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Lecture 1

Introduction & Definition of MP

1. To highilight the importance and non-triviality involved in converting an
informal description of an optimization problem in English to a formal one
using the Language of Mathematics, the following two examples were pre-
sented:

(a) Given m points D = fx1; : : : ; xmg � Rn, �nd the sphere with smallest
volume that encloses all the points in D:

min
c2Rn;r2R++

�
n
2

�(n
2
+1)

rn(1.1)

s.t. kxi � ck � r 8 i = 1; : : : ;m:

(b) Givenm pointsD = fx1; : : : ; xmg � Rn, �nd the ellipsoid1 with smallest
volume that encloses all the points in D:

min
c2Rn;��0

�
n
2

�(n
2
+1)

det(�)
�1
2(1.2)

s.t. (xi � c)>� (xi � c) � 1 8 i = 1; : : : ;m:

2. Motivated by above examples, we de�ned a Mathematical Program (MP): A
symbol of the following form is de�ned as a MP:

min
x2X

f(x)(1.3)

s.t. gi(x) � 0 8 i = 1; : : : ;m:
1We recalled the positive-de�nite (pd) matrices (if M is pd, we denote it by M � 0). Refer

http://en.wikipedia.org/wiki/Positive-definite_matrix. It is helpful if one is familiar with
all results pertaining to pd matrices, especially the one about its eigen value decomposition:
M � 0 , M = L�L>, where L is an orthonormal matrix and � is a diagonal matrix with
positive entries. The entries in the diagonal matrix are called eigen-values and columns in the
orthonormal matrix can be taken as the corresponding eigen-vectors.

3

http://en.wikipedia.org/wiki/Positive-definite_matrix


3. It was easy to verify that (1.1), and (1.2), are both MPs.

4. We de�ned x as the variable, X as the domain, f : X 7! Rext as
2 the

objective (function), the inequalities gi(x) � 0 as the constraints, the func-
tions gi : X 7! Rext are called as the constraint functions, the set F �
fx 2 X j gi(x) � 0 8 i = 1; : : : ;mg as the feasibility set, each member of the
feasibility set is called as a feasible solution/point, for the MP (1.3).

5. The value of the MP (1.3) is de�ned as the inf (ff(x) j x 2 Fg), with the
understanding that the value is de�ned as �1 if the set of feasible function
values, ff(x) j x 2 Fg, is not bounded below, and is de�ned as 1 if the
feasibility set is empty. This value is also sometimes called as the optimal
value.

6. We clari�ed that in this course we will be interested in MPs where the
variables live in Euclidean Spaces. This goes by the name continuous opti-
mization3.

2Rext denotes the extended real numbers i.e., R[ f�1;1g: The reason for including �1 will
be clear when discussing cascaded MPs etc.

3The MPs where variables are members of discrete sets, are studied in typical CS algorithms,
and popular as discrete optimization. Also we restrict ourselves to �nite dimensional spaces.
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Lecture 2

Parameterized & Cascaded MPs

1. If an MP's value is �1, i.e., the set of values of the objective function
over the feasibility set is not bounded below, then the MP is said to be
unbounded. If an MP's value is 1, i.e., the feasibility set is empty, then the
MP is said to be infeasible.

2. We looked at many examples of MPs, and watched out for all the above de�-
nitions. In particular, we realized that the form (1.3) is \universal". Speci�-
cally, for the sake of convenience, constraints may sometimes be pushed into
the domain's (X ) de�nition1.

3. Associated with every MP of form (1.3), there is a related program of the
form:

argmin
x2X

f(x)(2.1)

s.t. gi(x) � 0 8 i = 1; : : : ;m:

(a) All the de�nitions of variable, domain, objective, constraints, feasibility
set remain the same.

(b) The value of (2.1) is de�ned as the set fx 2 F j f(x) = V g ; where V is
the value of the original MP (1.3). i.e., it is the set of all feasible points
where the in�mum value is attained by the objective. This set is also
known as the Solution set of the original MP (1.3) and its members are
called as the solutions of (1.3). The phrase \Solution" is also sometimes
quali�ed as \optimal/optimal solution" or as \global optimal/optimum
solution" or sometimes simpli�ed as the \optimal/optimum".

1or vice-versa if that is still well-de�ned.
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(c) An MP is said to be solvable i� its solution set is non-empty. Further,
it is uniquely solvable i� its solution set is a single-ton.

4. We thought of examples of MPs with empty, single-ton,: : :, countably in�-
nite, uncountably in�nite, solution sets.

5. We de�ned an alternative but equivalent form for an MP:

max
x2X

f(x)(2.2)

s.t. gi(x) � 0 8 i = 1; : : : ;m:

(a) All the de�nitions of variable, domain, objective, constraints, feasibility
set remain the same.

(b) The value of (2.2) is de�ned as the sup (ff(x) j x 2 Fg), with the un-
derstanding that the value is de�ned as1 if the set of feasible function
values, ff(x) j x 2 Fg, is not bounded above, and is de�ned as �1 if
the feasibility set is empty.

(c) Since inf(S) = � sup(�S); both forms2 are equivalent.

6. The notion of value naturally de�nes a total order on the set of all MPs:

(a) We say MP1=MP2 i� the value of MP1 is equal to the value of MP2.

(b) We say MP1>MP2 i� the value of MP1 is greater than the value of
MP2.

(c) By MP1 = 2, we mean the value of MP1 is 2.

7. This helped us to write down functions of MPs: h(MP ) is nothing but h
evaluated at the value of the MP. We commented that if h is a monotonically-
non-decreasing continuous, then:

h

 
minx2X f(x)
s.t. gi(x) � 0 8 i

!
=

minx2X h(f(x))
s.t. gi(x) � 0 8 i

8. We then noted that many a time, the objective and constraint functions may
involve other parameters, which we call as the parameters of the MP. Such a
parameterized version of a MP is very useful for studying a collection of MPs
that only di�er in parameter values. The general form for a parameterized
MP is:

min
x2X

f(x; y)(2.3)

s.t. gi(x; y) � 0 8 i = 1; : : : ;m;

2�S is the set with members as the negatives of those in S.
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where the y 2 Y are the parameters. We noted examples of such parameter-
ized MPs.

(a) It is easy to see that the value of the MP (2.3) depends on the parameters
y. Hence we denote the value of the parametrized MP by a function of
y:

h(y) � min
x2X

f(x; y)

s.t. gi(x; y) � 0 8 i = 1; : : : ;m;

(b) Now one can deal with h as any other function. For e.g., one may want
to intergrate, or di�erentiate, or compose it with other functions. The
most interesting operation on h is an optimization (over y). We �rst
looked at:

min
y2Y

h(y) � min
y2Y

min
x2X

f(x; y)(2.4)

s.t. gi(x; y) � 0 8 i = 1; : : : ;m;

(c) It is an easy exercise to show that:

Theorem 2.0.1.

miny2Y minx2X f(x; y) = minx2X miny2Y f(x; y)
s.t. gi(x; y) � 0 8 i s.t. gi(x; y) � 0 8 i:

= minz2Z f(z)
s.t. gi(z) � 0 8 i;

where Z = X � Y; z = (x; y):

In this sense, such cascaded MPs behave just like multiple integrals
(order of integration does'nt matter).

(d) In the next lecture we will look at maxy2Y h(y).
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Lecture 3

Review of Vector Spaces

1. We continued the discussion on cascaded MPs, by considering:

max
y2Y

h(y) � max
y2Y

min
x2X

f(x; y)(3.1)

s.t. gi(x; y) � 0 8 i = 1; : : : ;m;

2. Using various examples, we illustrated that:

maxy2Y minx2X f(x; y)
??
= minx2X maxy2Y f(x; y)

s.t. gi(x; y) � 0 8 i s.t. gi(x; y) � 0 8 i;

where
??
= can be � or < or =.

3. We then proved1 the following theorem:

Theorem 3.0.1.

maxy2Y minx2X f(x; y) � minx2X maxy2Y f(x; y)
s.t. gi(x; y) � 0 8 i s.t. gi(x; y) � 0 8 i;

A simple proof appears here: https://en.wikipedia.org/wiki/Maxmin_

inequality.

4. Note that in the cascaded/recursive MPs (2.4,3.1), essentially the objective
function (of the outer MP) was de�ned using an MP (the inner MP). Needless
to say, one can also explore the possibility where the constraint function(s)
is(are) de�ned using an MP. For e.g., let gi(x) � miny2Y hi(y), then:

minx2X f(x) � minx2X f(x)
s.t. gi(x) � 0 8 i s.t. miny2Y hi(y) � 0 8 i;

1All proofs will either appear in hand-written notes or appropriate references will be explicitly
cited in these notes.
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5. We then argued that understanding the special structure implied by the
objective function, feasibility set, and more fundamentally, the underlying
space in which the variable lives, is important to understand the nature of
the associated MP. Hence we began with a review of vector spaces (since
in continuous optimization, the variables are assumed to live in Euclidean
spaces)2:

(a) Vector space is formally de�ned in page 9 of Sheldon Axler [1997].

(b) We gave examples of vector spaces | Euclidean, those with matrices,
functions etc.

(c) We identi�ed linear combination as an important operation (V is closed
under linear combinations by the axioms).

(d) We asked if every set of vectors V , has a subset of vectors, say B, such
that linear span of B, LIN(B) � fPm

i=1 �ivi j �i 2 R; vi 2 B 8 i = 1; : : : ;m;m 2 Ng,
i.e., the set of all vectors which can be expressed as linear combinations
of those in B, is equal to V ? Obviously such sets exist (for example
take B = V itself). Such sets are called as the spanning sets of V .

(e) A vector space is �nite-dimensional if there exists a spanning set of
�nite size. In this course we will restrict ourselves to �nite-dimensional
ones.

(f) We said that it will be great if i) the spanning set is small (smallest).
(Then the proposed representation will be highly compact) ii) the pro-
posed representation is one-to-one.

(g) We argued3 that answer to both goals is the same: a Basis, which is a
linearly independent, spanning set. A linearly independent set is a set
of vectors whose non-trivial (not all zero) linear combination can never
give a trivial vector (zero vector).

(h) Theorem 2.6 in Sheldon Axler [1997] says that cardinality of a linearly
independent set is always lesser than that of a spanning set. From this
it easily follows that cardinality of any basis of a vector space is the
same. Hence basis is indeed the smallest spanning set. The common
size of any basis is called the dimensionality of the vector space.

(i) Hence a basis is like a pair of goggles, through which the vector space
looks \simple". We noted that every �nite dimensional vector space has
a basis and is essentially equivalent to a Euclidean vector space of same
dimensionality. Also, a basis gives an inner/constitutional/compositional/primal

2Go through pages 1{13 in [Sheldon Axler, 1997]. Also go through related exercises.
3Refer pages 21-36 in [Sheldon Axler, 1997].
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description (a description of an object with help of parts in it) of the
vector space it spans.

(j) For the vector space examples, we noted a basis in each case, and com-
puted the dimensionality.

(k) Given a vector space V = (V;+; �), there exists subsets W � V , which
themselves form a vector space: W � (W;+; �) | such a subset is
called a linear set or linear variety and the resulting vector space is
called a subspace4 of the original vector space. In lectures, we may
interchangeably use the terms subspace and linear set (as long as it
does'nt create much confusion).

(l) We studied some examples of subspaces in various vector spaces and
noted their basis.

(m) Euclidean vector spaces are interesting not only because of lin. comb.,
but also because notions of dot-products, distances, projections and
other such interesting operations exist. In order to make abstract vector
spaces interesting, we de�ned a new operator < �; � >: V �V 7! R, called
the inner-product, which satis�es positive-de�niteness, symmetry and
linearity properties and extends the idea of a dot-product in Euclidean
spaces5. A vector space endowed with a valid inner-product is called an
inner-product space.

4It is important to note that the operators in the subspace are the same as that in the original
vector space.

5Refer pg 98-101 of [Sheldon Axler, 1997] for de�nition and examples.
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Lecture 4

Review of Inner-Product Spaces

1. We gave many examples of inner-products with Euclidean vectors, Matrices.
In particular, we noted that hv;wiM � v>Mw(M � 0) is the general form
of inner-products in Euclidean spaces (and hence analogous in any �nite
dimensional space). Since M induces the entire geometry (as we will see
later), it is called the kernel.

2. Innerproduct naturally induces a notion of orthogonality: v ? w ()
hv;wi = 0. We noted how notion of orthgonality changes with the kernel.
In particular, we noted that in the usual matrix space, the set of symmetric
and skew-symmetric matrices are orthogonal1. More interestingly, we noted
that symmetric and skew-symmetric matrices form sub-spaces whose dimen-
sionalties i.e., n(n+1)

2
; n(n�1)

2
, add up to n. Such (inner-product) subspaces

are said to be orthogonal complements of each other.

3. We then noted the induced notion of angle: we de�ned angle ∠v;w �
arccos

�
hu;vip

hu;ui
p
hv;vi

�
. We then proved the Cauchy-Schwartz inequality2,

which implied that the angle formula is well-de�ned.

4. We the de�ned induced norm kvk �
q
hv; vi. Then we showed (again using

Cauchy-Schwartz inequality) that the induced norm is a valid norm3.

5. Once the notion of norm is also in place, the notions of distance between
vectors, projections onto vectors/sets, orthogonal basis, geometric �gures
like sphere, parallelogram, cube, conic-sections, etc. naturally follow. Also,

1Sets are orthogonal if each pair of members from the sets are orthogonal.
2See 6.6 in Sheldon Axler [1997] for a proof (di�erent from that done in the lecture, but very

insightful).
3See 6.2-6.12 in Sheldon Axler [1997] for de�nition of norm etc.
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one can prove other basis geometric results like Pythgorean, Parallelogram
theorem etc.

6. Also, analysis de�nitions like Cauchy, convergent sequence, limits naturally
follow. An inner-product space that is complete (all Cauchy sequences con-
verge) is called a Hilbert space. In this course we will be concerned with
variables living in �nite-dimensional Hilbert spaces.

14



Lecture 5

Linear Sets

1. We noted1 that every �nite-dimensional Hilbert space has a �nitely sized
orthogonal/orthonormal basis, i.e., a basis who members have unit-norm
and every pair of members are orthogonal to each other.

2. We showed how using an orthogonal basis, one can show an equivalence
between any �nite-dimensional Hilbert space and Euclidean space of equal
dimension.

(a) Let B = fv1; :::; vng be an orthonormal basis of the n-dimensional
Hilbert space, H = (V; +V ; �V ; h�; �iV ). Let u =

Pn
i=1 �ivi and w =Pn

i=1 �ivi. Since B is a basis, v = w () �i = �i 8 i = 1; :::; n. This

proves that the map v 7! � �

2
664
�1
...
�n

3
775 is bijective.

(b) Interestingly, �1 �V v +V �2 �V w 7! �1

2
664
�1
...
�n

3
775 + �2

2
664
�1
...
�n

3
775. This shows

the equivalence of the linear combinations.

(c) More interestingly, hv;wiV = �>�. This gives the equivalence between
the inner-products.

(d) Hence all theorems/results we know in Euclidean spaces must hold in
any �nite-dimensional Hilbert space.

3. We talked about an operation called direct summing that will enable us
to join a Hilbert space of say Euclidean vectors with that of say matri-
ces: Given two inner-product/Hilbert spaces H1 = (V1; +1; �1; h�; �i1) and

1Cor. 6.24 in Sheldon Axler [1997].
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H2 = (V2; +2; �2; h�; �i2), we dened the direct sum of those, H � H1
LH2 �

(V�; +�; ��; h�; �i�), where V� � V1 � V2 (cartesian product), and for any
v = (v1; v2); w = (w1; w2) 2 V�, where v1; w1 2 V1; v2; w2 2 V2, we have
v+�w � (v1 +1 w1; v2 +2 w2) ; ���v � (��1v1; ��2v2), and hv;wi� � hv1; w1i1+
hv2; w2i2. It is an easy exercise to show that the direct sum is a well-de�ned
Hilbert space. This is the natural way of stacking up arbitrary spaces to
form big space. Note that with such a direct sum, the following two sub-
spaces are orthogonal complements of each other: S1 = f(v1; 02) j v1 2 V1g
and S2 = f(01; v2) j v2 2 V2g, where 01; 02 denote the additive identity el-
ements H1;H2 respectively. More importantly, if A = fa1; : : : ; ang is an
orthonormal basis of H1, and B = fb1; : : : ; bmg is an orthonormal basis of
H2, then C � f(a1; 02) ; : : : ; (an; 02) ; (01; b1) ; : : : ; (01; bm)g is an orthonormal
basis of H. Hence dim(H) = dim(H1)+dim(H2); justifying the name direct
sum.

4. We noted2 norms other than the induced norms.

5. We then began looking at special (sub)sets in Hilbert spaces (all through
we assume V = (V;+; �; h�; �i) is the underlying (�nite-dimensional) Hilbert
space).

6. We started with the familiar Linear Sets (L): sets that are closed under
linear combinations3, i.e., L = LIN(L). We call this the primal de�ni-
tion/characterization of linear sets. Needless to say, Basis of L is4 the mini-
mal way of representing L using the notion of linear combinations. We say
B is the primal/inner representation/description of L.

7. We realized that every linear set can also be described using the notion
of orthogonality. Let L be a linear set and B be a basis of subspace in-
duced by it. Let us de�ne the orthogonal complement of a set S, as,
S? � fv 2 V j hl; vi = 0 8 l 2 Sg. The following statements are true:

(a) L? is a linear set (follows from linearity of the inner product). Infact,
L? is a linear set even if L is not a linear (but an arbitrary) set. Let
us denote the basis of the subspace induced by L? as B?. Needless to
say, B? \B = f0g.

2Refer https://en.wikipedia.org/wiki/Norm_(mathematics), https://en.wikipedia.

org/wiki/Matrix_norm.
3Refer sections A.1.2, A.1.3, A.1.4, A.2.3, A.3.4 in Nemirovski [2005] for material on Linear

Sets.
4More precisely, B is the basis of the subspace induced by L.
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(b) By the rank-nullity theorem5, it follows that dim(L) + dim(L?) =
dim(V )6. From this and orthogonality, it follows that B? [ B is a
basis for V .

(c) A key result in duality is:

Theorem 5.0.1. L =
�
L?
�?
, whenever L is a linear set.

Note this need not be true if L is not a linear set, in which case L ��
L?
�?
.

(d) From the above it follows that L =
n
v 2 V j hl; vi = 0 8 l 2 B?

o
. We

call this as the dual de�nition/characterization of a linear set. We say
B? is the dual/outer representation/description of L. B? is also known
as the dual basis of L. In particular, linear sets are nothing but solution
sets of a system of homogeneous linear equations.

(e) L1 � L2 ) L?2 � L?1 .

8. If dim(L) �
j
n
2

k
, then one would describe L as LIN(B), else one would de-

scribe L as
n
v 2 V j hv; bi = 0 8 b 2 B?

o
. Thus one would at the maximum

require
j
n
2

k
vectors to represent any Linear set!

9. We named the special linear set of dimensionality one less than the vector
space as Hyperplane (through the origin). For e.g., line in 2-d, plane in
3-d etc. It was immediate that the dual de�nition is better suited for a
hyperplane: Hw � fx j hw; xi = 0g, where w 6= 0. It follows that all lin-
ear sets apart from V are either hyperplanes (through the origin) or their
intersections.

5Theorem 3.4 in Sheldon Axler [1997].
6this justi�es the name complement!
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Lecture 6

Linear Sets: Calculus & Topology

1. We proved the key duality result for linear sets: L =
�
L?
�?
.

2. We discussed1 operations that preserve linearity of sets:

(a) Given an arbitrary collection of sets S�; � 2 �, where � is the index
set2, we de�ne (arbitrary) intersection, \�2�S� � fx j x 2 S� 8 � 2 �g.
It is easy to see that (arbitrary) intersection of linear sets is linear.

(b) Given an arbitrary collection of sets S�; � 2 �, where � is the index
set3, we de�ne (arbitrary) union, [�2�S� � fx j 9� 2 � 3 x 2 S�g. It
is easy to give counter examples where union of two linear sets is not
linear.

(c) Given sets S1; : : : ; Sn and reals �1; : : : ; �n, we de�ne their linear combi-
nation as

Pn
i=1 �iSi � fPn

i=1 �ivi j vi 2 Si; 8 i = 1; : : : ; ng. It is easy to
show that linear combinations of linear sets are same as a simple sum-
mation of the same sets, and are linear sets. Infact, LIN (S1 [ S2) =
S1 + S2.

(d) If L is linear, then it's complement, Lc � fv 2 V j v =2 Lg, will not be
linear (infact Lc will not even contain 0).

(e) Given two Linear sets L1; L2, their Cartesian product, L1�L2 � f(v1; v2) j v1 2 L1; v2 2 L2g,
is also a linear set4.

1We encourage readers to think about two di�erent proof strategies henceforth. One based on
primal de�nition, and the other based on dual.

2Index set could be �nite, countably in�nite or uncountable.
3Index set could be �nite, countably in�nite or uncountable.
4This is a sub-result used in proving that Direct sum is a valid Hilbert space.
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(f) Given two sets S1; S2, we de�ne their set di�erence as S1nS2 � fv1 2 S1 j v1 =2 S2g.
Again, L1nL2 will not be linear for linear L1; L2 (infact L1nL2 will not
even contain 0).

3. We introduced some topological notions:

Closure: Given a set, S, closure5, Cl(S), is de�ned as the set comprised of
the limits of all convergent sequences formed with elements of S.

Closed set: S is closed i� S = Cl(S).

Interior Point: Given a set, S, a point x 2 S is said to be an interior point
of S i� B�(x) � S for some � > 0, where B�(x) � fv 2 V j kv � xk � �g
is the ball of radius � centered at x.

Interior: The set of all interior points of S is de�ned as the interior, int(S).
A set is said to have interior i� its interior is non-empty.

Boundary: Given a set S, boundary, �(S) � Cl(S)nint(S).
Bounded Set: A set S is bounded i� Br(0) � S for some �nite r > 0.

Compact: A set S is compact i� it is closed and bounded.

4. Here are some standard results in topology:

(a) Complementarity of open and closed sets: S is closed if and only if Sc

is open.

(b) (arbitrary) Intersection of closed sets is closed; (arbitrary) union of open
sets is open.

(c) Finite Union of closed sets is closed and �nite intersection of open sets
is open.

(d) (arbitrary) intersection of bounded sets is bounded. Finite union of
bounded sets is bounded.

5. Linear sets are closed6.

6. Linear sets, except the entire set of vectors, are not open. But as we will see
later, they are relatively open.

7. Linear sets, except the one containing only 0, are not bounded.

5B.1.6.A. in Nemirovski [2005].
6As all �nite dimensional spaces are equivalent to Euclidean space, which is complete.
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Lecture 7

Affine Sets

1. We de�ned a�ne sets as shifted linear sets: A is a�ne1 i� there exists a
linear set L and a 2 V , such that A = fag+ L.

2. We de�ned a�ne combination as linear combination with the restriction that
the combining coe�cients sum to unity.

3. We de�ned a�ne hull:

AFF (S) �
(

mX
i=1

�ivi j �i 2 R; vi 2 S 8 i = 1; : : : ;m;
mX
i=1

�i = 1;m 2 N
)
;

i.e., the set of all vectors which can be expressed as a�ne combinations of
those in the set.

4. We proved that A is a�ne i� A = AFF (A), which we took as the primal de�-
nition/characterization of A�ne sets. It was easy to de�ne notions of a�nely
spanning set, a�ne independence and a�ne basis (refer section A.3 in Ne-
mirovski [2005] for all related discussions/proofs). We will call a�ne basis
as the primal/inner representation/description.

5. We de�ned dimension, dim(A) � dim(L), which turned out to be one less
that the number of elements in the a�ne basis.

6. We proved the dual characterization/de�nition: A is a�ne with associated
linear set as L, withB? = fb1; : : : ; bmg as the basis for L?, i� there exist num-
bers �i 2 R; i = 1; : : : ;m, such that A = fv j hv; bii = �i; 8 i = 1; : : : ;mg :
In particular, this shows that a�ne sets are nothing but solution sets of

1Please refer sections A.3, A.4 in Nemirovski [2005] and optionally, section 1 in Rockafellar
[1996] for material on A�ne sets.
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(non-homogeneous) linear equations. We call (B?; �) as the dual/outer rep-
resentation/description of A, where � is the vector with entries as �i.

7. We call a�ne sets of dimensionality one less than the highest, as Hyper-
plane. Needless to say, the dual characterization is the most e�cient: Hw �
fx j hw; xi = bg, where w 6= 0; b 2 R. It follows that all a�ne sets, apart
from V , are either hyperplanes or their intersections.

8. We gave examples of a�ne sets, hyperplanes, and identi�ed their primal and
dual representations.

9. The operations that preserve a�nity and the topology remains analogous to
linear sets.
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Lecture 8

Cones

1. We de�ned conic combination as linear combination with the restriction that
the combining coe�cients must be non-negative.

2. We de�ned conic hull:

CONIC(S) �
(

mX
i=1

�ivi j �i 2 R+; vi 2 S 8 i = 1; : : : ;m;m 2 N
)
;

i.e., the set of all vectors which can be expressed as conic combinations of
those in the set.

3. We say that K is a cone/conic-set i� K = CONIC(K), which we took as
the primal de�nition/characterization of Conic sets.

4. We say S is a conicly spanning set of K i� K = CONIC(S). We realized
examples of cones with �nitely sized conicly spanning sets, which we hence-
forth call as Polyhedral Cones. We also saw examples like the ice-cream cone
(in 3d) and the psd cone (in space of Symmetry matrices), that are NOT
polyhedral cones. In each case we identi�ed a \minimal" conicly spanning
set:

(a) For the ice-cream cone (in 3d), a minimally conicly spanning set is the
unit circle at unit height.

(b) For the psd cone, a minimally conicly spanning set is the set of all
symmetric-rank-one matries i.e., matrices of the form xx>; x 2 Rn.
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Lecture 9

Cones: Duality & Algebra

1. We then generalized the notion of an orthogonal complement, and de�ned
the dual cone, S�, of a set S: S� � fv 2 V j hv; si � 0 s 2 Sg. It is an easy
exercise to show that S� is indeed a cone for any set S. We gave examples of
dual cones, and noted that the ice-cream and psd cones are dual to themselves
and hence are called as self-dual cones.

2. We proved that S� is always a closed set.

3. We them attempted proving an important duality result:

Theorem 9.0.1. For a closed cone K, we have K = (K�)�.

While it was easy to see that K � (K�)�, we said it is not straightforward to
show the converse. We noted that a separation theorem, which we will state
and prove in coming lectures on convex sets, will help proving it. Infact we
mentioned all duality concepts including that of notion of subgradients for
convex functions follow from this basic, fundamental, separation theorem.

4. For now, we assumed that the above conjecture is true and hence dual de-
scription of a closed cone is immediate:

Theorem 9.0.2. K is a closed cone if and only if it is intersection of
halfspaces through the origin.

Hence, we take this as the dual de�nition/characterization of Conic sets.

5. Another important result in duality is:

Theorem 9.0.3. K is a polyhedral cone if and only if it has a �nite dual
description.
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This we proved later while characterizing polyhedra.

6. The following results about algebra with cones K1;K2 are true:

(a) (Arbitrary) intersection of cones is a cone.

(b) Union of cones need not be a cone. However, CONIC(K1 [ K2) =
K1 +K2.

(c) (Any) linear combination of cones is a cone.

(d) Cartesian product of cones is a cone, and (K1 �K2)
� = K�

1 �K�
2 .

(e) Complement of a cone is never a cone.

(f) K1 � K2 ) K�
2 � K�

1 .

(g) Milutin-Dubovitski lemma: (K1 \K2)
� = K�

1 + K�
2 , for closed cones

K1;K2 whose sum is also closed1.

7. Following topological results hold for cones:

(a) Cones can be closed, open, neither, both.

(b) Cones are unbounded.

(c) Refer to exercise B.15 in Nemirovski [2005].

8. Refer sections B.1.4, B.2.6.B in Nemirovski [2005], section 2.6.1 in Boyd
and Vandenberghe [2004], and optionally relevant parts in sections 2, 14
in Rockafellar [1996], for discussion on cones.

1Proposition B.2.3 in Nemirovski [2005].
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Lecture 10

Convex sets: Polytopes

1. We say C is a convex set i� x; y 2 C; � 2 [0; 1] ) �x + (1 � �)y 2 C i.e., if
two points are in the set, then the entire line segment induced by them is
also in the set.

2. Motivated by above, we de�ned convex combination as linear combination
with the restriction that the combining coe�cients must be non-negative
and must sum to unity.

3. We de�ned convex hull:

CONV (S) �
(

mX
i=1

�ivi j �i 2 R+; vi 2 S 8 i = 1; : : : ;m;
mX
i=1

�i = 1;m 2 N
)
;

i.e., the set of all vectors which can be expressed as convex combinations of
those in the set.

4. Using induction, it was simple to show that C is convex if and only if
C = CONV (C), which we took as the primal de�nition/characterization
of Convex sets.

5. We looked at several examples including the Birkho� polytope1 in the matrix
space. This motivated us to de�ne a polytope: P is a polytope i� 9 S 3 P =
CONV (S); jSj 2 N. We argued that the set of permutation matrices (n!
matrices) generates the Birkho� polytope. The set of all matrices with every
row having a one in exactly one column position (nn matrices) generates the
set of all Stochastic matrices.

6. We then de�ned an n-dimensional simplex as CONV (S), where S is an
a�nely independent set of size n+ 1.

1https://en.wikipedia.org/wiki/Birkhoff_polytope.
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7. We de�ned dimension of an set as that of its a�ne hull i.e., dim(S) �
dim(AFF (S)). This motivates a new de�nition for convex sets: sets that
have all simplices (of the same dimension as the set) formed by points in
the set. So convex sets are \made up" of basic polytopes ranging from a
line-segment to a simplex.

8. Refer sections B.1.1-B.1.5 in Nemirovski [2005], sections 2.1-2.3 in Boyd and
Vandenberghe [2004]. Optionally, sections 2,3 in Rockafellar [1996].
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Lecture 11

Convex Sets: Polyhedra, Polar

1. We continued giving examples of convex sets:

(a) Polyhedron is a special convex set that is an intersection of a �nite
number of half spaces (that need not pass through origin).

(b) Shifted-Cones are sets of the form K + fa0g ; where K is a cone and
a0 2 V .

(c) Generic convex sets like unit sphere/ball: B = fv 2 V j kvk � 1g,
unit p-norm ball fv 2 Rn j kvkp � 1g ; where p 2 [0;1], ellipse: EM �n
v 2 Rn j v>Mv � 1

o
; where M � 0 (all centered at origin).

2. Motivated by polyhedra and intuition that all (closed) convex sets might
be (not necessarily �nite) intersections of half spaces, we generalized the
notion of dual cones: given a set S � V , we de�ne its polar as S� �
fv 2 V j hv; si � 1 8 s 2 Sg.

3. For many sets we visualized who the polar would look like. In particular, it
was easy to see that:

(a) Polar of a cone is same as (negative of) dual cone. Polar of a linear set
is same as its orthogonal complement.

(b) Polar of a set is a convex set, even if the set is non-convex.

(c) Polar of a set is a closed set, even if the set is not closed.

(d) Polar of a set contains origin, even if the set does not.

(e) S� = (CONV (S))�.

4. We then began proving the most important duality result for convex sets:
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Theorem 11.0.1. If C is a closed convex set containing origin, then
(C�)� = C. As a consequence, (K�)� = K, whenever K is a closed cone.

And,
�
L?
�?

= L, whenever L is a linear set.

Proving C � (C�)� was easy. The other way, proved in proposition B.2.2 in Ne-
mirovski [2005], requires the so-called separation theorem that will be stated
and proved in the next lecture.

5. We then covered de�nitions related to this theorem:

(a) We say two sets S1; S2 � V are strictly separated i� there exists a
w 2 V 6= 0, such that:

min
s12S1

hw; s1i > max
s22S2

hw; s2i:

Also, in this case, we say \w strictly separates S1; S2".

(b) Given a set S � V and x0 2 V , we de�ne projection of x0 onto S, as
any vector �S (x0) that satis�es:

�S (x0) 2 argmin
s2S

kx0 � sk:

We gave examples where the projection does not exist, where it exists
but is not unique, and where it uniquely exists.

6. Refer section B.2.6 in Nemirovski [2005], and section 14 in Rockafellar [1996].
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Lecture 12

Convex Set: Dual definition

1. We began by stating and proving1 the separation theorem:

Theorem 12.0.1. Let C be a closed convex set and x0 =2 C. Then

(a) �C (x0) exists and is unique.

(b) hx0 � �C (x0) ; x� �C (x0)i � 0 8 x 2 C.

As a consequence, x0 � �C (x0) strictly separates C and x0.

2. From theorem 11.0.1, it follows that:

Theorem 12.0.2. C is closed convex if and only if it is an intersection
of half spaces (that need not pass through origin).

We take this as the dual de�nition/characterization of (closed) convex sets.
The proof follows by shifting origin such that the set contains origin and
applying theorem 11.0.1 and then shifting back the origin.

3. Using above results we were able to show the following interesting result,
called as the (homogeneous) Farkas Lemma2:

Lemma 12.0.3. Consider the following system of inequalities:

Ax = b(12.1)

x � 0:

1Some proofs, like this one, appear in previous o�ering's notes: https:

//1drv.ms/b/s!Au6Zdrbq2x4phu1rCuc-ZBseLtnnuA, https://1drv.ms/b/s!

Au6Zdrbq2x4pgc9YPLmTTUMOHwfemg.
2Refer section B.2.4 in Nemirovski [2005]. Refer theorem 1.2.1 and exercises 1.2-1.4 for other

such \theorems on Alternative".
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The above system is solvable if and only if the following is not solvable:

A>y � 0(12.2)

b>y < 0:

4. Motivated by separation theorem's proof, we de�ned the notion of a support-
ing hyperplane: Given a set S � V and a point on the boundary, x0 2 @S,
we say that the hyperplane fx 2 V j hw; x� x0i = 0g is a supporting hyper-
plane of S at x0 i� hw; x� x0i � 0 8 x 2 S.

5. We then desired to show that all closed convex sets have a supporting hy-
perplane at all boundary points. We argued that this will need de�ning two
cones: the tangent and normal, which will be de�ned in the next lecture.

6. Read sections B.1.6, B.2.5 in Nemirovski [2005] and section 2.5 in Boyd and
Vandenberghe [2004]. Optional reading: section 11 in Rockafellar [1996].
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Lecture 13

Convex Sets: Supporting
Hyperplane, Polyhedral
Chracterization

1. We de�ned tangent cone1 of a set S at a point s0 2 S as all those directions
along which one can move from s0 and stay inside S. Formally, TS(s0) �
fh 2 V j 9t > 0 3 x0 + th 2 Sg.

2. After some examples, we easily showed that:

Theorem 13.0.1. For a convex set, tangent cone at any point is indeed
a cone. Moreover, TS(s0) = CONIC (fs� s0 j s 2 Sg).

3. We then de�ned its dual cone as the normal cone2: NS(s0) � (TS(s0))�.

4. Since by de�nition of a boundary point, x0, of a closed convex set, C,
there is atleast one direction moving along which one cannot stay inside
the set (for any small movement), it is clear that the tangent cone is not
V . Hence the Normal cone cannot be f0g, and there consequently there
exists a w 6= 0 2 NC(x0). By de�nition of Normal cone, it follows that
fx 2 V j hw; x� x0i = 0g is a supporting hyperplane of C at x0. We sum-
marize this as the following important theorem:

Theorem 13.0.2. Let C be a closed convex set and x0 2 @C. Then there
exists a supporting hyperplane for C at x0.

1Nemirovski [2005] calls this the radial cone.
2Boyd and Vandenberghe [2004] de�nes normal cone as the negative of the dual cone of the

tangent cone.
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5. We then proved that all polyhedra are polyhedral cones shifted by a polytope,
known as Minkowski-Weyl theorem:

Theorem 13.0.3. A set P is polyhedral if and only if there exist �nite
sets K;C such that P = CONIC(K) + CONV (C).

6. We proved this theorem by �rst showing that a cone is polyhedral if and only
if it has �nite dual description (refer theorem 4.5.1 in LAURITZEN [2009]),
using the Fourier-Motzkin's algorithm (theorem 1.2.2 in LAURITZEN [2009]).

7. While proving above, we de�ned projection of a set S1 onto S2 as

�S2(S1) �
�
s 2 arg max

s22S2
ks1 � s2k 3 s1 2 S1

�
:

8. Refer sections B.2.5 in Nemirovski [2005]. Section 2.5 in Boyd and Vanden-
berghe [2004], and section 11 in Rockafellar [1996].
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Lecture 14

Real-Valued Functions over
Hilbert Spaces

1. We quickly wrapped up our discussion on convex sets by noting:

(a) Following theorem gives a 1-d characterization for convex sets. The
utility of this theorem was illustrated while showing that fx j x>Ax+
b>x+ c � 0g is convex whenever A � 0 (and this set is non-empty):

Theorem 14.0.1. A set C is convex if and only if intersection of C
with any line is convex, whenever the intersection is non-empty.

(b) The following results about algebra with convex sets C1; C2 are true
(refer section B.1.5 in Nemirovski [2005]):

i. (Arbitrary) intersection of convex sets is a convex.

ii. Union of convex sets need not be convex. However, CONV (C1 [
C2) = C1 + C2.

iii. (Any) linear combination of convex sets is a convex set.

iv. Cartesian product of convex sets is a convex set.

v. Consider an A�ne mapping de�ned by y = Ax + b 2 Rm; x 2 Rn

where A is m� n and b 2 Rm.

A. C � Rn is convex ) its image under the a�ne mapping, i.e.,
fy = Ax+ b j x 2 Cg is convex.

B. C � Rm is convex ) its pre-image under the a�ne mapping,
i.e., fx j Ax+ b 2 Cg is convex.

vi. Complement of a convex set is never a convex set.

(c) Following topological results hold for convex sets:

i. Convex sets can be closed, open, neither, both.
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ii. Convex sets can be bounded, unbounded.

iii. We de�ned relatively interior point x0 of S i� B�(x0)\AFF (S) � S.
The set of all relatively interior points are relative interior rint(S).
We argued that all convex sets have non-empty relative interior (as
they contain simplices).

iv. Refer to section B.16 in Nemirovski [2005].

2. We then began study of the �nal ingredient of a MP, which is a real-valued
function over a subset in a Hilbert space i.e., f : V 7! Rext

1. We de�ne
domain of f as dom(f) � fx 2 V j �1 < f(x) <1g).

3. We de�ned (and gave examples) of some special sets associated with func-
tions:

(a) graph(f) � f(x; f(x)) j x 2 dom(f)g. By de�nition this set lies in the
direct sum of the Hilbert space in which the domain lies, and the space
of reals.

(b) epi(f) � f(x; y) j x 2 dom(f); f(x) � yg. By de�nition this set lies in
the direct sum of the Hilbert space in which the domain lies, and the
space of reals.

(c) Level set of f at t 2 R: Lt(f) � fx 2 dom(f) j f(x) � tg. By de�nition
this set lies in the space same as the domain.

4. We then de�ned some topologically related concepts:

(a) f is said to be closed i� its epigraph is a closed set.

(b) f is said to be bounded above i� maxx2dom(f) f(x) <1. f is said to be
bounded below i� minx2dom(f) f(x) > �1.

(c) f is said to be continuous at x0 2 dom(f) i� for every convergent
sequence in the domain to it, fxn 2 dom(f)g ! x0, we have that
ff (xn)g ! f(x0). f is said to be continuous (everywhere) i� it is
continuous at every point in its domain.

(d) f is said to be L-Lipschitz continuous (or simply L-conts) i� x; y 2
dom(f) ) jf(x) � f(y)j � Lkx � yk. We showed that every L-conts
function is continuous. However functions like the simple 1-d quadratic
is continuous but not L-conts.

1We consider the extended reals as the co-domain because we already know that the objective
could itself be de�ned as the value of an MP (like in Cascaded MPs), which could be �1.
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(e) f is said to be di�erentiable at x0 2 int(dom(f)) i�

9 rf(x0) 2 V 3 lim
x!x0

f(x)� f(x0)� hrf(x0); x� x0i
kx� x0k = 0:

If such a rf(x0) exists, then it will be unique and it is called as the
gradient vector. It is a simple exercise to show that hrf(x0); ui =

limh!0
f(x0+hu)�f(x0)

h
� Df(x0;u), the directional derivative of f at x0

in the direction2 u. More speci�cally:

Theorem 14.0.2. The ith entry of rf(x) is @f(x)
@xi

.

(f) f : Rn 7! R is said to be twice-di�erentiable at x0 2 int(dom(f)) i�
9 rf(x0) 2 Rn r2f(x0) 2 Rn�n 3

lim
x!x0

f(x)� f(x0)�rf(x0)> (x� x0)� 1
2
(x� x0)

>r2f(x0) (x� x0)

kx� x0k2 = 0:

If such a r2f(x0) exists, then it will be unique and it is called as the
Hessian matrix. A basic result in calculus says that:

Theorem 14.0.3. The (i; j)th entry in r2f(x) is @2f(x)
@xi@xj

. Now de�ne

functions gx0u(t) � f(x0 + tu). Then,
d2gx0u(t)

dt2
= u>r2f(x0 + tu)u.

2http://people.whitman.edu/~hundledr/courses/M225/Ch14/Example_

DirectionalDeriv.pdf provides an example where all directional derivatives exist but the
function is NOT di�erentiable!
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Lecture 15

Linear, Affine and Conic Functions

1. A function f : L � V 7! R is linear1 i� L is a linear set, and f(
Pn

i=1 �ixi) =Pn
i=1 �if(xi) 8 xi 2 L; �i 2 R; n 2 N i.e., Image of a linear combination of

some points under the function is the same linear combination of images of
those points. Basically, functions where linear intra-extrapolation is exact.
We take this as the primal de�nition.

2. After giving some examples we noted the following important result that
was very easy to prove:

Theorem 15.0.1. f is linear if and only if graph(f) is a linear set (in
direct sum space VLR) with a dimensionality same2 as that of dom(f).

(a) We �rst showed f is linear if and only if graph(f) is a linear set. This
was straight-forward to prove. The proof also showed that if graph of a
function is linear, then the function must be of the form f(x) = hw; xi
for some w 2 L, which is itself a linear function.

(b) We then noted that dim(dom(f)) � dim(graph(f)) � dim(dom(f)) +
1. Also, since (x; y) =2 graph(f) whenever y 6= f(x), the dimensionality
of the linear set is not dim(dom(f)) + 1. Hence dim(graph(f)) must
be dim(dom(f)).

3. From the above, the dual de�nition follows:

1For the extended real number counterpart, the de�nition reads like: A function f : V 7! Rext

is linear i� f(
P

n

i=1
�ixi) =

P
n

i=1
�if(xi) 8 xi 2 dom(f); �i 2 R; n 2 N, and dom(f) is a linear

set. For linear functions, we follow the convention that f(x) =1 8 x =2 dom(f).
2In the space of L

L
R the graph is a hyperplane through the origin. Here L is the space

induced by L.
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Theorem 15.0.2. Riesz representation theorem: A function f : L 7!
R, where L is linear, is linear i� there exists3 a w 2 L such that f(x) =
hw; xi 8 x 2 L.4 Moreover5, the space of linear functions on L, called
the dual space, is equivalent to the space induced by L itself.

4. Refer Section B.2.8 in Nemirovski [2005], sections B.2.1-B.2.3 in Nemirovski
[2005] (these were not covered in lectures but very useful to know); relevant
parts of sections 17,19,21 in Rockafellar [1996].

5. Once linear functions are studied, a�ne6 functions (and analogous results)
are immediate: A function f : A 7! R is a�ne i� A is a�ne and f(

Pn
i=1 �ixi) =Pn

i=1 �if(xi) 8 xi 2 A; �i 2 R 3 Pn
i=1 �i = 1; n 2 N i.e., Image of an a�ne

combination of some points under the function is the same a�ne combination
of images of those points. We take this as the primal de�nition. Needless to
say, all linear functions are a�ne.

6. Again, we can show:

Theorem 15.0.3. f is a�ne if and only if graph(f) is an a�ne set of
dimensionality same as that of A. If LA is the linear set associated
with A, f is a�ne7 if and only if there exists a u 2 LA; b 2 R such that
f(x) = hu; xi+ b. This is the dual de�nition.

7. A function f : K 7! R is conic8 i�K is a cone and f(
Pn

i=1 �ixi) �
Pn

i=1 �if(xi) 8 xi 2
K;�i � 0; n 2 N i.e., Image of a conic combination of some points under
the function under-estimates the same conic combination of images of those
points. We take this as the primal de�nition. Needless to say, all linear
functions are conic. We proved that all norms are conic functions.

8. It was easy to show that:

Theorem 15.0.4. f is conic if and only if epi(f) is conic.

3This statemen can also be alternatively proved using orthonormal basis for L.
4For the extended real number counterpart, the dual de�nition reads like: A function f : V 7!

Rext is linear i� (a) L � dom(f) is a linear set, (b) there exists a w 2 L such that f(x) =
hw; xi 8 x 2 dom(f), and dom(f) is a linear set. For linear functions, we follow the convention
that f(x) =1 8 x =2 dom(f).

5This additional quali�cation is left as an exercise to be proven.
6For the extended real number counterpart, the de�nition reads like: A function f : V 7! Rext is

a�ne i� f(
P

n

i=1
�ixi) =

P
n

i=1
�if(xi) 8 xi 2 dom(f); �i 2 R 3

P
n

i=1
�i = 1; n 2 N, and dom(f)

is an a�ne set. For a�ne functions, we follow the convention that f(x) =1 8 x =2 dom(f).
7For the extended real number counterpart, everything is the same with the additional conven-

tion that f(x) =1 8 x =2 dom(f).
8For the extended real number counterpart, everything is the same with the additional conven-

tion that f(x) =1 8 x =2 dom(f).
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9. We gave many examples: all semi-norms are conic. We gave examples of
conic functions that are not dened on entire V , those whose value can be
negative etc.
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Lecture 16

Dual Definition and Support
Functions

1. We de�ned a huge family of functions: Support function of a set C � V ,
evaluated at x 2 V , is de�ned as SC(x) � maxy2Chx; yi. It was easy to show
that support function is always a conic function. Moreover, it is also easy to
show that its a closed function (as its epigraph is de�ned by an intersection
of halfspaces).

2. From the dual de�nition of closed cones, it was clear that:

Theorem 16.0.1. A function is closed conic if and only if it is a support
function (for some set). In other words, a function is closed conic if
and only if it is pointwise maximum of a set of linear minorants of it.

g is said to be a minorant of f i� g(x) � f(x) 8 x 2 V . This theorem
provides the dual de�nition for (closed) conic functions.

3. After providing many examples of support functions, we de�ned the support
function of a unit-norm ball (centered at origin) as the dual norm:

kxk� � max
y2V

hx; yi;
s.t. kyk � 1:

It was easy to show that dual norm is indeed as norm.

4. We then de�ned the dual function, f�: a function whose epigraph is the dual
cone of the epigraph of a given function1, f . We noted examples of functions,

1Note that dual function can be de�ned for non-conic functions too!
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whose dual function does not exist, by citing functions whose dual cone can
never be a (valid) epigraph. Then we showed that:

Theorem 16.0.2. Let f be a closed conic function whose dual function,
f�, exists. Then:

f�(x) = max
y2V

hx;�yi;
s.t. f(y) � 1:

Moreover, (f�)� = f . For such functions, Theorem 16.0.1 is hence a
corollary of this theorem i.e., Every closed conic function, f , is the
support function of the set, fx j f�(�x) � 1g, provided f� exists.

5. The proof follows from that written for theorem 16.0.1 and the fact that
f(�x) = �f(x) if � � 0.

6. Refer section 13 in Rockafellar [1996] for conic functions.
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Lecture 17

Convex Functions

1. A function f : C 7! R is convex1 i� C is convex and f (�x+ (1� �) y) �
�f(x) + (1� �) f(y) 8 � 2 [0; 1]. Using mathematical induction we showed
that:

Theorem 17.0.1. If dom(f) is convex, then f is convex if and only if
f(
Pn

i=1 �ixi) �
Pn

i=1 �if(xi) 8 xi 2 A; �i � 0 3 Pn
i=1 �i = 1; n 2 N. We

take this as the primal de�nition.

Needless to say, all linear, a�ne, conic functions are convex.

2. We gave our �rst non-conic example of a convex function as f(x) = kxk2,
where k � k is any valid norm (in some abstract space). It was easy to show
this from the primal de�nition. Nevertheless, we soon realized we will need
more de�nitions if we need to give more examples.

3. We noted the famous Jensen's inequality, from which many other fundamen-
tal inequalities can be derived2:

Theorem 17.0.2. If f is convex and X is a random variable such that
E [f (X)] <1, then: f (E [X]) � E [f (X)].

Note that the condition in Jensen's inequality with a discrete random vari-
able taking �nite values is same as the primal de�nition (Hence this in-
equality can be taken as a \Stochastic" de�nition for convex functions). We

1For the extended real number counterpart, everything is the same with the additional conven-
tion that f(x) =1 8 x =2 dom(f).

2Refer section 3.1.9 in Boyd and Vandenberghe [2004]. See proof2 in https://en.wikipedia.

org/wiki/Jensen%27s_inequality#Proofs.
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mentioned that many fundamental inequalities like the (generalized) AM-
GM, Holders etc., are a consequence of Jensens inequality (with the convex
function3 as � log(x).

4. Again, it was easy to show that:

Theorem 17.0.3. f is a convex function if and only if epi(f) is a convex
set.

5. We noted examples of convex functions whose epigraphs are not closed and
those which are convex in the interior of their domains but not convex in
the entire domain.

6. We named a special convex function: Indicator function of a set S evaluated

at x 2 V is de�ned as IS(x) �
(

0 if x 2 S;
1 else:

. Needless to say, IC , is

convex if and only if C is convex.

7. We then generalized the notion of support function, which is nothing but
a pointwise maximum of a set of linear functions, to the notion of Fenchel
dual/Conjugate/Legendre Transformation, f

0

, of (an arbitrary) function f :

(17.1) f
0

(x) � max
y2V

hx; yi � f(y);

which is nothing but pointwise maximum of a set of a�ne functions. Note
that indeed conjugate generalizes support function: I

0

C = SC . In other words,
for (the restricted class of) indicator functions, the notion of conjugate is
exactly same as that of Support function.

8. It was easy to show that conjugate of any function is closed convex.

9. We computed (analytical forms) for conjugates of some functions.

10. Sections 3.1.1, 3.1.7,3.1.8,3.1.9 in Boyd and Vandenberghe [2004]; C.1 in Ne-
mirovski [2005]; relevant parts in section 4 in Rockafellar [1996].

3We will prove � log(x) is a convex function later.
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Lecture 18

Convex Functions: Duality and
Sub-gradients

1. Using the \epigraph" trick we wrote down a relationship between conjugate
and dual function of closed conic functions: f

0

(x) = I�L1(f�)(x),. In partic-
ular, this shows that conjugate is not a generalization of the notion of dual
function1.

2. We then noted the following important duality theorem:

Theorem 18.0.1. If f is closed convex, then
�
f
0

�0
= f .

3. From the above theorem, the dual de�nition of (closed) convex function is
immediate:

Theorem 18.0.2. f is closed convex if and only if it is conjugate of some
functions. In other words a function is closed convex if and only if it is
pointwise maximum of a set of a�ne minorants of it.

4. We mentioned that global properties of a function turn out to be local prop-
erties of the conjugate and vice-versa. This is the key advantage of this
duality relationship. For example, f

0

(0), which is a local property of con-
jugate is equal to �miny2V f(y), which is a global property of the original
function. Similarly, look at theorem 20.0.4.

5. The notion of conjugate also gives the following inequality: f(x) + f
0

(y) �
hx; yi 8 x; y 2 V . This is called as the Fenchel's inequality. Again, many
fundamental inequalities can be derived from this.

1Bonus marks for those who derive formulae for the generalization of dual function.
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6. Then we began looking more closely at the vector(s) de�ning the tightest
a�ne minorants (the supporting hyperplane). This lead to the following
de�nition: A vector v(x0) 2 V is said to be a sub-gradient of f at x0 2
dom(f) i� f(x) � f(x0) + hv(x0); x� x0i 8 x 2 V . This inequality is called
as the sub-gradient inequality.

7. We noted examples where sub-gradient does not exist, exists but not unique,
uniquely exists. The set of all sub-gradients of f at x0 2 dom(f) is known
as the sub-di�erential set, @f(x0). f is said to be sub-di�erentiable at x0
i� @f(x0) 6= ;. A function is sub-di�erentiable i� it is sub-di�erentiable at
every point in its domain.

8. From theorem 13.0.2, one can show that:

Theorem 18.0.3. If f is convex, then it is sub-di�erentiable in the rel-
ative interior of its domain2.

2Bonus marks for students who give an example of a convex function that is NOT sub-
di�erentiable at a boundary point of its domain.
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Lecture 19

Convex Functions: Sub-gradients

1. From the sub-gradient inequality, we computed the sub-gradients for various
functions.
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Lecture 20

Convex Functions: First-order
Characterization

1. It is easy to show that:

Theorem 20.0.1. The sub-di�erential set is a convex set (whenever it is
non-empty). The Sub-di�erential set at an interior point in the domain
is bounded.

2. We have the result:

Theorem 20.0.2. Let f be a convex function and x0 2 int(dom(f)). f is
di�erentiable at x0 if and only if the gradient is the only sub-gradient
at x0 i.e., @f(x0) = frf(x0)g.

The proof for only if part is easy1: for any subgradient v (at x0), we must

have hv; ui � f(x0+hu)�f(x0)
h

. Because it is di�erentiable at x0, talking limits
on both sides of the inequality gives: hv; ui � Df(x0;u) = hrf(x0); ui. Since
this is true for all u, we have v = rf(x0). For proof of the if part, please
refer theorem 25.1 in Rockafellar [1996].

3. We next noted that functions with open domain are convex if and only if
they are sub-di�erentiable. For di�erentiable functions with open domain,
convexity is same as gradient satisfying sub-gradient inequality. We write
these observations as the following �rst-order characterization:

Theorem 20.0.3. Let f be a continuous function de�ned on a convex
domain, then f is convex if and only if it is sub-di�erentiable in the

1Prop. C.6.5 in Nemirovski [2005] provides an alternate proof.
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domain's (relative) interior. Let g be a continuous function on a convex
domain, and is di�erentiable in its (relative) interior, then g is convex
if and only if the gradient is a sub-gradient in the (relative) interior.

4. From above arguments it is easy to show that:

Theorem 20.0.4.

@f(x0) = argmax
y2V

hx0; yi � f
0

(y):

5. Read sections C.6.3, C.6.2, C.2.2 in Nemirovski [2005]; section 3.3 in Boyd
and Vandenberghe [2004], section 12, 26, 23 in Rockafellar [1996].
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Lecture 21

Second-order Characterization

1. We noted the important result that helps one in computing a sub-gradient:

Theorem 21.0.1. Let f = max (f1; : : : ; fn). Let all fi be convex, then f
is also convex. Moreover, if I0 � f1; : : : ; ng is an index set such that
f(x0) = fi(x0) 8 i 2 I0; f(x0) > fj(x0) 8 j 2 Ic0, then

@f(x0) = CONV ([i2I0@fi (x0)) :

Again, we easily proved RHS � LHS and left the converse as bonus a exercise.

2. From sub-gradient inequality it follows that �@f(x0) � NLf(x0)(f)
(x0). This

further says1, �CONIC (@f(x0)) � NLf(x0)(f)
(x0). Assuming the converse is

also true2:

Theorem 21.0.2. If f is a convex function, x0 2 int(dom(f)), and
@f(x0) 6= f0g, then

�CONIC (@f(x0)) = NLf(x0)(f)
(x0);

we gave examples of cases where a sub-gradient direction need not be an
instantaneous ascent direction. However, it is clear that the gradient direc-
tion (if it exists) is always an instantaneous ascent direction. This is the
fundamental reason behind why non-di�erential functions are more di�cult
to optimize, even in the convex regime.

1f is convex implies all level sets are convex, which implies, the normal cone is indeed a cone.
Hence if a set (sub-di�erential set) is a subset of this cone, then the set's (sub-di�erential set's)
conic hull must also belong to this cone (Normal cone).

2Bonus marks to the student who proves the converse
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3. We then moved to second-order characterization and proved the following
theorem:

Theorem 21.0.3. f : (a; b) 7! R is convex3 if and only if d2f(t)
dt2

� 0 8 t 2
(a; b). Moreover, a continuous function g : [a; b] 7! R is convex if and

only if d2g(t)
dt2

� 0 8 t 2 (a; b).

4. From the de�nition of convex functions and the above, the following theorem
is immediate:

Theorem 21.0.4. Let f be a function de�ned over a convex domain that
is twice-di�erentiable in the interior of its domain and is continuous
everywhere. For every x0; u 2 C, de�ne the 1-d restriction gx0u given
by: gx0u(t) � f(x0 + tu) 8 t 3 x0 + tu 2 C. f is convex if and only if
d2gx0u(t)

dt2
� 0 8 t 2 int(dom(gx0u)); 8 x0; u.

In the lecture, we mentioned that the above turns out to be an \easy" de�ni-
tion for many example functions, especially the ones in complicated Hilbert
spaces.

5. From the above and theorem 14.0.3, it follows that:

Theorem 21.0.5. A continuous function de�ned on a convex domain
and that is twice-di�erentiable in the domain's interior is convex if and
only if the Hessian is psd at any point in the domain's interior.

6. Refer sections C.3, C.2.2 in Nemirovski [2005]; Chapter 3 and especially 3.1.3
and 3.1.4 in Boyd and Vandenberghe [2004], relevant parts in sections 23-25
in Rockafellar [1996].

3For the �rst statement in the theorem, \a" may be �1 and/or \b" may be 1.
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Lecture 22

Convex Programs

1. An MP (1.3) is said to be a Convex Program (CP) i� its objective, f , and
all constraint functions, gi, are convex. Needless to say, domain of a CP will
hence be always convex.

2. After giving examples of CPs, we noted the following fundamental questions
about CPs:

(a) What are some su�cient conditions for CPs being bounded ? The
answer we noted was:

Theorem 22.0.1. A CP is bounded whenever its feasibility set is
bounded.

(b) What are some su�cient conditions for CPs being solvable ? The answer
we noted was:

Theorem 22.0.2. A CP is solvable whenever its feasibility set is
compact and its objective is continuous.

(c) What are some su�cient conditions for CPs being uniquely solvable ?

(d) What (�rst order) conditions characteize optimality (of a candidate) ?
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Lecture 23

First order Optimality conditions

1. In view of the third question, we de�ned strictly convex functions: A function
f : C 7! R is strictly convex i� C is convex and f (�x+ (1� �) y) < �f(x)+
(1� �) f(y) 8 � 2 (0; 1). Needless to say, all strictly convex functions are
convex. The following theorem was immediate:

Theorem 23.0.1. A CP is uniquely solvable whenever its feasibility set
is compact, its objective is continuous, and strictly convex.

2. We then de�ned Unconstrained Convex Programs: CPs whose domain is the
entire set of vectors (that form a �nite dimensional Hilbert space) and whose
feasibility set is same as its domain. Equivalently, a CP whose domain is
entire set of vectors and there are no constraints is an unconstrained CP i.e.,
CPs of the form minx2V f(x). The following theorem was easy to prove:

Theorem 23.0.2. Let f be a convex function, such that dom(f) = V .
Then,

x� 2 argmin
x2V

f(x) () 0 2 @f(x�):

3. Infact, we then generalized this to:

Theorem 23.0.3. Let (1.3) be a CP with a di�erential objective i.e., f
is di�erentiable everywhere in X . Then,

x� is a solution to (1.3) () rf(x�) 2 NF(x
�):

4. In the subsequent lecture we will write down simpli�ed expressions for the
normal cone of feasibility set for special classes of CPs and re-write the above
theorem 23.0.31 appropriately.

1Bonus marks to students who generalize this theorem to the case where the objective is NOT
di�erentiable.
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Lecture 24

KKT conditions

1. We begin by de�ning Polyhedrally Constrained Convex Programs (PCCPs)
as CPs with an open domain, and the constrained functions are all restricted
to be a�ne i.e., CPs of the form:

min
x2X

f(x)(24.1)

s.t. hai; xi � bi 8 i = 1; : : : ;m;

where X is open and f is convex.

2. The following theorem follows from theorem 23.0.3:

Theorem 24.0.1. Let (24.1) be a CP with di�erentiable objective. Then,
x� is a solution to (24.1) if and only if there exists �� 2 Rm such that:

(a) x� 2 X , hai; x�i � bi; �
�
i � 0 8 i = 1; : : : ;m (feasibility conditions).

(b) ��i (hai; x�i � bi) = 0 8 i = 1; : : : ;m (complementary slackness condi-
tions).

(c) rf(x�) +Pm
i=1 �

�
iai = 0 (gradient conditions).

3. We then de�ned a regular CP as a CP (1.3) with the domain restricted to be
(convex) open, all functions (objective, constraint) restricted to be (convex)
di�erentiable and the Slater's condition is satis�ed. Slater's condition says
that for each non-a�ne constraint, there must exist xi 2 X 3 gi(xi) < 0.
We then de�ned a KKT point (x�; ��) as any pair x�; �� that satisfy the
following three (sets of) conditions:

(a) x� 2 X , gi(x�) � 0; ��i � 0 8 i = 1; : : : ;m (feasibility conditions).

(b) ��igi(x
�) = 0 8 i = 1; : : : ;m (complementary slackness conditions).
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(c) rf(x�) +Pm
i=1 �

�
irgi(x�) = 0 (gradient conditions).

4. From theorem 23.0.3:

Theorem 24.0.2. x� is a solution to a regular CP if and only if there
exists �� 2 Rm such that (x�; ��) is a KKT point.
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Lecture 25

KKT conditions: Examples

1. We discussed an example where the KKT conditions can be used to derive
analytical form for the solution of the optimization problem that arises in
de�ning dual norm of (entrywise) p-norm.
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Lecture 26

Lagrange Duality

1. Through examples, we noted that the advantages of KKT conditions are
to i) arrive at optimal solutions analytically ii) get certi�cate of optimality
for a given feasible solution iii) exhaustively list all optimal solutions iv)
get analytical form (instead of actual) optimal solution v) obtain analytical
expression for optimal value vi) compare optimal solutions, optimal values
vii) Motivates numerical methods for solving and serves as stopping-criteria
vii) Motivates dual and provides dual solution too, as we shall see shortly.

2. From our experience with notions of orthogonal complement, dual cone,
polar, dual function, conjugate, we then noted desirable properties to de�ne
a \dual" MP:

Convexity: We insist that dual of any MP must be a convex program. For
e.g., polar of any set is a convex set, conjugate of any function is convex
etc.

Outer Description: We insist that dual of a min MP is a max MP such
that value of the \primal" minimization MP at any feasible solution
is less than that of the dual at any of its feasible solution. Then, the
function values in primal will not \overlap" with those in dual. For
e.g., vectors in orthogonal complement do not overlap with the set and
provide an \outer description"! This is more formally called as principle
of Weak Duality.

(A)symmetry: We insist that the optimal value of primal, if its a convex
program, is equal to that of its dual. This is modeled from facts like:
polar of polar of a convex set (that is closed and has origin) is the
original set, conjugate of conjugate is original function. If P � D �
D(D) and D(D) = P , then P = D. So, we insist that the primal and
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dual have same optimal value. This is formally called as principle of
Strong Duality.

Inheritance: We insist that when we de�ne a dual, we reuse some older
notions of duality like conjugate, dual cone etc. Using these existing
notions, one should be able write down a dual for a given MP.

3. We began by studying a particular dual, called Lagrange dual, that satis�es
all above desirables.

4. Given an MP (1.3), henceforth referred to as the primal, we de�ned La-
grangian: L(x; �) � f(x) +

Pm
i=1 �igi(x). It's domain is X � Rm. We call x

as primal variables, and �i as Lagrange multipliers or Lagrange Dual vari-
ables or simply, dual variables. We then de�ne the Lagrange dual function:
L(�) � minx2X L(x; �). Finally, we de�ne the Lagrange Dual Problem as:

max
�2Rm

L(�);(26.1)

s.t. � � 0:

5. It was an easy exercise to show:

Theorem 26.0.1. Let P be the value of (an arbitrary, perhaps non-
convex) MP given by (1.3), and D be that of it's Lagrange dual (26.1).
Then, P (Weak Duality). Moreover, (26.1) is (always) a Convex Pro-
gram.
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Lecture 27

Lagrange Dual: Strong Duality
and examples

1. From KKT conditions, it follows that:

Theorem 27.0.1. Let (1.3) be a regular convex program that is solvable
and the objective, constraint functions are di�erentiable. Then, value
of (1.3) is equal to that of its Lagrange dual (26.1) i.e., Strong Duality
holds1. Moreover, the dual is also solvable and (x�; ��) is a KKT point
for (1.3) if and only if x� is a solution for (1.3) and �� is a solution for
(26.1).

Infact, this theorem can be tightened: theorem D.2.2 in Nemirovski [2005];
however proof is more involved. We henceforth assume D.2.2 is true.

2. Our proof also clearly shows how the Lagrange dual function is infact a
conjugate function. Hence all the 4 desirable properties are satis�ed by the
Lagrange Dual Problem.

3. We note that the following are the advantages of analyzing the Lagrange
dual problem:

(a) Irrespective of the space in which primal variables lie, the dual variables
lie in Euclidean space! This makes it easy for writing (numerical) solvers
for problems in any domain.

(b) If primal is also in Euclidean space, say Rn, then the number of variables
and constraints in primal, dual are respectively: n;m, andm;m. Hence
associated trade-o�s apply in numerically solving them.

1Note that these are merely su�cient conditions for strong duality. There are striking examples
of non-convex problems where strong duality holds (refer section 3.5 in Nemirovski [2005]).
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(c) Dual typically problem an alternative view of the optimization prob-
lem that may lead to profound intuitions and/or e�cient solvers. For
e.g., the dual problem of minimizing distance between two polytopes
happens to be that of maximally separating them2.

(d) Even feasible solutions to the dual gives profound insights into the pri-
mal: For example, Value of dual at any dual feasible point is a lower
bound on the primal. Moreover, at optimality, if a dual variable is
non-zero, then the corresponding constraint in primal will be active (by
complementary slackness).

(e) Leads to theorems on alternative as shown in Nemirovski [2005].

(f) Most importantly, dual gives a nice \convex approximation" (lower
bound) to non-convex problems.

4. We then wrote down simpli�ed forms for the Lagrange dual for special classes
of Convex Programs:

5. We de�ned a Linear Program (LP) as a special CP of the form:

min
x2V

hc; xi;(27.1)

s.t. hai; xi � bi 8 i = 1; : : : ;m:

Theorem 27.0.2. The Lagrange dual of (27.1) is:

max
�2Rm

�b>�;(27.2)

s.t. � � 0; c+
Pm

i=1 �iai = 0:

This again can be written as an LP. Hence self-duality holds for LPs.

6. We de�ned a Quadratic Program (QP) as an MP of the form:

min
x2Rn

1
2
x>Px+ q>x;(27.3)

s.t. a>i x � bi 8 i = 1; : : : ;m:

7. We noted that this will be a convex program if and only if P � 0. Moreover,
the objective will be strictly convex if and only if P � 0.

Theorem 27.0.3. If P � 0, the Lagrange dual of (27.3) is:

max
�2Rm

�1
2
�>A>P�1A�� �>

�
A>P�1q + b

�
� 1

2
q>P�1q;(27.4)

s.t. � � 0:

This again can be written as a convex QP, hence self-duality holds.

2Refer http://www.robots.ox.ac.uk/~cvrg/bennett00duality.pdf for details.
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Lecture 28

Conic Programs and Duality

1. We derived the Lagrange dual problem for a general convex QP:

Theorem 28.0.1. If P � 0, then the Lagrange dual of QP (27.3) is:

max
�2Rm;t2R

t;(28.1)

s.t.

"
P q +

Pm
i=1 �iai

q> +
Pm

i=1 �ia
>
i �2 (Pm

i=1 �ibi + t)

#
� 0; � � 0:

2. Motivated by the above (and generalizing LPs) we de�ned a Semi-De�nite
Program (SDP):

min
x2Rn

c>x;(28.2)

s.t. B �Pn
i=1 xiAi � 0:

Here the matrices B;Ai are symmetric matrices of size m. The constraints
of the form in SDP are known as Linear Matrix Inequalities (LMI).

3. We note that if all matrices B;Ai are diagonal matrices, then SDP is same
as LP. Secondly, (27.4) can be written as an SDP.

4. SDP happen to be an enormous class of CPs, with huge number of applica-
tions. Section 3.2 in Nemirovski [2005] presents a host of sets that can be
represented by LMIs.

5. Further generalizing SDPs, we de�ned Conic Programs:

min
x2V

hc; xiV ;(28.3)

s.t. b�W l(x) 2 K �W:
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Here V;W are vector sets from di�erent vector spaces. For e.g., in SDPs,
V = Rn and W = Sm (symmetric matrices). a �W b = a +W (�1:b), where
+W is the addition operator in W space. h�; �iV is the inner-product in V
space. l : V 7! W is a linear function (de�nition same as with scalar valued
functions). K is a closed cone.

6. It is easy to see that LPs, QPs, SDPs, can all be written in (28.3) form.

7. We de�ned conic dual of (28.3) as1:

max
y2W

�hb; yiW ;(28.4)

s.t. l>(y) +V c = 0; y 2 K� �W:

8. Interestingly, in special cases of LP, QP etc., the Lagrange dual (when primal
is written in (1.3) form) will match Conic Dual (when primal i written in
(28.3) form).

Theorem 28.0.2. Conic dual is (always) convex and, the Value of (28.3)
� value of (28.4), even if K is arbitrary. If K is closed convex, their
values are the same.

The proof follows from in�mal convolution theorem and also highlights the
optimality conditions for this case.

1Holds even in case K is an arbitrary set.
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