the second of the previous two
blanks.

[1 Mark]

The optimal b̂ is given by the expression: . This expression must involve
ŵ;X; y; 1m;m alone.

[0.5 Mark]
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