
CS5580: Practice Problems

Note: Work out all problems on your own. If you think your answer is
NOT satisfactory/correct, then ask for hints from friend/instructor. You
MUST use ONLY the de�nitions, results/theorems used during the lec-
tures. Do not google for proofs/solutions as they might work with di�erent
de�nitions/axioms. Provide as rigorous proofs as you can.

1 Introduction

1. Show that

maxx2X f(x)
s.t. gi(x) � 0 8 i

=
�minx2X �f(x)

s.t. gi(x) � 0 8 i

2. Prove that

h

 
minx2X f(x)
s.t. gi(x) � 0 8 i

!
=

minx2X h(f(x))
s.t. gi(x) � 0 8 i;

whenever h is a monotonically non-decreasing function.

3. Show that:

miny2Y minx2X f(x; y) = minx2X miny2Y f(x; y)
s.t. gi(x; y) � 0 8 i s.t. gi(x; y) � 0 8 i:

= minz2Z f(z)
s.t. gi(z) � 0 8 i;

where Z = X � Y; z = (x; y):
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2 Theory: Convex Analysis

2.1 Vector Spaces and subsets in them

1. Consider R2 (2-dim Euclidean vec) and the 1-norm as the norm. Show
that 1-norm is not induced by any inner-product in this space.

2. If S is a subspace show that S? is a subspace.

3. If S1 and S2 are subspaces of a vector space, show that S1 + S2 =
LIN(S1 [ S2) and hence is a subspace.

4. Prove the following results which illustrate how limits and lin. comb.;
limits and inner-products distribute. Assume fxng ! x, fyng ! y

and f�ng ! �, f�ng ! �. Here all xn; yn; x; y are vectors in some
(�nite-dim) inner-product space and all �n; �n; �; � are in R.

(a) f�nxn + �nyng ! �x+ �y

(b) fhxn; ynig ! hx; yi
(c) fkxn � ynkg ! kx� yk

5. Show that complement of an open set is closed and vice-versa.

6. Consider the sequence of sets fAng given by An = [0; 1 + 1
n
). What

is \1i=1An. Justify your answer1.

7. Write down the outer description for LIN(X) whereX = f[1 1 1 1]>; [1 1�
1 � 1]>g.

8. What is the dimension of the a�ne set given by the following system
of equations:

Pn
j=1(i� j)xj = i; i = 1; : : : ;m (Assume 2 � m � n).

9. Prove that the cone of psd matrices in the space of all symmetric
matrices of a given size is self-dual2

1This shows that intersection of in�nite number of open sets need not be open. By
De'Morgan's laws, we also can say that union of in�nite number of closed sets need not
be closed. Note that �nite intersection(union) of open(closed) sets is open(closed).

2Note that the same cone in the set of all square matrices of a given size is NOT self-

dual. For eg.

�
0 1
�1 0

�
is in the dual cone, which is not a symmetric matrix. However

if we started with all matrices M which satisfy x>Mx � 0 (and need not be symmetric),
then it is easy to see that this set is also a cone and moreover, self-dual.
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10. Prove that once a cone has a line, then it must have all parallel lines
to it through every point in the cone.

11. Consider the coneK = f(x; z) 2 Rn+1 j x 2 Rn; z 2 R; kxkp � zg, where
p 2 [1;1]. Provide an analytic expression for its dual cone. Hint:
Holder's inequality.

12. Consider the cone K = f(x; z) 2 Rn+1 j x 2 Rn; z 2 R; kxkM � zg,
where3 M � 0. Provide an analytic expression for its dual cone.

13. What is the dual norm for the Frobenius norm ?

14. Problems 2.2, 2.8, 2.13 from Boyd's book.

15. Show that intersection of two polyhedral cones is a polyhedral cone4.

16. Show that any linear combination of convex sets (in a particular
inner-product space) is a convex set (in that particular inner-product
space). Hence set of all convex sets (in a particular inner-product
space) forms a vector space by itself!

17. Show that the tangent cone at any point in a convex set is indeed a
cone.

2.2 Functions on vector spaces

1. Show that a function f : A 7! R, where A is an a�ne set in V (the set
of all vectors in a vector space), is a�ne i� f(x) = ha; xi � b 8 x 2 A

for some b 2 R and some a, a vector in the linear set associated with
the a�ne set A.

2. Show that f : C 7! R, where C � V is a conic set (convex set), is
a conic function (convex function) if and only if epi(f) is a conic set
(convex set).

3. Show that f is an a�ne function if and only if f and �f are both
convex functions.

3kxkM �
p
x>Mx.

4Recall that according to our de�nition a polyhedral cone is that with �nite primal
description. Also, after proving this result, it follow by induction that intersection of any
�nite number of polyhedral cones is a polyhedral cone.
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4. Suppose f : X � Y 7! R, where X � V is an arbitrary set of vectors
and Y � V is a convex set of vectors, such that f(x; y) is a convex
function with �xed x i.e., f(x; �) is a convex function for each x.
Then the function h : Y 7! R given by h(y) = supx2X f(x; y) is also
a convex function. Additionally, show that if f(x; y) =< x; y >, then
the resultant h is a conic function.

5. Starting from the Jensen's inequality prove the AM-GM inequality.
After proving this try proving the Holder's inequality from Jensen's
inequality. If you dont get the second proof, then google. The proofs
are quite instructive. Subsequent to this exercise prove the same
inequalities starting from the Fenchel's inequality.

6. Find conjugate (f�) of f where f(x) is given by: i) f(x) = 3x2 ii)

f(x) = maxi xi iii) f(x) = �(�ixi)
1

n ;x > 0.

7. Compute the sub-di�erential set at all points for the function h =
max(f; g) in terms of sub-di�erentials for f and g.

8. Show that the supporting hyperplane at any relint point for a closed
convex function cannot be vertical. Do this using the Lipschitz con-
tinuity result.

9. Show that if there is a real-valued function de�ned over a convex do-
main that satis�es all the sub-gradient inequalities centered at points
in the domain, then the function must be convex.

10. Show that if there is a real-valued continuous function de�ned over a
convex domain that satis�es all the sub-gradient inequalities centered
at points in the rel.int. of the domain, then the function must be
convex.

11. Let f be a convex function and L� is a level-set of it over which
the function is not a constant. Show that the normal cone of L� at
some x� on the rel.bnd. of L� is the conic-hull of the negative of the
sub-di�erential set at the same point5.

5After proving this, �rstly observe the result in the special case when f is di�erentiable
at that point. Realize that this special case result can also be proved starting from the
directional derivative de�nition

4



12. Show that the inner-product induced norm is always self-dual (in that
inner-product space). Hint: Cauchy-Schwartz inequality.

13. Let x 2 Rn and M � 0 (a pd matrix). Prove that the matrix-
fractional function f(x;M) = x>M�1x is a convex function. Hint:
Use the Schur-complement lemma.

14. Let V = (V;+; �; hi) be an inner-product space and C � V be a
convex set. Let f : C 7! R be a continuous function. Assume that
the sub-gradient at x0 2 relint(C) is rf(x0). Then f is strictly
convex if and only if f(x) > f(x0) + hrf(x0); (x� x0)i 8x 2 dom(f).
i.e., strict convexity is characterized by sub-gradient strict inequality
satisfaction centered at any relint point of the domain.

15. In the context of the above with V = Rn, show that if the Hessian
matrix is pd at all points in C, then f is strictly convex.

3 Theory: Convex Programs

3.1 Basics and Optimality Conditions

1. Answer whether the following optimization problems can be posed as
a convex program. Justify your answers.

(a) Consider the problem where you need to �nd the a�ne function
whose sum of squared distances from given m points in an n

dimensional space is the least (this is called the least squares
problem).

(b) Suppose you have a discrete random variable X which takes n
values. Consider the problem of �nding that probability mass
function, from the set of all possible probability mass functions
for X, which has maximum entropy.

(c) Consider the standard inner-product space of matrices and let P1

and P2 be any two polyhedral sets in it. Consider the problem
of �nding the distance6 between the two polyhedra.

6Given two sets, the distance between them is the in�mum of all distances between
points in them.
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2. Taking hints from the proof sketch given in the lecture notes, prove
theorem 13.0.9 and 13.0.10 in the lecture notes. Note how students
oversimpli�ed the proof of 13.0.9 during the lecture.

3. Consider a particle which is constrained to live in the open (standard)

second-order cone in Rn+1 i.e., the cone:

("
x
y

#
j x 2 Rn; y 2 R; kxk2 < y

)
.

Inside this space, a weird gravitational force f acts on this particle,
which depends on its position: f(x; y) = a>x + by + log(y2 � x>x)
where a 2 Rn; b 2 R are given (i.e., a; b are parameters of the gravita-
tional �eld). For what values of these parameters of the �eld can you
�nd point(s) at which the gravitational force is maximum ? For such
parameters, what are the points of maximum gravity and what is the
maximum gravity in this space ? Now, can you �nd the gravitational
�eld setting (i.e., �nd a; b) such that the maximum gravity in the
space is minimized ?

4. Using your knowledge about optimality conditions in problems min-
imizing quadratic functions of the form f(x) = x>Ax, prove the

Schur complement lemma: the matrix A =

"
B C
C> D

#
, where B;C

are symmetric, is positive de�nite7 if and only if both the matrices B
and D�C>B�1C| {z }

Schur Complement of B in A

are positive de�nite.

5. Using KKT conditions:

(a) Show that of all possible rectangles inscribed in a given a circle,
that with the maximum area is a square.

(b) Compute minx
P

i aix
2r
i s.t.

P
i x

2s
i = 1. Here, all ai are positive

and 0 < s < r.

(c) Show that P2 =
p
2��P1, where Q be a positive-de�nite matrix,

�; � are positive reals and

P1 = max
x2Rn

c>x� �

2
x>Qx

s.t. Ax � 0

7A is positive-de�nite i� x>Ax > 0 for all non-zero x. Also, a positive de�nite matrix
is always invertible.
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P2 = max
x2Rn

c>x

s.t. Ax � 0; x>Qx � �

6. Problems 5.26, 5.28, 5.30 (hint: spectral functions) in boyd's book.

3.2 Duality

1. It is believed that two variables x 2 Rn and y 2 R are related by
y = f(x), where f is an a�ne function. An experiment was conducted
to obtain m(> n) pairs (xi; yi). Though it must happen that all these
m points must lie on a hyperplane (because f is a�ne), because
of experimental errors this may not be true. So it is desirable to
obtain that f for which ke(f)kp is minimum where e(f) = [y1 �
f(x1) : : : ym � f(xm)]

> and k � kp is the p-norm with p � 1 (p might
also be 1). Express this as a convex program (for each value of p).
Write a dual of each of these programs. In case p = 2 and when it
is assumed that the set of all xi span Rn, one can obtain an analytic
expression for the optimal solution using the optimality conditions
learned in this course. Please �nd the expression for the optimal
solution8. Now, consider another situation where m < n observations
were made and suppose that the points (xi; yi) do lie on a hyperplane.
It is easy to see that in this case there might be multiple f such that
yi = f(xi) 8 i = 1; : : : ;m. In such a case it is desirable to �nd an
f(x) = a>x � b with the least kakp. Now express this problem as a
convex program and write its dual (for each p). Again in case p = 2
and assuming the set of xi form a linearly independent set, it turns
out that the optimal solution has an analytical expression. Find this9

using your knowledge about optimality conditions. Everywhere in
this problem use Conic-duality to write-down duals10.

8This problem is called as least-squares �t and the optimal solution here motivates the
de�nition of the left inverse of a matrix.

9This problem is called as min-norm �t and the optimal solution here motivates the
de�nition of the right inverse of a matrix. Infact, in the general case where nothing is
known (aboutm;n and/or the set of xi), it is desirable to minimize a weighted sum of both
the norm of a and least squares error (i.e., ke(f)k2) leading to the min-norm least-squares
�t and correspondingly the de�nition of psuedo-inverse of a matrix.

10You will later on realize that conic-duality is the easiest way out here.
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2. Consider the maximal separation of two convex sets problem dis-
cussed in lecture, where we started with 1-norm bound on the sep-
arating vector. Now consider the same problem with a p-norm (1 �
p � 1) bound on the separating vector instead. Is this a conic pro-
gram? If so write down the conic-dual. Is this the dual you expect?
If not, simplify the dual and does it then look intuitive.

3. Write down the problem of �nding the minimum radius enclosing
sphere for a given set of points in Rn as an SOCP. Write down its
conic-dual. Aditya's intuition was that the dual will be the problem
of �nding the maximally distant points in the set. Is his intuition
correct?

4. Write down the problem of �nding the maximally separating hyper-
plane for two sets of spheres (assume some locations and radii for the
spheres in each set) as an SOCP. Write down its conic-dual. Arun's
intuition was that the dual will be the problem of minimizing distance
between convex-hulls of these sets. Is his intuition correct?

5. Can the epi-graph of the function f(x; y) = x>x
y
; y > 0 be described

using SOC constraints? If not, can the closure of this set be expressed
using SOC constraints?

6. Can the epi-graph of the function equal to negative of the geometric
of two non-negative numbers i.e., f(x; y) = �pxy; x � 0; y � 0 be
described using SOC constraints?

7. Quadratically Constrained Quadratic Programs (QCQPs) are OCPs
of the following form:

min
x2Rn

x>Ax+ b>x+ c;

s.t x>Aix+ b>i x+ ci � 0; 8 i = 1; : : : ;m:

Ofcourse this OCP is convex if and only if all A;Ai are psd. Show
that the convex QCQP can be posed as an SOCP. Also Write down
the conic-dual of this (convex) QCQP.

8. Complete the two problems taken-up in the lecture:
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(a) Pose the problem of �nding the smallest ellipsoid enclosing a set
of points as an SDP. Write down its conic-dual. Does dual match
the intuitive dual problem here?

(b) Pose the problem of �nding the minimum condition number el-
lipse which seperate two sets each with �nite number of points
as an SDP. Write down its dual problem.

9. Show that LPs, strictly convex QPs11, SOCPs are all self-dual. A
program with a given form is called self-dual, if a dual is a problem
in the form of the original problem. Note that in these cases, one can
also write down the dual of the dual, as the dual is itself in primal
form, using the same duality scheme as that with which the dual is
obtained. In these cases show that the dual of the dual is equal to
the primal.

10. Write down the Lagrangian dual and the conic dual of a convex
QCQP. Now, both these duals should be equal as they are individ-
ually equal to the given primal QCQP. Now, just starting with the
duals can you show they are equal (without using the fact that they
are individually equal to the primal)?

11. Using Lagrangian duality, show that the problem of maximally sepa-
rating (use Euclidean distance as distance) two sets, each containing
�nite number of points is same as that of minimizing (Euclidean)
distance between convex hulls of those sets.

12. Show that the SDP-dual of the Lagrangian dual of a (possibly non-
convex) QCQP is the Shor relaxation of the same QCQP.

11QP with strictly convex objective is called a strictly convex QP.
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