
CS5470 Mid-Semester Exam

21-Sep-2017 2:20pm-5:20pm

Note: Please use precise, and concise, mathematical arguments. Please
justify1 each non-trivial statement appropriately. Please write legibly.

1. Let X , and {−1, 1} be the input, and output spaces respectively. Let G
(model) be a given set of functions, each mapping X to {−1, 1}. Let the
loss function, l, be the zero-one loss. Derive a high-probability upper-
bound on the true-risk with empirical risk minimizer in terms of the true-
risk with g∗ and maximum-discrepancy of the loss-class, G◦l. Here, g∗ ∈ G
denotes the function that incurs least (true) risk among the functions in
G.

[15Marks]

2. In the context of the above set-up, derive a high-probability upper-bound
on the maximum-discrepancy of the loss-class, G ◦ l, in terms of the con-
ditional Rademacher complexity of the model, G.

[15Marks]

3. Let X , and {−1, 1} be the input, and output spaces respectively. Let
loss be the hinge-loss and the model be the bounded linear one: GW ={
g | ∃w ∈ Rn 3 g(x) = w>x ∀ x ∈ X ⊂ Rn, ‖w‖ ≤W

}
. Then, in the lec-

tures, we showed the following bound that holds uniformly for all g ∈ G
with probability atleast 1− δ:

R[g] ≤ R̂m[g] +
W√
m

Φ(R, δ) + Ψ(m, δ), ∀ g ∈ G, (1)

where2 R = maxx∈X ‖x‖. Given the model, i.e., given W , the upper
bound on the true-risk (as given in (1)) is minimum for the empirical risk

1You may use the following inequalities in your answers without proving them: Markov
inequality, Hoeffding lemma, Chernoff-Hoeffding inequality, McDiarmid’s inequality, Jensens’s
inequality, Cauchy-Schwartz inequality. However you need to precisely justify why a particular
inequality applies in the context. In case you employ the McDiarmid inequality you may
skip proving that the (random) function satisfies bounded difference property. Apart from
the exceptions listed in this footnote every other non-trivial statement needs to be justified
appropriately.

2Infact, Φ(R, δ) = 2R+ 3R√
2

√
log 2

δ
and Ψ(m, δ) = 3

√
1

2m
log 2

δ
.
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minimizer. Motivated by this observation, we propose the following for
model selection, i.e., finding the right hyper-parameter Ŵm, among the
choices3, say, W ∈ (0, B]:

Ŵm ≡ argminW∈(0,B]R̂m [ĝm(W )] +
W√
m

Φ(R, δ), (2)

where ĝm(W ) is the empirical risk minimizer with hyper-parameter W ,
i.e., ĝm(W ) = arg ming∈GW R̂m[g]. Once the right Ŵm is known, ERM is

performed in this model to obtain ĝm

(
Ŵm

)
. Show that such an algorithm

is statistically consistent4, i.e., show that
{
R
[
ĝm

(
Ŵm

)]}
p−→ R[g∗],

where g∗ denotes the function that incurs least (true) risk among the
functions in GB .

[10Marks]

4. Consider the following linear classifier: sign(w>x − b = 0) where w =
[0.6667, −1]>, b = 0. Consider a data point X = [X1, X2]>; however X
is not known exactly (it is uncertain, say modeled by a random variable).
What is known about X is that its expectation is [2, 0.75]>, 0.5 ≤ X1 ≤
2.5, 0.5 ≤ X2 ≤ 1.5 and it can be assumed that X1 is independent of X2.
Using Chernoff-Hoeffding bound or otherwise, lower-bound the probability
that X lies on the positive side of the line w>x− b = 0.

[10Marks]

5. Let Ω be a non-empty set of finite cardinality. Consider a function, k :
2Ω × 2Ω 7→ R given by5: k(A1, A2) = |A1 ∩ A2|. Show that k is a valid
kernel using the following two strategies:

(a) Explicitly write-down a finite-dimensional feature map φ : 2Ω 7→
Rn, n ∈ N, such that k evaluates dot-products (between mapped
points in that n-dimensional space).

[5Marks]

(b) Explicitly write-down a feature map φ : 2Ω 7→ H, such that k eval-
uates inner-products (between mapped points in H). Here, H must
be the space of all (real-valued) random variables.

[5Marks]

3You may want to call B as hyper-hyper-parameter. This is because this fixes the model-
class, from which the model is chosen, from which in turn the prediction function is chosen.

4Note that it is only asked to prove consistency and hence you need NOT derive any explicit
learning bounds. Please do not waste time on deriving bounds.

5Here, |A| denotes cardinality of A.
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6. Let G be a model containing functions mapping input-space, X , to output-
space, Y ⊂ R (model for regression6). For any ε > 0, the covering number
N (G, ε) is defined as the minimal k ∈ N, such that G can be “covered” with
k balls of radius ε. That is, there exist g1, . . . , gk ∈ G, such that for any
g ∈ G, there exists an i ∈ {1, . . . , k} such that maxx∈X |g(x)− gi(x)| ≤ ε.
Let us assume the covering number of G (at any ε > 0) is finite7. Further,
lets assume that there exists M > 0 such that |h(x)− y| ≤M, ∀ (x, y) ∈
X × Y. Let the loss function be squared loss: l(y, g(x)) ≡ (y − g(x))

2
.

Derive a high-probability bound on the true risk of g in terms of empirical
risk of g and the covering number. This bound must uniformly hold8 for
all g ∈ G.

[20Marks]

7. Prove or disprove the statement:

(a) k : R× R 7→ R given by k(x, y) = (xy − 1)
2

is a valid kernel.

[5Marks]

(b) k : R× R 7→ R given by k(x, y) = e−|x−y| is a valid kernel.

[10Marks]

8. During the lecture on 14-9-2017 (the one just before this exam), we showed
that the Gaussian kernel is positive-definite. Please write down the name
of the matrix whose invertible nature was used to prove the result.

[5Marks]

6Y is an uncountable set of real-values.
7Interested students may read further on “compact sets”.
8If done correctly, this bound will asymptotically approach zero, proving statistical consis-

tency in this case. Note that covering number plays role analogous to Growth function.
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