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Lecture 1

Definition of Mathematical
Program

In order to formally study optimization problems we introduced a new mathe-
matical symbol/structure, known as Mathematical Program (MP), which is of the
following form:

min
x2X

f(x)(1.1)

s.t. gi(x) � 0 8 i = 1; : : : ;m:

Here, x is a (dummy) variable, X is any set, and f; gi are all (extended) real-valued
functions, with common domain X .

Further, in the context of the MP (1.1), the following are de�ned:

1. We say x is the variable, X is the domain, f : X 7! Rext is
1 the objective

(function) of the MP (1.1).

2. The inequalities gi(x) � 0 as refered to as the constraints, while the functions
gi : X 7! Rext are called as the constraint functions.

3. The set F � fx 2 X j gi(x) � 0 8 i = 1; : : : ;mg is known as the feasibil-
ity set, and each member of the feasibility set is called as a feasible solu-
tion/point, of the MP (1.1).

4. The value of the MP (1.1) is de�ned as inf (ff(x) j x 2 Fg), with the under-
standing that the value is de�ned as �1 if the set of feasible function values,

1Rext denotes the extended real numbers i.e., R[ f�1;1g: The reason for including �1 will
be clear when discussing cascaded MPs etc.
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ff(x) j x 2 Fg, is not bounded below, and is de�ned as 1 if the feasibility
set is empty. This value is also sometimes called as the optimal value.

5. If an MP's value is �1, i.e., the set of values of the objective function
over the feasibility set is not bounded below, then the MP is said to be
unbounded. If an MP's value is 1, i.e., the feasibility set is empty, then the
MP is said to be infeasible.

6. We say x� is an optimal solution i� x� is a feasible solution, i.e., x� 2 F , and
the optimal value is attained at it, i.e., f(x�) = value of (1.1).

7. The set of all optimal solutions is called as the (optimal) solution set and is
denoted by:

argmin
x2X

f(x)(1.2)

s.t. gi(x) � 0 8 i = 1; : : : ;m:

This set could be empty or singleton or have multiple elements etc.

8. An MP is said to be solvable i� its solution set is non-empty. Further, it is
uniquely solvable i� its solution set is a singleton.
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Lecture 2

Comparing MPs

We looked at many examples of MPs and realized that there is no loss of generality
due to its standard form.

The notion of optimal value naturally de�nes a total order on the set of all
MPs:

1. We say MP1=MP2 i� the value of MP1 is equal to the value of MP2.

2. We say MP1>MP2 i� the value of MP1 is greater than the value of MP2.

3. By MP1 = 2, we mean the value of MP1 is 2. etc.

This also helped us to write down functions of MPs: h(MP ) is nothing
but h evaluated at the value of the MP. It is an exercise to show that if h is a
monotonically-non-decreasing continuous, then:

h

 
minx2X f(x)
s.t. gi(x) � 0 8 i

!
=

minx2X h(f(x))
s.t. gi(x) � 0 8 i

We also took an example, h(x) = x2, which is non-monotonic and showed that
the equality only if the objective is non-negative.

We also de�ned an alternative but equivalent form for an MP:

max
x2X

f(x)(2.1)

s.t. gi(x) � 0 8 i = 1; : : : ;m:

1. All the de�nitions of variable, domain, objective, constraints, feasibility set
remain the analogous.
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2. The value of (2.1) is de�ned as the sup (ff(x) j x 2 Fg), with the under-
standing that the value is de�ned as 1 if the set of feasible function values,
ff(x) j x 2 Fg, is not bounded above, and is de�ned as �1 if the feasibility
set is empty.

3. Since for any set S, we have that inf(S) = � sup(�S); both forms1 are
equivalent.

We clari�ed that, in complete contrast to CS Algorithms courses where do-
mains are discrete, this course is about continuous optimization, where the do-
main is an uncountable set. Further, we are only interested in domains that are
uncountable subsets of Rn. Hence we review Euclidean spaces.

Read section 4.1 in Boyd and Vandenberghe [2004] for getting familiar with
playing around with MPs.

1�S is the set with members as the negatives of those in S.
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Lecture 3

Review of Euclidean Space

1. We argued that understanding the special structure implied by the objec-
tive function, feasibility set, and more fundamentally, the underlying space in
which the variable lives, is important to understand the nature of the associ-
ated MP. Hence we began with a review of vector spaces (since in continuous
optimization, the variables are assumed to live in Euclidean spaces)1:

(a) The most basic structure of the Euclidean space is that of a Vector
space, which is formally de�ned in page 9 of Sheldon Axler [1997].

(b) We highlighted linear combination as the important operation in the
context of a Vector space. Linear combination in turn involves the
more basic vector-addition and scalar-multiplication operations. Given
vectors v 2 Rn; w 2 Rn and scalars � 2 R; � 2 R, the vector �v + �w
is the corresponding linear combination.

(c) The next is the structure of an inner-product space, which is de�ned
formally in pg 98-101 of [Sheldon Axler, 1997]. Let V denote the set of
all vectors in a vector space, then a function h�; �i : V �V 7! R is de�ned
as an inner-product i� h�; �i satis�es the following three properties:

Non-negativity: i. hv; vi � 0 8 v 2 V .

ii. hv; vi = 0 () v = 0.

Symmetry: hv;wi = hw; vi 8 v;w 2 V .

Linearity: h�v + �w; ui = �hv; ui+ �hw;ui 8 u; v;w 2 V; �; � 2 R.

(d) We gave many examples of inner-products with Euclidean vectors, Ma-
trices. In particular, we noted that hv;wiM � v>Mw(M � 0) is the

1Go through pages 1{13 in [Sheldon Axler, 1997]. Also go through related exercises.
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general form of inner-products in Euclidean spaces (and hence anal-
ogous in any �nite dimensional space). Since M induces the entire
geometry (as we see below), it is called the kernel.

(e) Innerproduct naturally induces various geometrical notions:

orthogonality: v ? w () hv;wi = 0.

Angle: ∠v;w � arccos
�

hu;vip
hu;ui

p
hv;vi

�
. Due to the Cauchy-Schwartz

inequality2, this angle formula is well-de�ned.

Norm (Length): kvk �
q
hv; vi. One can verify that this is a valid

de�nition as it satis�es the three conditions for a norm. A function
k � k : V 7! R is a norm i�

i. kxk � 0 8 x 2 V and kxk = 0 , x = 0 (Non-negativity and
positive-de�niteness).

ii. k�xk = j�jkxk 8 � 2 R (Absolute homogeneity).

iii. kx+ yk � kxk+ kyk 8 x; y 2 V (Triangle inequality).

In case all the above except the condition \kxk = 0 ) x = 0" are
satis�ed, then it is called a semi-norm.

Distance: Distance between u; v 2 V is de�ned as kv � wk.
Projection: Projection of v 2 V onto a set S � V , denoted by PS(v),

is de�ned by argmins2S ks� vk.
Geometrical objects: Sphere S � fs 2 V j kvk � 1g, Ellipse� fAu+ b j kuk � 1g

etc.

(f) Also, one can prove other basis geometric results like Pythagorean, Par-
allelogram theorem etc.

(g) Also, analysis de�nitions like Cauchy, convergent sequence, limits nat-
urally follow. An inner-product space that is complete (all Cauchy
sequences converge) is called a Hilbert space. In this course we will be
concerned with variables living in �nite-dimensional Hilbert spaces.

2See 6.6 in Sheldon Axler [1997] for a proof .
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Lecture 4

Linear Sets

All through we assume V = (V;+; �; h�; �i) is the underlying (�nite-dimensional)
Hilbert space.

1. Linear Sets (L): sets that are closed under linear combinations1. We call
this the primal de�nition/characterization of linear sets.

2. Examples of linear sets are: f0g; f�v j � 2 Rg for some �xed v 2 V (called
as line (parallel to v, passing through origin), f�v+�w j �; � 2 Rg for some
�xed v;w 2 V (called as plane (parallel to v;w, passing through origin), : : :,
V.

3. We de�ne linear span of a set, S, as the set containing all possible linear com-
binations with vectors in S. i.e., LIN(S) = fPn

i=1 �ivi j vi 2 V; �i 2 R; n 2 Ng.
In other words, L is linear i� L = LIN(L).

4. Infact, one can e�ciently reconstruct a linear set L with linearly independent
vectors using this notion of linear span. A set of vectors, v1; : : : ; vm, is linear
independent i�

Pm
i=1 �ivi = 0 ) �i = 0 8 i = 1; : : : ;m. We say S is a

spanning set of L i� L = LIN(S). Further, we say a spanning set B is
a basis i� B is a linearly independent set. One can show that all bases2

of a linear set will be are equal size. This common size is known as the
dimension of the linear set. Needless to say, Basis of L is the minimal way of
representing L using the notion of linear combinations. We say L = LIN(B)
is the primal/inner representation/description of L.

1Refer sections A.1.2, A.1.3, A.1.4, A.3.4 in Ben-Tal and Nemirovski [2021] for material on
Linear Sets.

2Please refer pages 21-36 of Sheldon Axler [1997]
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5. We realized that every linear set can also be described using the notion
of orthogonality. Let L be a linear set and B be a basis of subspace in-
duced by it. Let us de�ne the orthogonal complement3 of a set S, as,
S? � fv 2 V j hl; vi = 0 8 l 2 Sg. The following statements are true:

(a) L? is a linear set (follows from linearity of the inner product). Infact,
L? is a linear set even if L is not a linear (but an arbitrary) set. Let us
denote the basis of L? as B?. Needless to say, B? \B = f0g.

(b) By the rank-nullity theorem4, it follows that dim(L) + dim(L?) =
dim(V )5. From this and orthogonality, it follows that B? [ B is a
basis for V .

(c) A key result in duality is:

Theorem 4.0.1. L =
�
L?
�?
, whenever L is a linear set.

. This follows from the rank-nullity theorem. Note that the theorem

need not be true if L is not a linear set, in which case L �
�
L?
�?
.

(d) From the above it follows that L =
n
v 2 V j hl; vi = 0 8 l 2 B?

o
. We

call this the dual/outer representation/description of L. B? is also
known as the dual basis of L.

(e) We call linear sets of the form Hu � fv j hv; ui = 0g as hyperplanes
(passing through origin; u 6= 0).

(f) From above discussion it is also clear that linear sets are nothing but
intersections of hyperplanes through origin. We call this the dual de�-
nition/characterization of a linear set.

6. If dim(L) �
j
n
2

k
, then one would describe L as LIN(B), else one would de-

scribe L as
n
v 2 V j hv; bi = 0 8 b 2 B?

o
. Thus one would at the maximum

require
j
n
2

k
vectors to represent any Linear set!

3Refer A2.3 in Ben-Tal and Nemirovski [2021].
4Theorem 3.4 in Sheldon Axler [1997].
5this justi�es the name complement!
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Lecture 5

Linear Sets: Calculus & Topology;
Affine Sets

1. We discussed1 operations that preserve linearity of sets:

(a) Given an arbitrary collection of sets S�; � 2 �, where � is the index
set2, we de�ne (arbitrary) intersection, \�2�S� � fx j x 2 S� 8 � 2 �g.
It is easy to see that (arbitrary) intersection of linear sets is linear.

(b) Given an arbitrary collection of sets S�; � 2 �, where � is the index
set3, we de�ne (arbitrary) union, [�2�S� � fx j 9� 2 � 3 x 2 S�g. It
is easy to give counter examples where union of two linear sets is not
linear.

(c) Given sets S1; : : : ; Sn and reals �1; : : : ; �n, we de�ne their linear combi-
nation as

Pn
i=1 �iSi � fPn

i=1 �ivi j vi 2 Si; 8 i = 1; : : : ; ng. It is easy to
show that linear combinations of linear sets are same as a simple sum-
mation of the same sets, and are linear sets. Infact, LIN (S1 [ S2) =
S1 + S2.

(d) If L is linear, then it's complement, Lc � fv 2 V j v =2 Lg, will not be
linear (infact Lc will not even contain 0).

(e) Given two Linear sets L1; L2, their Cartesian product, L1�L2 � f(v1; v2) j v1 2 L1; v2 2 L2g,
is also a linear set4.

1We encourage readers to think about two di�erent proof strategies henceforth. One based on
primal de�nition, and the other based on dual.

2Index set could be �nite, countably in�nite or uncountable.
3Index set could be �nite, countably in�nite or uncountable.
4This is a sub-result used in proving that Direct sum is a valid Hilbert space.
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(f) Given two sets S1; S2, we de�ne their set di�erence as S1nS2 � fv1 2 S1 j v1 =2 S2g.
Again, L1nL2 will not be linear for linear L1; L2 (infact L1nL2 will not
even contain 0).

2. We introduced some topological notions:

Closure: Given a set, S, closure5, Cl(S), is de�ned as the set comprised of
the limits of all convergent sequences formed with elements of S.

Closed set: S is closed i� S = Cl(S).

Interior Point: Given a set, S, a point x 2 S is said to be an interior point
of S i� B�(x) � S for some � > 0, where B�(x) � fv 2 V j kv � xk � �g
is the ball of radius � centered at x.

Interior: The set of all interior points of S is de�ned as the interior, int(S).
A set is said to have interior i� its interior is non-empty.

Boundary: Given a set S, boundary, �(S) � Cl(S)nint(S).
Bounded Set: A set S is bounded i� Br(0) � S for some �nite r > 0.

Compact: A set S is compact i� it is closed and bounded.

3. Here are some standard results in topology:

(a) Complementarity of open and closed sets: S is closed if and only if Sc

is open.

(b) (arbitrary) Intersection of closed sets is closed; (arbitrary) union of open
sets is open.

(c) Finite Union of closed sets is closed and �nite intersection of open sets
is open.

(d) (arbitrary) intersection of bounded sets is bounded. Finite union of
bounded sets is bounded.

4. Linear sets are closed6.

5. Linear sets, except the entire set of vectors, are not open. But as we will see
later, they are relatively open.

6. Linear sets, except the one containing only 0, are not bounded.

We now study a slight generalization of linear sets, called a�ne sets.

5B.1.6.A. in Ben-Tal and Nemirovski [2021].
6As all �nite dimensional spaces are equivalent to Euclidean space, which is complete.
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1. We de�ned a�ne sets as shifted linear sets: A is a�ne7 i� there exists a
linear set L and a 2 V , such that A = fag+ L.

2. We de�ned a�ne combination as linear combination with the restriction that
the combining coe�cients sum to unity.

3. We de�ned a�ne hull:

AFF (S) �
(

mX
i=1

�ivi j �i 2 R; vi 2 S 8 i = 1; : : : ;m;
mX
i=1

�i = 1;m 2 N
)
;

i.e., the set of all vectors which can be expressed as a�ne combinations of
those in the set.

4. We proved that A is a�ne i� A = AFF (A), which we took as the primal de�-
nition/characterization of A�ne sets. It was easy to de�ne notions of a�nely
spanning set, a�ne independence and a�ne basis (refer section A.3 in Ben-
Tal and Nemirovski [2021] for all related discussions/proofs). We will call
a�ne basis as the primal/inner representation/description.

5. We de�ned dimension, dim(A) � dim(L), which turned out to be one less
that the number of elements in the a�ne basis.

6. We proved the dual characterization/de�nition: A is a�ne with associated
linear set as L, withB? = fb1; : : : ; bmg as the basis for L?, i� there exist num-
bers �i 2 R; i = 1; : : : ;m, such that A = fv j hv; bii = �i; 8 i = 1; : : : ;mg :
In particular, this shows that a�ne sets are nothing but solution sets of
(non-homogeneous) linear equations. We call (B?; �) as the dual/outer rep-
resentation/description of A, where � is the vector with entries as �i.

7. We call a�ne sets of dimensionality one less than the highest, as Hyper-
plane. Needless to say, the dual characterization is the most e�cient: Hw �
fx j hw; xi = bg, where w 6= 0; b 2 R. It follows that all a�ne sets, apart
from V , are either hyperplanes or their intersections.

8. We gave examples of a�ne sets, hyperplanes, and identi�ed their primal and
dual representations.

9. The operations that preserve a�nity and the topology remains analogous to
linear sets.

7Please refer sections A.3 in Ben-Tal and Nemirovski [2021] and optionally, section 1 in Rock-
afellar [1996] for material on A�ne sets.
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Lecture 6

Cones

1. We de�ned conic combination as linear combination with the restriction that
the combining coe�cients must be non-negative.

2. We de�ned conic hull:

CONIC(S) �
(

mX
i=1

�ivi j �i 2 R+; vi 2 S 8 i = 1; : : : ;m;m 2 N
)
;

i.e., the set of all vectors which can be expressed as conic combinations of
those in the set.

3. We say that K is a cone/conic-set i� K = CONIC(K), which we took as
the primal de�nition/characterization of Conic sets.

4. We say S is a conicly spanning set of K i� K = CONIC(S). We also
saw examples like the ice-cream cone (in 3d) and the psd cone (in space
of Symmetry matrices), that are NOT polyhedral cones. In each case we
identi�ed a \minimal" conicly spanning set:

(a) For the ice-cream cone (in 3d), a minimally conicly spanning set is the
unit circle at unit height.

(b) For the psd cone, a minimally conicly spanning set is the set of all
symmetric-rank-one matries i.e., matrices of the form xx>; x 2 Rn.
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Lecture 7

Cones: Duality

1. We realized examples of cones with �nitely sized conicly spanning sets, which
we henceforth call as Polyhedral Cones.

2. We then generalized the notion of an orthogonal complement, and de�ned
the dual cone, S�, of a set S: S� � fv 2 V j hv; si � 0 s 2 Sg. It is an easy
exercise to show that S� is indeed a cone for any set S. We gave examples of
dual cones, and noted that the ice-cream and psd cones are dual to themselves
and hence are called as self-dual cones.

3. We proved that S� is always a closed set.
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Lecture 8

Cones: Duality & Algebra

1. We them attempted proving an important duality result:

Theorem 8.0.1. For a closed cone K, we have K = (K�)�.

While it was easy to see that K � (K�)�, we said it is not straightforward to
show the converse. We noted that a separation theorem, which we will state
and prove in coming lectures on convex sets, will help proving it. Infact we
mentioned all duality concepts including that of notion of subgradients for
convex functions follow from this basic, fundamental, separation theorem.

2. For now, we assumed that the above conjecture is true and hence dual de-
scription of a closed cone is immediate:

Theorem 8.0.2. K is a closed cone if and only if it is intersection of
halfspaces through the origin.

Hence, we take this as the dual de�nition/characterization of closed Conic
sets.

3. Another important result in duality is:

Theorem 8.0.3. K is a polyhedral cone if and only if it has a �nite dual
description.

This can be proved (refer theorem 4.5.1 in LAURITZEN [2009]) using the
Fourier-Motzkin's algorithm (theorem 1.2.2 in LAURITZEN [2009]). Refer
also theorem B.2.5 inBen-Tal and Nemirovski [2021].

4. The following results about algebra with cones K1;K2 are true (not detailed
in lecture, in interest of time):
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(a) (Arbitrary) intersection of cones is a cone.

(b) Union of cones need not be a cone. However, CONIC(K1 [ K2) =
K1 +K2.

(c) (Any) linear combination of cones is a cone.

(d) Cartesian product of cones is a cone, and (K1 �K2)
� = K�

1 �K�
2 .

(e) Complement of a cone is never a cone.

(f) K1 � K2 ) K�
2 � K�

1 .

(g) Milutin-Dubovitski lemma: (K1 \K2)
� = K�

1 + K�
2 , for closed cones

K1;K2 whose sum is also closed1.

5. Following topological results hold for cones:

(a) Cones can be closed, open, neither, both.

(b) Cones are unbounded.

(c) Refer to exercise B.16 in Ben-Tal and Nemirovski [2021].

6. Refer sections B.1.4, B.2.7.B in Ben-Tal and Nemirovski [2021], section 2.6.1
in Boyd and Vandenberghe [2004], and optionally relevant parts in sections
2, 14 in Rockafellar [1996], for discussion on cones.

1Refer section B.2.7.C in Ben-Tal and Nemirovski [2021].
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Lecture 9

Convex sets: Definition &
Examples

1. We say C is a convex set i� x; y 2 C; � 2 [0; 1] ) �x + (1 � �)y 2 C i.e., if
two points are in the set, then the entire line segment induced by them is
also in the set.

2. Motivated by above, we de�ned convex combination as linear combination
with the restriction that the combining coe�cients must be non-negative
and must sum to unity.

3. We de�ned convex hull:

CONV (S) �
(

mX
i=1

�ivi j �i 2 R+; vi 2 S 8 i = 1; : : : ;m;
mX
i=1

�i = 1;m 2 N
)
;

i.e., the set of all vectors which can be expressed as convex combinations of
those in the set.

4. Using induction, it was simple to show that C is convex if and only if
C = CONV (C), which we took as the primal de�nition/characterization
of Convex sets.

5. We looked at several examples of convex sets:

Norm Ball: fx j kxk � rg. Here, k � k is some valid norm (need not be an
inner-product induced one). r is the radius.

Ellipse: fx j hx� a; x� ai � rg. Here, h�; �i is some valid inner-product
(need not be the default inner-product). a; r are given center and ra-
dius.
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Displaced Cones: Sets of the form fag + K, where a is some vector and
K is some cone. Most important sub-example of this is the halfspace
(that need not pass through origin).

Conic-section: Intersection of a cone and an a�ne set.

Simplex: Intersection of fx j x � 0g cone and the hyperplane
n
x j 1>x = 1

o
.

Spectrahedron: Intersection of the cone of psd matrices and the hy-
perplane of unit-trace matrices.

Birkhoff polytope: https://en.wikipedia.org/wiki/Birkhoff_polytope

in the matrix space.

The above examples motivated us to de�ne a polytope: P is a polytope i�
9 S 3 P = CONV (S); jSj 2 N. We argued that the set of permutation ma-
trices (n! matrices) generates the Birkho� polytope. The set of all matrices
with every row having a one in exactly one column position (nn matrices)
generates the set of all Stochastic matrices.

6. Similarly, we de�ned Polyhedron as the intersection of �nite number of half-
spaces.

7. Refer sections B.1.1-B.1.3 in Ben-Tal and Nemirovski [2021], sections 2.1-2.3
in Boyd and Vandenberghe [2004]. Optionally, sections 2,3 in Rockafellar
[1996].
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Lecture 10

Convex Sets: Polyhedral and 1-d
characterization

1. The relationship between polyhodron and polytope is nicely summarized by
the so-called Minkowski-Weyl theorem (refer theorem B.2.9 in Ben-Tal and
Nemirovski [2021]):

Theorem 10.0.1. A set P is polyhedral if and only if there exist �nite
sets K;C such that P = CONIC(K) + CONV (C).

2. Some important conclusions from this theorem are:

• Every polytope is a polyhedron.

• Not all polyhedrons are polytopes.

• Bounded polyhdron is a polytope.

3. We then noted a result that says convexity is essentially a 1-d concept:

Theorem 10.0.2. C is convex if and only if C \ l is either empty or
convex for every line l.

This helps us in proving some sets are convex/non-convex.

4. We then generalized the notion of dual cones to convex sets: given a set
S � V , we de�ne its polar as S� � fv 2 V j hv; si � 1 8 s 2 Sg (refer section
B.2.7.A in Ben-Tal and Nemirovski [2021]).

5. For many sets we visualized who the polar would look like. In particular, it
was easy to see that:
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(a) Polar of a cone is same as (negative of) dual cone. Polar of a linear set
is same as its orthogonal complement.

(b) Polar of a set is a convex set, even if the set is non-convex.

(c) Polar of a set is a closed set, even if the set is not closed.

(d) Polar of a set contains origin, even if the set does not.

(e) S� = (CONV (S))�.
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Lecture 11

Convex Sets: Polar, Dual
Characterization

6. We then began proving the most important duality result for convex sets:

Theorem 11.0.1. If C is a closed convex set containing origin, then
(C�)� = C. As a consequence, (K�)� = K, whenever K is a closed cone.

And,
�
L?
�?

= L, whenever L is a linear set.

Proving C � (C�)� was easy. The other way, proved in proposition B.2.5 in Ben-
Tal and Nemirovski [2021], requires the so-called separation theorem.

7. We then covered s de�nition related to this theorem: We say two sets S1; S2 �
V are strictly separated i� there exists a w 6= 0 2 V , such that:

min
s12S1

hw; s1i > max
s22S2

hw; s2i:

Also, in this case, we say \w strictly separates S1; S2".

8. From theorem 11.0.1, it follows that:

Theorem 11.0.2. C is closed convex if and only if it is an intersection
of half spaces (that need not pass through origin).

We take this as the dual de�nition/characterization of (closed) convex sets.
The proof follows by shifting origin such that the set contains origin and
applying theorem 11.0.1 and then shifting back the origin.

9. Refer section B.2.6.A in Ben-Tal and Nemirovski [2021], and section 14 in
Rockafellar [1996].
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Lecture 12

Separation theorem, Supporting
Hyperplane, Tangent and Normal
Cones

1. We began by stating and proving1 the separation theorem (refer theorem
B.2.9 inBen-Tal and Nemirovski [2021]):

Theorem 12.0.1. Let C be a closed convex set and x0 =2 C. Then

(a) �C (x0) exists and is unique.

(b) hx0 � �C (x0) ; x� �C (x0)i � 0 8 x 2 C.

As a consequence, x0 � �C (x0) strictly separates C and x0.

2. Motivated by separation theorem's proof, we de�ned the notion of a support-
ing hyperplane: Given a set S � V and a point on the boundary, x0 2 @S,
we say that the hyperplane fx 2 V j hw; x� x0i = 0g is a supporting hyper-
plane of S at x0 i� hw; x� x0i � 0 8 x 2 S.

3. We then desired to show that all closed convex sets have a supporting hy-
perplane at all boundary points. We argued that this will need de�ning two
cones:the tangent and the normal.

4. We de�ned tangent cone2 of a set S at a point s0 2 S as all those directions
along which one can move from s0 and stay inside S. Formally, TS(s0) �
fh 2 V j 9t > 0 3 x0 + th 2 Sg.

1Some proofs, like this one, appear in previous o�ering's notes: https:

//1drv.ms/b/s!Au6Zdrbq2x4phu1rCuc-ZBseLtnnuA, https://1drv.ms/b/s!

Au6Zdrbq2x4pgc9YPLmTTUMOHwfemg.
2Ben-Tal and Nemirovski [2021] calls this the radial cone.
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5. After some examples, we easily showed that:

Theorem 12.0.2. For a convex set, tangent cone at any point is indeed
a cone. Moreover, TS(s0) = CONIC (fs� s0 j s 2 Sg).

6. We then de�ned its dual cone as the normal cone3: NS(s0) � (TS(s0))�.
7. Since by de�nition of a boundary point, x0, of a closed convex set, C,

there is atleast one direction moving along which one cannot stay inside
the set (for any small movement), it is clear that the tangent cone is not
V . Hence the Normal cone cannot be f0g, and there consequently there
exists a w 6= 0 2 NC(x0). By de�nition of Normal cone, it follows that
fx 2 V j hw; x� x0i = 0g is a supporting hyperplane of C at x0. We sum-
marize this as the following important theorem:

Theorem 12.0.3. Let C be a closed convex set and x0 2 @C. Then there
exists a supporting hyperplane for C at x0.

8. Read sections B.2.6.C in Ben-Tal and Nemirovski [2021] and section 2.5
in Boyd and Vandenberghe [2004]. Optional reading: section 11 in Rockafel-
lar [1996].

3Boyd and Vandenberghe [2004] de�nes normal cone as the negative of the dual cone of the
tangent cone.
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Lecture 13

Convex Sets: Calculus and
Topology

We quickly wrapped up our discussion on convex sets by noting:

1. The following results about algebra with convex sets C1; C2 are true (refer
section B.1.5 in Ben-Tal and Nemirovski [2021]):

(a) (Arbitrary) intersection of convex sets is a convex.

(b) Union of convex sets need not be convex. However, CONV (C1 [C2) =
C1 + C2.

(c) (Any) linear combination of convex sets is a convex set.

(d) Cartesian product of convex sets is a convex set.

(e) Consider an A�ne mapping de�ned by y = Ax+ b 2 Rm; x 2 Rn where
A is m� n and b 2 Rm.

i. C � Rn is convex ) its image under the a�ne mapping, i.e.,
fy = Ax+ b j x 2 Cg is convex.

ii. C � Rm is convex ) its pre-image under the a�ne mapping, i.e.,
fx j Ax+ b 2 Cg is convex.

(f) Complement of a convex set is never a convex set.

2. Following topological results hold for convex sets:

(a) Convex sets can be closed, open, neither, both.

(b) Convex sets can be bounded, unbounded.
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(c) We de�ned relatively interior point x0 of S i� B�(x0) \ AFF (S) � S.
The set of all relatively interior points are relative interior rint(S). We
argued that all convex sets have non-empty relative interior (as they
contain simplices).

(d) Refer to section B.1.6 in Ben-Tal and Nemirovski [2021] for further
details.
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Lecture 14

Real-Valued Functions over
Hilbert Spaces

1. We then began study of the �nal ingredient of a MP, which is a real-valued
function over a subset in a Hilbert space i.e., f : V 7! Rext

1. We de�ne
domain of f as dom(f) � fx 2 V j �1 < f(x) <1g).

2. We de�ned (and gave examples) of some special sets associated with func-
tions:

(a) graph(f) � f(x; f(x)) j x 2 dom(f)g. We assume that this set lies in
the direct sum of the Hilbert space in which the domain lies, and the
space of reals.

(b) epi(f) � f(x; y) j x 2 dom(f); f(x) � yg. We assume that this set lies
in the direct sum of the Hilbert space in which the domain lies, and the
space of reals.

(c) Level set of f at t 2 R: Lt(f) � fx 2 dom(f) j f(x) � tg. By de�nition
this set lies in the space same as the domain.

3. We then de�ned some topologically related concepts:

(a) f is said to be closed i� its epigraph is a closed set.

(b) f is said to be bounded above i� maxx2dom(f) f(x) <1. f is said to be
bounded below i� minx2dom(f) f(x) > �1.

(c) f is said to be continuous at x0 2 dom(f) i� for every convergent
sequence in the domain to it, fxn 2 dom(f)g ! x0, we have that

1We consider the extended reals as the co-domain because we already know that the objective
could itself be de�ned as the value of an MP (like in Cascaded MPs), which could be �1.
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ff (xn)g ! f(x0). f is said to be continuous (everywhere) i� it is
continuous at every point in its domain.

(d) f is said to be L-Lipschitz continuous (or simply L-conts) i� x; y 2
dom(f) ) jf(x) � f(y)j � Lkx � yk. We showed that every L-conts
function is continuous. However functions like the simple 1-d quadratic
is continuous but not L-conts.

(e) f is said to be di�erentiable at x0 2 int(dom(f)) i�

9 rf(x0) 2 V 3 lim
x!x0

f(x)� f(x0)� hrf(x0); x� x0i
kx� x0k = 0:

If such a rf(x0) exists, then it will be unique and it is called as the
gradient vector. It is a simple exercise to show that hrf(x0); ui =

limh!0
f(x0+hu)�f(x0)

h
� Df(x0;u), the directional derivative of f at x0

in the direction2 u. More speci�cally:

Theorem 14.0.1. The ith entry of rf(x) is @f(x)
@xi

.

(f) f : Rn 7! R is said to be twice-di�erentiable at x0 2 int(dom(f)) i�
9 rf(x0) 2 Rn r2f(x0) 2 Rn�n 3

lim
x!x0

f(x)� f(x0)�rf(x0)> (x� x0)� 1
2
(x� x0)

>r2f(x0) (x� x0)

kx� x0k2 = 0:

If such a r2f(x0) exists, then it will be unique and it is called as the
Hessian matrix. A basic result in calculus says that:

Theorem 14.0.2. The (i; j)th entry in r2f(x) is @2f(x)
@xi@xj

. Now de�ne

functions gx0u(t) � f(x0 + tu). Then,
d2gx0u(t)

dt2
= u>r2f(x0 + tu)u.

2http://people.whitman.edu/~hundledr/courses/M225/Ch14/Example_

DirectionalDeriv.pdf provides an example where all directional derivatives exist but the
function is NOT di�erentiable!
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Lecture 15

Linear and Affine Functions

1. A function f : L � V 7! R is linear1 i� L is a linear set, and f(
Pn

i=1 �ixi) =Pn
i=1 �if(xi) 8 xi 2 L; �i 2 R; n 2 N i.e., Image of a linear combination of

some points under the function is the same linear combination of images of
those points. Basically, functions where linear intra-extrapolation is exact.
We take this as the primal de�nition.

2. After giving some examples we noted the following important result that
was very easy to prove:

Theorem 15.0.1. f is linear if and only if graph(f) is a hyperplane2

through origin.

(a) We �rst showed f is linear if and only if graph(f) is a linear set. This
was straight-forward to prove. The proof also showed that if graph of a
function is linear, then the function must be of the form f(x) = hw; xi
for some w 2 L, which is itself a linear function.

(b) We then noted that dim(dom(f)) � dim(graph(f)) � dim(dom(f)) +
1. Also, since (x; y) =2 graph(f) whenever y 6= f(x), the dimensionality
of the linear set is not dim(dom(f)) + 1. Hence dim(graph(f)) must
be dim(dom(f)).

3. From the above, the dual de�nition follows:

1For the extended real number counterpart, the de�nition reads like: A function f : V 7! Rext

is linear i� f(
P

n

i=1
�ixi) =

P
n

i=1
�if(xi) 8 xi 2 dom(f); �i 2 R; n 2 N, and dom(f) is a linear

set. For linear functions, we follow the convention that f(x) =1 8 x =2 dom(f).
2This hyperplane lies in the space of the direct sum of that containing the domain and the reals

space. This is the default space in which the graph is de�ned.
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Theorem 15.0.2. Riesz representation theorem: A function f : L 7!
R, where L is linear, is linear i� there exists3 a w 2 L such that f(x) =
hw; xi 8 x 2 L.4 Moreover5, the space of linear functions on L, called
the dual space, is equivalent to the space induced by L itself.

4. Once linear functions are studied, a�ne6 functions (and analogous results)
are immediate: A function f : A 7! R is a�ne i� A is a�ne and f(

Pn
i=1 �ixi) =Pn

i=1 �if(xi) 8 xi 2 A; �i 2 R 3 Pn
i=1 �i = 1; n 2 N i.e., Image of an a�ne

combination of some points under the function is the same a�ne combination
of images of those points. We take this as the primal de�nition. Needless to
say, all linear functions are a�ne.

5. Again, we can show:

Theorem 15.0.3. f is a�ne if and only if graph(f) is a hyperplane. If
LA is the linear set associated with A, f is a�ne7 if and only if there
exists a u 2 LA; b 2 R such that f(x) = hu; xi + b. This is the dual
de�nition.

3This statemen can also be alternatively proved using orthonormal basis for L.
4For the extended real number counterpart, the dual de�nition reads like: A function f : V 7!

Rext is linear i� (a) L � dom(f) is a linear set, (b) there exists a w 2 L such that f(x) =
hw; xi 8 x 2 dom(f), and dom(f) is a linear set. For linear functions, we follow the convention
that f(x) =1 8 x =2 dom(f).

5This additional quali�cation is left as an exercise to be proven.
6For the extended real number counterpart, the de�nition reads like: A function f : V 7! Rext is

a�ne i� f(
P

n

i=1
�ixi) =

P
n

i=1
�if(xi) 8 xi 2 dom(f); �i 2 R 3

P
n

i=1
�i = 1; n 2 N, and dom(f)

is an a�ne set. For a�ne functions, we follow the convention that f(x) =1 8 x =2 dom(f).
7For the extended real number counterpart, everything is the same with the additional conven-

tion that f(x) =1 8 x =2 dom(f).
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Lecture 16

Conic Functions: Norms,
Semi-Norms, Support Functions

1. A function f : K 7! R is conic1 i�K is a cone and f(
Pn

i=1 �ixi) �
Pn

i=1 �if(xi) 8 xi 2
K;�i � 0; n 2 N i.e., Image of a conic combination of some points under
the function under-estimates the same conic combination of images of those
points. We take this as the primal de�nition. Needless to say, all linear
functions are conic.

2. We noted that norms are conic functions. i.e., let f(x) = kxk; where k � k is
an arbitrary (yet valid) norm. Then, f is a conic function.

3. We noted that semi-norms are conic functions. Semi-norms necessarily sat-
isfy all properties of norms, except that they may be zero for a non-zero
(non-additive-identity) vector. For e.g., f(x) =

p
x>Mx is a semi-norm for

any M � 0.

4. We then proved the following useful characterization of conic functions:

Theorem 16.0.1. f is conic (function) if and only if epi(f) is conic
(set).

5. We then de�ned support functions and then from the above theorem it was
clear that support functions are closed conic functions. We say SA is support
function2 of A i� SA(x) � maxy2Ahx; yi.

1For the extended real number counterpart, everything is the same with the additional conven-
tion that f(x) =1 8 x =2 dom(f).

2While with any inner-product the function will be closed conic, the inner-product in the
de�nition of support function is the default inner-product of the domain's space.

35



For e.g., f(X) � maxeig(X); X 2 Sn is a support function, as f(X) =
maxy2Rnhyy>; XiF s:t: kyk = 1. Hence it is also a closed conic function.
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Lecture 17

Dual Definition Conic Functions
and Dual Norms

1. We de�ned a huge family of functions: Support function of a set C � V ,
evaluated at x 2 V , is de�ned as SC(x) � maxy2Chx; yi. It was easy to show
that support function is always a conic function. Moreover, it is also easy to
show that its a closed function (as its epigraph is de�ned by an intersection
of halfspaces).

2. From the dual de�nition of closed cones, it was clear that:

Theorem 17.0.1. A function is closed conic if and only if it is a support
function (for some set). In other words, a function is closed conic if
and only if it is pointwise maximum of a set of linear minorants of it.

g is said to be a minorant of f i� g(x) � f(x) 8 x 2 V . This theorem
provides the dual de�nition for (closed) conic functions.

3. After providing many examples of support functions, we de�ned the support
function of a unit-norm ball (centered at origin) as the dual norm:

kxk� � max
y2V

hx; yi;
s.t. kyk � 1:

It was easy to show that dual norm is indeed as norm.

4. We then de�ned the dual function, f�: a function whose epigraph is the dual
cone of the epigraph of a given function1, f . We noted examples of functions,

1Note that dual function can be de�ned for non-conic functions too!
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whose dual function does not exist, by citing functions whose dual cone can
never be a (valid) epigraph. Then we showed that:

Theorem 17.0.2. Let f be a closed conic function whose dual function,
f�, exists. Then:

f�(x) = max
y2V

hx;�yi;
s.t. f(y) � 1:

Moreover, (f�)� = f . For such functions, Theorem 17.0.1 is hence a
corollary of this theorem i.e., Every closed conic function, f , is the
support function of the set, fx j f�(�x) � 1g, provided f� exists.

5. The proof follows from that written for theorem 17.0.1 and the fact that
f(�x) = �f(x) if � � 0.

6. Refer section 13 in Rockafellar [1996] for conic functions.
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Lecture 18

Convex Functions

1. A function f : C 7! R is convex1 i� C is convex and f (�x+ (1� �) y) �
�f(x) + (1� �) f(y) 8 � 2 [0; 1]. Using mathematical induction we showed
that: If dom(f) is convex, then f is convex if and only if f(

Pn
i=1 �ixi) �Pn

i=1 �if(xi) 8 xi 2 A; �i � 0 3 Pn
i=1 �i = 1; n 2 N. We take this as

the primal de�nition. Needless to say, all linear, a�ne, conic functions are
convex.

2. We gave our �rst non-conic example of a convex function as f(x) = kxk2,
where k � k is any valid norm (in some abstract space). It was easy to show
this from the primal de�nition. Nevertheless, we soon realized we will need
more de�nitions if we need to give more examples.

3. We noted the famous Jensen's inequality, from which many other fundamen-
tal inequalities can be derived2:

Theorem 18.0.1. If f is convex and X is a random variable such that
E [f (X)] <1, then: f (E [X]) � E [f (X)].

Note that the condition in Jensen's inequality with a discrete random vari-
able taking �nite values is same as the primal de�nition (Hence this in-
equality can be taken as a \Stochastic" de�nition for convex functions). We
mentioned that many fundamental inequalities like the (generalized) AM-
GM, Holders etc., are a consequence of Jensens inequality (with the convex
function3 as � log(x).

1For the extended real number counterpart, everything is the same with the additional conven-
tion that f(x) =1 8 x =2 dom(f).

2Refer section 3.1.9 in Boyd and Vandenberghe [2004]. See proof2 in https://en.wikipedia.

org/wiki/Jensen%27s_inequality#Proofs.
3We will prove � log(x) is a convex function later.
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4. Again, it was easy to show that:

Theorem 18.0.2. f is a convex function if and only if epi(f) is a convex
set. Also, all (non-empty) level sets of a convex function are convex4.

5. We named a special convex function: Indicator function of a set S evaluated

at x 2 V is de�ned as IS(x) �
(

0 if x 2 S;
1 else:

. Needless to say, IC , is

convex if and only if C is convex.

6. Sections 3.1.1, 3.1.7,3.1.8,3.1.9 in Boyd and Vandenberghe [2004]; C.1 in Ben-
Tal and Nemirovski [2021]; relevant parts in section 4 in Rockafellar [1996].

4However, there are many non-convex functions (e.g., the inverted bell), whose level-sets are
all convex.
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Lecture 19

Convex functions:
Sub-differentiability

A closer look at the supporting hyperplanes of epigraphs of convex functions mo-
tivated us to de�ne:

1. A vector v is called as a sub-gradient of f at x0 2 dom(f) i� the so-called
sub-gradient inequality:

f(x) � f(x0) + hv; x� x0i

is satis�ed for all x 2 dom(f).

2. The set of all sub-gradients of f at x0 2 dom(f) is called the sub-di�erential
set of f at x0 and is denoted by @f(x0).

3. f is said to be sub-di�erentiable at x0 i� @f(x0) is non-empty.

We then proved the following important results:

Theorem 19.0.1. If f is convex and x0 2 relint(dom(f)), then @f(x0) is:

1. non-empty

2. convex

3. closed

4. bounded
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Lecture 20

Convex Functions: First Order
Characterization

1. Gradient and Sub-gradient have a very close connection that is exposed by
the following theorem:

Theorem 20.0.1. Let f be a convex function and x0 2 int(dom(f)). f is
di�erentiable at x0 if and only if the gradient is the only sub-gradient
at x0 i.e., @f(x0) = frf(x0)g.

The proof for \only if" part is easy1: for any subgradient v (at x0), we must

have hv; ui � f(x0+hu)�f(x0)
h

. Because it is di�erentiable at x0, talking limits
on both sides of the inequality gives: hv; ui � Df(x0;u) = hrf(x0); ui.
Since this is true for all u, we have v = rf(x0). The \if" part is purely a
result in calculus that is independent of convexity: please refer theorem 25.1
in Rockafellar [1996].

2. The following theorem is handy in computing sub-di�erential sets:

Theorem 20.0.2. Let f = max (f1; : : : ; fn). Let all fi be convex, then f
is also convex. Moreover, if I0 � f1; : : : ; ng is an index set such that
f(x0) = fi(x0) 8 i 2 I0; f(x0) > fj(x0) 8 j 2 Ic0, then

@f(x0) = CONV ([i2I0@fi (x0)) :

Again, we easily proved RHS � LHS and left the converse as bonus a ex-
ercise. In case there is an arbitrary collection of convex functions, then the
generalization of the above theorem is called the Danskin's theorem: refer
section 3 in https://www.cs.cmu.edu/~yaoliang/mynotes/dv.pdf.

1Prop. C.6.5 in Ben-Tal and Nemirovski [2021] provides an alternate proof.
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3. The following gives the �rst-order characterization of convex functions:

Theorem 20.0.3. Let f be a continuous function de�ned on a convex
domain, then f is convex if and only if it is sub-di�erentiable in the
domain's (relative) interior.

As a corollary of this and theorem 20.0.1, we have that for a continuous and
di�erentiable function, the notion of convexity is same as gradient satisfying
the sub-gradient inequality everywhere.

4. Read sections C.6.2, C.3 in Ben-Tal and Nemirovski [2021]; section 3.1.3
in Boyd and Vandenberghe [2004], section 23 in Rockafellar [1996].
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Lecture 21

Convex Functions: Second Order
Characterizations

1. We then moved to second-order characterization and proved the following
theorem:

Theorem 21.0.1. f : (a; b) 7! R is convex1 if and only if d2f(t)
dt2

� 0 8 t 2
(a; b). Moreover, a continuous function g : [a; b] 7! R is convex if and

only if d2g(t)
dt2

� 0 8 t 2 (a; b).

2. From the de�nition of convex functions and the above, the following theorem
is immediate:

Theorem 21.0.2. Let f be a function de�ned over a convex domain that
is twice-di�erentiable in the interior of its domain and is continuous
everywhere. For every x0; u 2 C, de�ne the 1-d restriction gx0u given
by: gx0u(t) � f(x0 + tu) 8 t 3 x0 + tu 2 C. f is convex if and only if
d2gx0u(t)

dt2
� 0 8 t 2 int(dom(gx0u)); 8 x0; u.

In the lecture, we mentioned that the above turns out to be an \easy" de�ni-
tion for many example functions, especially the ones in complicated Hilbert
spaces.

3. From the above and theorem 14.0.2, it follows that:

Theorem 21.0.3. A continuous function de�ned on a convex domain
and that is twice-di�erentiable in the domain's interior is convex if and
only if the Hessian is psd at any point in the domain's interior.

1For the �rst statement in the theorem, \a" may be �1 and/or \b" may be 1.
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4. Refer sections C.2.2 in Ben-Tal and Nemirovski [2021]; 3.1.4 in Boyd and
Vandenberghe [2004], relevant parts in sections 24-25 in Rockafellar [1996].
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Lecture 22

Conjugacy and Convexity
preserving Operations

1. We then generalized the notion of support function, which is nothing but
a pointwise maximum of a set of linear functions, to the notion of Fenchel
dual/Conjugate/Legendre Transformation, f

0

, which is a pointwise maxi-
mum of a set of a�ne functions:

(22.1) f
0

(x) � max
y2V

hx; yi � f(y);

Note that indeed conjugate generalizes support function: I
0

C = SC . In other
words, for (the restricted class of) indicator functions, the notion of conjugate
is exactly same as that of Support function. After giving examples, we note
the following properties:

(a) Conjugate of any function is closed, convex.

(b) For closed conic functions whose dual exists, we have that: f
0

(x) =
I�L1(f�)(x), where Lt(g) is the level set of g at level t.

(c) Proposition C6.6 in Ben-Tal and Nemirovski [2021] summarized below:

Theorem 22.0.1. If f is closed convex, then
�
f

0

�0

= f .

2. From the above theorem, the dual de�nition of (closed) convex function is
immediate:

Theorem 22.0.2. f is closed convex if and only if it is conjugate of some
functions. In other words a function is closed convex if and only if it is
pointwise maximum of a set of a�ne minorants of it.
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3. We mentioned that global properties of a function turn out to be local prop-
erties of the conjugate and vice-versa. This is the key advantage of this
duality relationship. For example, f

0

(0), which is a local property of con-
jugate is equal to �miny2V f(y), which is a global property of the original
function.

4. The notion of conjugate also gives the following inequality: f(x) + f
0

(y) �
hx; yi 8 x; y 2 V . This is called as the Fenchel's inequality. Again, many
fundamental inequalities can be derived from this.

5. Read sections: C6.3 in Ben-Tal and Nemirovski [2021], 3.3 in Boyd and
Vandenberghe [2004], 12,26 in Rockafellar [1996].

6. We then discussed section 3.2 inBoyd and Vandenberghe [2004], which presents
operations that preserve convexity. These will be very handy in proving con-
vexity of functions.

7. We then noted that convex functions have nice topological properties: refer
section C.4 in Ben-Tal and Nemirovski [2021]. In particular, we have:

Theorem 22.0.3. Any Convex function is continuous in the relint of it's
domain. Moreover, it is Lipschtz continuous in any compact subset of
relint of domain. Hence it is also bounded in such a compact subset.
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Lecture 23

Convex Programs

1. An MP (1.1) is said to be a Convex Program (CP) i� its objective, f , and all
constraint functions, gi, are convex. As a result, domain (as well as feasibility
set) will also be convex.

2. After giving examples of CPs, we noted the following interesting results
about CPs:

(a) Below is a su�cient condition on the feasibility set for boundedness of
objective:

Theorem 23.0.1. A CP is bounded whenever its feasibility set is
bounded.

The converse need not be true.

(b) Below is a su�cient condition for solvability of a CP:

Theorem 23.0.2. A CP is solvable whenever its feasibility set is
compact and its objective is continuous.

Again, the converse need not be true.

(c) Below is a su�cient condition for unique solvability:

Theorem 23.0.3. A CP is uniquely solvable whenever its feasibility
set is compact and its objective is continuous, strictly convex.

Converse need not be true.

(d) We de�ned strictly convex functions: A function f : C 7! R is strictly
convex i� C is convex and f (�x+ (1� �) y) < �f(x)+(1� �) f(y) 8 � 2
(0; 1). Needless to say, all strictly convex functions are convex.
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Theorem 23.0.4. Let f : C 7! R be continuous and C be convex.
Then, f is strictly convex in relint(C) if and only if f(x) > f(x0)+
hrf(x0); x�x0i 8 x 2 C 6= x0;8 rf(x0) 2 @f(x0); 8 x0 2 relint(C). In
other words, strict convexity is same as strict sub-di�erentiability.

Theorem 23.0.5. Let f : C 7! R, where C is convex and f is twice-
di�erentiable in relint(C). Then, r2f(x0) � 0 8 x0 2 relint(C)) f
is strictly convex. The converse need not be true.

(e) We then de�ned Unconstrained Convex Programs: CPs whose domain
is the entire set of vectors (that form a �nite dimensional Hilbert space)
and whose feasibility set is same as its domain. Equivalently, a CP
whose domain is entire set of vectors and there are no constraints is
an unconstrained CP i.e., CPs of the form minx2V f(x). The following
theorem was easy to prove:

Theorem 23.0.6. Let f be a convex function, such that dom(f) = V .
Then,

x� 2 argmin
x2V

f(x) () 0 2 @f(x�):
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Lecture 24

First order Optimality conditions

1. We gave intuition and proved the following general condition for optimality:

Theorem 24.0.1. Let (1.1) be a CP with a di�erential objective. Then,

x� is an optimal solution to (1.1) () rf(x�) 2 NF(x
�):

2. In the subsequent lecture we will write down simpli�ed expressions for the
normal cone of feasibility set for special classes of CPs and re-write the above
theorem 24.0.11 appropriately.

3. Refer section 4.2.3 in Boyd and Vandenberghe [2004] for details.

1Direct 'A' grade to students who generalize this theorem to the case where the objective is
NOT di�erentiable.
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Lecture 25

Optimality Condition: Special
cases

We wrote down various special cases (corollaries) of theorem 24.0.1:

1. Unconstrained CPs: if F = V , then NF(x) = NV (x) = f0g 8 x 2 V . This
gives back theorem 23.0.6 in di�erentiable objective case.

2. If x 2 int(F), then NF(x) = f0g. This gives back theorem 23.0.6 in di�er-
entiable objective case. In particular, if F is an open set, then any feasible
solution is in the interior.

3. If F is a hyperplane, then one can eliminate one variable and re-write the
CP as an unconstrained one. In general, if some of the constraints in the CP
are linear equalities, then one can perform gaussian elimination to eliminate
few variables and re-write the CP involving lesser number of variables.

4. If F is the halfspace fx j ha; xi � bg, then NF(x) = CONIC (f�ag) if
ha; xi = b (active constraint), and NF(x) = f0g if ha; xi < b (inactive con-
straint).

5. Next special case is: Polyhedrally Constrained Convex Programs (PCCPs)
as CPs with an open domain, and the constrained functions are all restricted
to be a�ne i.e., CPs of the form:

min
x2X

f(x)(25.1)

s.t. hai; xi � bi 8 i = 1; : : : ;m;

where X is open and f is convex. In this case we showed that NF(x) =

CONIC
�
[i2A(x)f�aig

�
, where A(x) is the set of all active constraints at
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x 2 F i.e., A(x) � fi j hai; xi = big. With this theorem 24.0.1 can be
re-written as:

Theorem 25.0.1. Let (25.1) be a CP with di�erentiable objective. Then,
x� is a solution to (25.1) if and only if there exists �� 2 Rm such that:

(a) x� 2 X , hai; x�i � bi; �
�
i � 0 8 i = 1; : : : ;m (feasibility conditions).

(b) ��i (hai; x�i � bi) = 0 8 i = 1; : : : ;m (complementary slackness condi-
tions).

(c) rf(x�) +Pm
i=1 �

�
iai = 0 (gradient conditions).

We then gave the CP corresponding to the maximum entropy models as a
use case for the above conditions.
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Lecture 26

KKT conditions

We then de�ned a regular CP as a CP (1.1) with the domain restricted to be
(convex) open, all functions (objective, constraint) restricted to be (convex) dif-
ferentiable and the Slater's condition is satis�ed. Slater's condition says that there
must exist an x0 2 X such that gi(x0) < 0, whenever gi is non-a�ne. We then
de�ned a KKT point (x�; ��) as any pair x�; �� that satisfy the following three
(sets of) conditions, known as the KKT conditions:

1. x� 2 X , gi(x�) � 0; ��i � 0 8 i = 1; : : : ;m (feasibility conditions).

2. ��igi(x
�) = 0 8 i = 1; : : : ;m (complementary slackness conditions).

3. rf(x�) +Pm
i=1 �

�
irgi(x�) = 0 (gradient conditions).

By writing an expression for NF in this case, theorem 24.0.1 simpli�es as:

Theorem 26.0.1. x� is a solution to a regular CP if and only if there exists
�� 2 Rm such that (x�; ��) is a KKT point.

Refer section D.2.3.B in Ben-Tal and Nemirovski [2021] and sections 5.9.2,5.9.3 in Boyd
and Vandenberghe [2004] for more details.
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Lecture 27

KKT Conditions: Example

1. We discussed an example where the KKT conditions can be used to derive
analytical form for the solution: the optimization problem that arises in
de�ning dual norm of (entrywise) p-norm. We understood that the KKT
theorem can't be directly applied and made a series of 6-7 re-writings of the
CP to arrive at a one where the KKT theorem can be applied.
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Lecture 28

Duality in MPs

From our experience with notions of orthogonal complement, dual cone, polar,
dual function, conjugate, we then noted desirable properties to de�ne a \dual"
MP:

Convexity: We insist that dual of any MP must be a convex program. For e.g.,
polar of any set is a convex set, conjugate of any function is convex etc.

Outer Description: We insist that dual of a min MP is a max MP such that
value of the \primal" minimization MP at any feasible solution is less than
that of the dual at any of its feasible solution. Then, the function values in
primal will not \overlap" with those in dual. For e.g., vectors in orthogonal
complement do not overlap with the set and provide an \outer description"!
This is more formally called as principle of Weak Duality. This will also be
useful for computationally intractable MPs: for example, the primal objec-
tive with any primal feasible solution gives an upper bound and the dual
objective with any dual feasible solution will give a lower bound.

(A)symmetry: We insist that the optimal value of primal, if its a convex pro-
gram, is equal to that of its dual. This is modeled from facts like: polar of
polar of a convex set (that is closed and has origin) is the original set, con-
jugate of conjugate is original function. If P � D � D(D) and D(D) = P ,
then P = D. So, we insist that the primal and dual have same optimal value
for CPs. This is formally called as principle of Strong Duality.

Inheritance: We insist that when we de�ne a dual, we reuse some older notions
of duality like conjugate, dual cone etc. Using these existing notions, one
should be able write down a dual for a given MP.
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Related: Both P and D must use the same parameters (data). This makes them
\physically related".

We attempted to dualize unconstrained MPs, leading to the degenerate MP: f
0

(0).
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Lecture 29

Fenchel Duality

• We considered MPs of the following form1:

(29.1) P � min
x2V

f(x) + g(x):

• Using the relation f � (f 0)0 (bi-conjugate), and interchanging min-max, we
have P � D (weak duality), where D, the Fenchel Dual, is given by:

(29.2) D � max
z2V

�f 0(z)� g0(�z):

• We noted that D is a convex program, even if P is not.

• We proved the following strong duality theorem:

Theorem 29.0.1. If f; g are closed convex, we were able to show P = D.

• We noted the Fenchel dual of the popular (soft-margin) SVM.

1Popularly encountered in Machine Learning
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Lecture 30

Lagrange Duality

1. We began with PCMPs (Polyhedrally Constrained Mathematical Programs):

min
x2Rn

f(x)

s.t. A>x � b:

If further the objective is linear/quadratic, it is known as a Linear/Quadratic
Program (LP/QP).

2. We noted that the Fenchel dual of a PCMP involves the conjugate of the
objective and that of the Indicator function of the constraint set, IC , where
C �

n
x j A>x � b

o
. The later, in general, is a Linear program, which may

not allow any anlytical form. We hence wished to explore dual forms that
may avoid the LP. This motivated the use of support function function form
(rather than the conjugate form): IC(x) = max��0 �

>(A>x� b).

3. After min-max interchange, we have weak duality with max��0�b>��f 0(�A�).
Note that this is a convex program even if the given PCMP is not. Also, from
KKT conditions it follows that strong duality holds whenever the objective
f is convex and the PCMP is solvable. We call this the Lagrange dual.

4. The primal-dual pair in case b = 0 and f is linear (say, f(x) = c>x) reads
as:

P = minx2Rn c
>x = max��0 0 = D

s.t.A>x � 0: s.t. A�+ c = 0:

This says, if D is feasible, i.e., the system A�+ c = 0; � � 0 is solvable, then
P is bounded by 0, i.e., the system A>x � 0; c>x < 0 is infeasible (and vice-
versa). This infact is the statement of the popular Farka's Lemma, which
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we now know is a special case of the Lagrange duality. Such equivalences
are interesting because verifying feasibility may be easy; whereas verifying
infeasibility may not be1.

5. We then generalized this to MPs (1.1), henceforth referred to as the primal,
we de�ned Lagrangian: L(x; �) � f(x)+

Pm
i=1 �igi(x). It's domain is X�Rm

+ .
We call x as primal variables, and �i as Lagrange multipliers or Lagrange
Dual variables or simply, dual variables. We then de�ne the Lagrange dual
function: L(�) � minx2X L(x; �). Finally, we de�ne the Lagrange Dual
Problem as:

max
��0

L(�):(30.1)

6. It was an easy exercise to show:

Theorem 30.0.1. Let P be the value of (an arbitrary, perhaps non-
convex) MP given by (1.1), and D be that of it's Lagrange dual (30.1).
Then, P � D (Weak Duality). Moreover, (30.1) is (always) a Convex
Program. If P is di�erentiable regular convex and solvable, then P = D
(strong duality).

7. It is an easy exercise to show that the Lagrange dual of an LP is another LP
(self-dual) and that of a strictly-convex QP is another strictly-convex QP
(self-dual):

(a) We de�ned a Linear Program (LP) as a special CP of the form:

min
x2V

hc; xi;(30.2)

s.t. hai; xi � bi 8 i = 1; : : : ;m:

Theorem 30.0.2. The Lagrange dual of (30.2) is:

max
�2Rm

�b>�;(30.3)

s.t. � � 0; c+
Pm

i=1 �iai = 0:

This again can be written as an LP. Hence self-duality holds for LPs.

(b) We de�ned a Quadratic Program (QP) as an MP of the form:

min
x2Rn

1
2
x>Px+ q>x;(30.4)

s.t. a>i x � bi 8 i = 1; : : : ;m:
1Imagine the di�cult situation of a judge who needs to verify the claim of a witness that she

does not know a particular language, say, English; compared to the ease in verifying the alternative
claim that she knows English well. Also, see example 5.10 in Boyd and Vandenberghe [2004].
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Theorem 30.0.3. If P � 0, the Lagrange dual of (30.4) is:

max
�2Rm

�1
2
�>A>P�1A�� �>

�
A>P�1q + b

�
� 1

2
q>P�1q;(30.5)

s.t. � � 0:

This again can be written as a convex QP, hence self-duality holds.

8. Refer sections 5.1-5.2 in Boyd and Vandenberghe [2004] and sections 1.2,D.2,D.3 in Ben-
Tal and Nemirovski [2021].
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Lecture 31

Conic Programs and Duality

1. We derived the Lagrange dual problem for a general convex QP:

Theorem 31.0.1. If P � 0, then the Lagrange dual of QP (30.4) is:

max
�2Rm;t2R

t;(31.1)

s.t.

"
P q +

Pm
i=1 �iai

q> +
Pm

i=1 �ia
>
i �2 (Pm

i=1 �ibi + t)

#
� 0; � � 0:

2. Motivated by the above (and generalizing LPs) we de�ned a Semi-De�nite
Program (SDP):

min
x2Rn

c>x;(31.2)

s.t. B �Pn
i=1 xiAi � 0:

Here the matrices B;Ai are symmetric matrices of size m. The constraints
of the form in SDP are known as Linear Matrix Inequalities (LMI).

3. We note that if all matrices B;Ai are diagonal matrices, then SDP is same
as LP. Secondly, (30.5) can be written as an SDP.

4. SDP happen to be an enormous class of CPs, with huge number of applica-
tions. Section 3.2 in Ben-Tal and Nemirovski [2021] presents a host of sets
that can be represented by LMIs.

5. Further generalizing SDPs, we de�ned Conic Programs:

min
x2V

hc; xiV ;(31.3)

s.t. b�W l(x) 2 K �W:
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Here V;W are vector sets from di�erent vector spaces. For e.g., in SDPs,
V = Rn and W = Sm (symmetric matrices). a �W b = a +W (�1:b), where
+W is the addition operator in W space. h�; �iV is the inner-product in V
space. l : V 7! W is a linear function (de�nition same as with scalar valued
functions). K is a closed cone.

6. It is easy to see that LPs, QPs, SDPs, can all be written in (31.3) form.

7. We de�ned conic dual of (31.3) as1:

max
y2W

�hb; yiW ;(31.4)

s.t. l>(y) +V c = 0; y 2 K� �W:

8. Interestingly, in special cases of LP, QP etc., the Lagrange dual (when primal
is written in (1.1) form) will match Conic Dual (when primal i written in
(31.3) form).

Theorem 31.0.2. Conic dual is (always) convex and, the Value of (31.3)
� value of (31.4), even if K is arbitrary. If K is closed convex, their
values are the same.

The proof follows from in�mal convolution theorem and also highlights the
optimality conditions for this case.

1Holds even in case K is an arbitrary set.
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