
Global Register Allocation

Y N Srikant
Computer Science and Automation
Indian Institute of Science
Bangalore 560012

NPTEL Course on Compiler Design

Y.N. Srikant 2

Outline

n  Issues in Global Register Allocation
n  The Problem
n  Register Allocation based in Usage Counts
n  Linear Scan Register allocation
n  Chaitin’s graph colouring based algorithm

Y.N. Srikant 3

Some Issues in Register Allocation

n  Which values in a program reside in registers?
(register allocation)

n  In which register? (register assignment)
q  The two together are usually loosely referred to as register

allocation
n  What is the unit at the level of which register

allocation is done?
q  Typical units are basic blocks, functions and regions.
q  RA within basic blocks is called local RA
q  The other two are known as global RA
q  Global RA requires much more time than local RA

Y.N. Srikant 4

Some Issues in Register Allocation

n  Phase ordering between register allocation and
instruction scheduling
q  Performing RA first restricts movement of code during

scheduling – not recommended
q  Scheduling instructions first cannot handle spill code

introduced during RA
n  Requires another pass of scheduling

n  Tradeoff between speed and quality of allocation
q  In some cases e.g., in Just-In-Time compilation, cannot

afford to spend too much time in register allocation.

Y.N. Srikant 5

The Problem

n  Global Register Allocation assumes that allocation is
done beyond basic blocks and usually at function level

n  Decision problem related to register allocation :
q  Given an intermediate language program represented as a

control flow graph and a number k, is there an assignment
of registers to program variables such that no conflicting
variables are assigned the same register, no extra loads or
stores are introduced, and at most k registers are used.

n  This problem has been shown to be NP-hard (Sethi
1970).

n  Graph colouring is the most popular heuristic used.
n  However, there are simpler algorithms as well

Y.N. Srikant 6

Conflicting variables

n  Two variables interfere or conflict if their live
ranges intersect
q  A variable is live at a point p in the flow graph, if

there is a use of that variable in the path from p to
the end of the flow graph

q  A live range of a variable is the smallest set of
program points at which it is live.

q  Typically, instruction no. in the basic block along
with the basic block no. is the representation for a
point.

Y.N. Srikant 7

Example

 If (cond) A not live
 then A =
 else B =
X: if (cond) B not live
 then = A
 else = B

 A and B both live

If (cond)

A= B=

If (cond)

=A =B

T F

F

B1

B2 B3

B4

B6
B5

Live range of A: B2, B4 B5
Live range of B: B3, B4, B6

Y.N. Srikant 8

Global Register Allocation via
Usage Counts (for Single Loops)
n  Allocate registers for variables used within loops
n  Requires information about liveness of variables

at the entry and exit of each basic block (BB) of
a loop

n  Once a variable is computed into a register, it
stays in that register until the end of of the BB
(subject to existence of next-uses)

n  Load/Store instructions cost 2 units (because
they occupy two words)

Y.N. Srikant 9

Global Register Allocation via
Usage Counts (for Single Loops)
1.  For every usage of a variable v in a BB,

until it is first defined, do:
Ø  savings(v) = savings(v) + 1
Ø  after v is defined, it stays in the register any way,

and all further references are to that register
2.  For every variable v computed in a BB, if it

is live on exit from the BB,
Ø  count a savings of 2, since it is not necessary to

store it at the end of the BB

Y.N. Srikant 10

Global Register Allocation via
Usage Counts (for Single Loops)
n  Total savings per variable v are

q  liveandcomputed(v,B) in the second term is 1 or 0
n  On entry to (exit from) the loop, we load (store) a

variable live on entry (exit), and lose 2 units for each
q  But, these are “one time” costs and are neglected

n  Variables, whose savings are the highest will reside
in registers

((,) 2* (,))
B Loop

savings v B liveandcomputed v B
∈

+∑

Y.N. Srikant 11

Global Register Allocation via
Usage Counts (for Single Loops)

Savings for the variables
 B1 B2 B3 B4
a: (0+2)+(1+0)+(1+0)+(0+0) = 4
b: (3+0)+(0+0)+(0+0)+(0+2) = 5
c: (1+0)+(1+0)+(0+0)+(1+0) = 3
d: (0+2)+(1+0)+(0+0)+(1+0) = 4
e: (0+2)+(0+2)+(1+0)+(0+0) = 5
f: (1+0)+(1+0)+(0+2)+(0+0) = 4

If there are 3 registers, they will
be allocated to the variables, a, b,
and e

a = b*c
d = b-a
e = b/f

b = a-f
e = d+c f = e * a

b = c - d

bcf

B1

B2

B3

B4

acde acdf

cdef

bcdf abcdef

aef

Y.N. Srikant 12

Global Register Allocation via
Usage Counts (for Nested Loops)
n  We first assign registers for inner loops and then

consider outer loops. Let L1 nest L2
n  For variables assigned registers in L2, but not in L1

q  load these variables on entry to L2 and store them on exit
from L2

n  For variables assigned registers in L1, but not in L2
q  store these variables on entry to L2 and load them on exit

from L2
n  All costs are calculated keeping the above rules

Y.N. Srikant 13

Global Register Allocation via
Usage Counts (for Nested Loops)

n  case 1: variables x,y,z
assigned registers in L2, but
not in L1
q  Load x,y,z on entry to L2
q  Store x,y,z on exit from L2

n  case 2: variables a,b,c
assigned registers in L1, but
not in L2
q  Store a,b,c on entry to L2
q  Load a,b,c on exit from L2

n  case 3: variables p,q assigned
registers in both L1 and L2
q  No special action

Body
of L2

L2 L1

Y.N. Srikant 14

A Fast Register Allocation Scheme

n  Linear scan register allocation(Poletto and
Sarkar 1999) uses the notion of a live interval
rather than a live range.

n  Is relevant for applications where compile
time is important, such as in dynamic
compilation and in just-in-time compilers.

n  Other register allocation schemes based on
graph colouring are slow and are not suitable
for JIT and dynamic compilers

Y.N. Srikant 15

Linear Scan Register Allocation

n  Assume that there is some numbering of the
instructions in the intermediate form

n  An interval [i,j] is a live interval for variable v
if there is no instruction with number j’> j
such that v is live at j’ and no instruction with
number i’< i such that v is live at i

n  This is a conservative approximation of live
ranges: there may be subranges of [i,j] in
which v is not live but these are ignored

Y.N. Srikant 16

Live Interval Example

 ...
i’:
 ...
i:
 ...
j:
 ...
j’:
 ...

sequentially
numbered
instructions

} i – j : live interval for variable v

i’ does not exist

j’ does not exist

v live

v live

Y.N. Srikant 17

Example

 If (cond)
 then A=
 else B=
X: if (cond)
 then =A
 else = B

If (cond)

A= B=

If (cond)

=A =B

T F

F

LIVE INTERVAL FOR A

A NOT LIVE HERE

Y.N. Srikant 18

Live Intervals

n  Given an order for pseudo-instructions and
live variable information, live intervals can be
computed easily with one pass through the
intermediate representation.

n  Interference among live intervals is assumed
if they overlap.

n  Number of overlapping intervals changes
only at start and end points of an interval.

Y.N. Srikant 19

The Data Structures

n  Live intervals are stored in the sorted order of
increasing start point.

n  At each point of the program, the algorithm
maintains a list (active list) of live intervals
that overlap the current point and that have
been placed in registers.

n  active list is kept in the order of increasing
end point.

Y.N. Srikant 20

i1 i2 i3 i4

i5 i6 i7

i8 i9 i10 i11
A B

Active lists (in order
of increasing end pt)

Active(A)= {i1}
Active(B)={i1,i5}
Active(C)={i8,i5}
Active(D)= {i7,i4,i11}

C

Example

Three registers enough for computation without spills

D

Sorted order of intervals
(according to start point):
i1, i5, i8, i2, i9, i6, i3, i10, i7, i4, i11

Y.N. Srikant 21

The Algorithm (1)

{ active := [];
 for each live interval i, in order of increasing
 start point do
 { ExpireOldIntervals (i);
 if length(active) == R then SpillAtInterval(i);
 else { register[i] := a register removed from the
 pool of free registers;
 add i to active, sorted by increasing end point
 }
 }
}

Y.N. Srikant 22

The Algorithm (2)

ExpireOldIntervals (i)
{ for each interval j in active, in order of
 increasing end point do
 { if endpoint[j] > startpoint[i] then continue
 else { remove j from active;
 add register[j] to pool of free registers;
 }
 }
}

Y.N. Srikant 23

The Algorithm (3)

SpillAtInterval (i)
{ spill := last interval in active;
 if endpoint [spill] > endpoint [i] then
 { register [i] := register [spill];
 location [spill] := new stack location;
 remove spill from active;
 add i to active, sorted by increasing end point;
 } else location [i] := new stack location;
}

Y.N. Srikant 24

i1 i2 i3 i4

i5 i6 i7

i8 i9 i10 i11
A B C

Example 1

Three registers enough for computation without spills

D

Sorted order of intervals
(according to start point):
i1, i5, i8, i2, i9, i6, i3, i10, i7, i4, i11

Active lists (in order
of increasing end pt)

Active(A)= {i1}
Active(B)={i1,i5}
Active(C)={i8,i5}
Active(D)= {i7,i4,i11}

Y.N. Srikant 25

Example 2
A

B

C

D

E

1 2 3 4 5

1,2 : give A,B register
3: Spill C since endpoint[C] > endpoint [B]

4: A expires, give D register
5: B expires, E gets register

2 registers
available

Y.N. Srikant 26

Example 3
A

B

C

D

E

1 2 3 4 5

1,2 : give A,B register
3: Spill B since endpoint[B] > endpoint [C]
 give register to C

4: A expires, give D register
5: C expires, E gets register

2 registers
available

Y.N. Srikant 27

Complexity of the Linear Scan
Algorithm
n  If V is the number of live intervals and R the number of

available physical registers, then if a balanced binary
tree is used for storing the active intervals, complexity is
O(V log R).
q  Active list can be at most ‘R’ long
q  Insertion and deletion are the important operations

n  Empirical results reported in literature indicate that linear
scan is significantly faster than graph colouring
algorithms and code emitted is at most 10% slower than
that generated by an aggressive graph colouring
algorithm.

Y.N. Srikant 28

Chaitin’s Formulation of the
Register Allocation Problem
n  A graph colouring formulation on the

interference graph
n  Nodes in the graph represent either live ranges

of variables or entities called webs
n  An edge connects two live ranges that interfere

or conflict with one another
n  Usually both adjacency matrix and adjacency

lists are used to represent the graph.

Y.N. Srikant 29

Chaitin’s Formulation of the
Register Allocation Problem

n  Assign colours to the nodes such that two
nodes connected by an edge are not assigned
the same colour
q  The number of colours available is the number

of registers available on the machine
q  A k-colouring of the interference graph is

mapped onto an allocation with k registers

Y.N. Srikant 30

Example

n  Two colourable Three colourable

Y.N. Srikant 31

Idea behind Chaitin’s Algorithm

n  Choose an arbitrary node of degree less than k and
put it on the stack

n  Remove that vertex and all its edges from the graph
q  This may decrease the degree of some other nodes and

cause some more nodes to have degree less than k
n  At some point, if all vertices have degree greater

than or equal to k, some node has to be spilled
n  If no vertex needs to be spilled, successively pop

vertices off stack and colour them in a colour not
used by neighbours (reuse colours as far as
possible)

Y.N. Srikant 32

Simple example – Given Graph

2

3

4 5 1

STACK

3 REGISTERS

Y.N. Srikant 33

Simple Example – Delete Node 1

STACK
3 REGISTERS

2

3

4 5 1

2

 1

Y.N. Srikant 34

Simple Example – Delete Node 2

STACK
3 REGISTERS

2

3

4 5 1

 1
 2

Y.N. Srikant 35

Simple Example – Delete Node 4

STACK

3 REGISTERS

2

3

4 5 1

 1
 2
 4

Y.N. Srikant 36

Simple Example – Delete Nodes 3

STACK
3 REGISTERS

2

3

4 5 1

 1
 2
 4
 3

Y.N. Srikant 37

Simple Example – Delete Nodes 5

STACK
3 REGISTERS

2

3

4 5 1

 1
 2
 4
 3
 5

Y.N. Srikant 38

Simple Example – Colour Node 5

STACK

COLOURS

5

3 REGISTERS

 1
 2
 4
 3

Y.N. Srikant 39

Simple Example – Colour Node 3

STACK

COLOURS

5

3

3 REGISTERS

 1
 2
 4

Y.N. Srikant 40

Simple Example – Colour Node 4

STACK

COLOURS

5

3

4

3 REGISTERS

 1
 2

Y.N. Srikant 41

Simple Example – Colour Node 2

STACK

COLOURS

5

3

4

2

3 REGISTERS

 1

Y.N. Srikant 42

Simple Example – Colour Node 1

STACK

COLOURS

5

3

2

1 4

3 REGISTERS

Y.N. Srikant 43

Steps in Chaitin’s Algorithm

n  Identify units for allocation
q  Renames variables/symbolic registers in the IR such

that each live range has a unique name (number)
n  Build the interference graph
n  Coalesce by removing unnecessary move or

copy instructions
n  Colour the graph, thereby selecting registers
n  Compute spill costs, simplify and add spill code

till graph is colourable

Y.N. Srikant 44

The Chaitin Framework

RENUMBER BUILD COALESCE SIMPLIFY

SPILL CODE

SPILL COST SELECT

Example of Renaming

Y.N. Srikant 45

a = a =

= a

a =

= a = a

s1 = s1 =

= s1

s2 =

= s2 = s2

Renaming

Y.N. Srikant 46

An Example

Original code

x= 2
y = 4
w = x+ y
z = x+1
u = x*y
x= z*2

Code with symbolic registers

1.  s1=2; (lv of s1: 1-5)
2.  s2=4; (lv of s2: 2-5)
3.  s3=s1+s2; (lv of s3: 3-4)
4.  s4=s1+1; (lv of s4: 4-6)
5.  s5=s1*s2; (lv of s5: 5-6)
6.  s6=s4*2; (lv of s6: 6- ...)

Y.N. Srikant 47

s5
s1 s3 r3

s6 s2 s4
r1 r2

INTERFERENCE GRAPH
HERE ASSUME VARIABLE Z (s4) CANNOT OCCUPY r1

Y.N. Srikant 48

Example(continued)

Final register allocated code

r1 = 2
r2= 4
r3= r1+r2
r3= r1+1
r1= r1 *r2
r2= r3+r2

Three registers are
sufficient for no spills

Y.N. Srikant 49

Renumbering - Webs

n  The definition points and the use points for each
variable v are assumed to be known

n  Each definition with its set of uses for v is a du-
chain

n  A web is a maximal union of du-chains such that,
for each definition d and use u, either u is in the
du-chain of d, or there exists a sequence

 d =d1 ,u1 ,d2 ,u2 ,…, dn ,un such that for each i, ui
is in the du-chains of both di and di+1.

Y.N. Srikant 50

Renumbering - Webs

n  Each web is given a unique symbolic register.
n  Webs arise when variables are redefined

several times in a program
n  Webs have intersecting du-chains,

intersecting at the points of join in the control
flow graph

Y.N. Srikant 51

Example of Webs

Def y

Use x

Def x

Def y

Use x

Use y
Use x
Def x

Def x
Use y

B2
B1

B3

B4 B5

B6

W1: def x in B2, def x in B3, use x in
B4, Use x in B5
W2: def x in B5, use x in B6
W3: def y in B2, use y in B4
W4: def y in B1, use y in B3

w3 w1

w2 w4

Y.N. Srikant 52

Build Interference Graph

n  Create a node for each web and for each
physical register in the interference graph

n  If two distinct webs interfere, that is, a
variable associated with one web is live at a
definition point of another add an edge
between the two webs

n  If a particular variable cannot reside in a
register, add an edge between all webs
associated with that variable and the register

Y.N. Srikant 53

Copy Subsumption or Coalescing

n  Consider a copy instruction: b := e in the program
n  If the live ranges of b and e do not overlap, then b

and e can be given the same register (colour)
q  Implied by lack of any edges between b and e in the

interference graph
n  The copy instruction can then be removed from the

final program
n  Coalesce by merging b and e into one node that

contains the edges of both nodes

Y.N. Srikant 54

Copy Subsumption or Coalescing

b = e b = e

l.r of
old b

l.r of
new b

l.r of e

l.r of
old b

l.r of
new b

l.r of e

copy subsumption
is not possible; lr(e)
and lr(new b) interfere

copy subsumption is
possible; lr(e) and lr(new b)
do not interfere

Y.N. Srikant 55

Example of coalescing

c

b

d

e

a

f

c

be

d

a

f

BEFORE AFTER

Copy inst: b:=e

Y.N. Srikant 56

Copy Subsumption Repeatedly

b = e

l.r of x

l.r of b

l.r of e

copy subsumption happens
twice - once between b and e,
and second time between
a and b. e, b, and a are all
given the same register. a = b

l.r of a

Y.N. Srikant 57

Coalescing

n  Coalesce all possible copy instructions

q  Rebuild the graph
n  may offer further opportunities for coalescing
n  build-coalesce phase is repeated till no further

coalescing is possible.
n  Coalescing reduces the size of the

graph and possibly reduces spilling

Y.N. Srikant 58

Simple fact

n  Suppose the no. of registers available is R.
n  If a graph G contains a node n with fewer

than R neighbors then removing n and its
edges from G will not affect its R-colourability

n  If G’ = G-{n} can be coloured with R colours,
then so can G.

n  After colouring G’, just assign to n, a colour
different from its R-1 neighbours.

Y.N. Srikant 59

Simplification

n  If a node n in the interference graph has
degree less than R, remove n and all its
edges from the graph and place n on a
colouring stack.

n  When no more such nodes are removable
then we need to spill a node.

n  Spilling a variable x implies
q  loading x into a register at every use of x
q  storing x from register into memory at every

definition of x

Y.N. Srikant 60

Spilling Cost

n  The node to be spilled is decided on the basis of a
spill cost for the live range represented by the node.

n  Chaitin’s estimate of spill cost of a live range v

q  cost(v) =

q  where c is the cost of the op and d, the loop nesting depth.
q  10 in the eqn above approximates the no. of iterations of

any loop
q  The node to be spilled is the one with MIN(cost(v)/deg(v))

all load or store
operations in
a live range v

*10dc∑

Y.N. Srikant 61

Spilling Heuristics

n  Multiple heuristic functions are available for making spill
decisions (cost(v) as before)

1.  h0(v) = cost(v)/degree(v) : Chaitin’s heuristic
2.  h1(v) = cost(v)/[degree(v)]2
3.  h2(v) = cost(v)/[area(v)*degree(v)]
4.  h3(v) = cost(v)/[area(v)*(degree(v))2]

 where area(v) =

n  width(v,I) is the number of live ranges overlapping with
instruction I and depth(v,I) is the depth of loop nesting of I in v

(,)

all instructions I
in the live range v

(,)*5depth v Iwidth v I∑

Y.N. Srikant 62

Spilling Heuristics

n  area(v) represents the global contribution by v to
register pressure, a measure of the need for
registers at a point

n  Spilling a live range with high area releases register
pressure; i.e., releases a register when it is most
needed

n  Choose v with MIN(hi(v)), as the candidate to spill,
if hi is the heuristic chosen

n  It is possible to use different heuristics at different
times

Y.N. Srikant 63

Here R = 3 and the graph is 3-colourable
No spilling is necessary

Example

Y.N. Srikant 64

1 2

3

4
5

A 3-colourable graph which is not
3-coloured by colouring heuristic

Example

Y.N. Srikant 65

Spilling a Node
n  To spill a node we remove it from the graph and

represent the effect of spilling as follows (It cannot
just be removed from the graph).
q  Reload the spilled object at each use and store it in

memory at each definition point
q  This creates new webs with small live ranges but which will

need registers.
n  After all spill decisions are made, insert spill code,

rebuild the interference graph and then repeat the
attempt to colour.

n  When simplification yields an empty graph then
select colours, that is, registers

Y.N. Srikant 66

Effect of Spilling

Def y

Use x

Def x

Def y

Use x

Use y
Use x
Def x

Def x
Use y

B2
B1

B3

B4 B5

B6

W1: def x in B2, def x in B3, use x in
B4, Use x in B5
W2: def x in B5, use x in B6
W3: def y in B2, use y in B4
W4: def y in B1, use y in B3

w3 w1

w2 w4

x is spilled in
web W1

Y.N. Srikant 67

Effect of Spilling

Def x
store x
Def y

load x
Use x
Use y

load x
Use x
Def x

Def x
store x
Use y

Use x

Def y

B2

B4 B5

B6

B1

B3

w4

w6

w5

w1 w2

w3

w7

Interference Graph

W2

W3

W4

W5

W6 W7

W1

Y.N. Srikant 68

Colouring the Graph(selection)

Repeat
v= pop(stack).
Colours_used(v)= colours used by neighbours of v
Colours_free(v)=all colours - Colours_used(v).
Colour (v) = any colour in Colours_free(v).
Until stack is empty

n  Convert the colour assigned to a symbolic register to

the corresponding real register’s name in the code.

Y.N. Srikant 69

A Complete Example

1. t1 = 202
2. i = 1
3. L1: t2 = i>100
4. if t2 goto L2
5. t1 = t1-2
6. t3 = addr(a)
7. t4 = t3 - 4
8. t5 = 4*i
9. t6 = t4 + t5
10. *t6 = t1
11. i = i+1
12. goto L1
13. L2:

variable live range
t1 1-10
i 2-11

t2 3-4
t3 6-7
t4 7-9
t5 8-9
t6 9-10

Y.N. Srikant 70

A Complete Example

variable live range
t1 1-10
i 2-11

t2 3-4
t3 6-7
t4 7-9
t5 8-9
t6 9-10

t1 i

t2 t3

t4

t5 t6

Y.N. Srikant 71

A Complete Example

t1 i

t2 t3

t4

t5 t6
Assume 3 registers. Nodes t6,t2,
and t3 are first pushed onto a
stack during reduction.

t1 i

t4

t5

This graph cannot be reduced
further. Spilling is necessary.

Y.N. Srikant 72

A Complete Example

t1 i

t4

t5

Node V Cost(v) deg(v) h0(v)
t1 31 3 10
i 41 3 14

t4 20 3 7
t5 20 3 7

t1: 1+(1+1+1)*10 = 31
i : 1+(1+1+1+1)*10 = 41
t4: (1+1)*10 = 20
t5: (1+1)*10 = 20
t5 will be spilled. Then the
graph can be coloured.

1. t1 = 202
2. i = 1
3. L1: t2 = i>100
4. if t2 goto L2
5. t1 = t1-2
6. t3 = addr(a)
7. t4 = t3 - 4
8. t5 = 4*i
9. t6 = t4 + t5
10. *t6 = t1
11. i = i+1
12. goto L1
13. L2:

Y.N. Srikant 73

A Complete Example

t1 i

t4

i
t1
t4
t3
t2
t6

t1 i

t2 t3

t4

t5 t6

spilled

R1

R3

R3

R3

R3

R2

1. R1 = 202
2. R2 = 1
3. L1: R3 = i>100
4. if R3 goto L2
5. R1 = R1 - 2
6. R3 = addr(a)
7. R3 = R3 - 4
8. t5 = 4*R2
9. R3 = R3 + t5
10. *R3 = R1
11. R2 = R2+1
12. goto L1
13. L2:

t5: spilled node, will be provided with a temporary register during code generation

Y.N. Srikant 74

Drawbacks of the Algorithm

n  Constructing and modifying interference
graphs is very costly as interference graphs
are typically huge.

n  For example, the combined interference
graphs of procedures and functions of gcc in
mid-90’s have approximately 4.6 million
edges.

Y.N. Srikant 75

Some modifications

n  Careful coalescing: Do not coalesce if
coalescing increases the degree of a node to
more than the number of registers

n  Optimistic colouring: When a node needs to
be spilled, push it onto the colouring stack
instead of spilling it right away
q  spill it only when it is popped and if there is no

colour available for it
q  this could result in colouring graphs that need

spills using Chaitin’s technique.

Y.N. Srikant 76

1 2

3

4
5

A 3-colourable graph which is not
3-coloured by colouring heuristic,
but coloured by optimistic colouring Example

Say, 1 is chosen for spilling.
Push it onto the stack, and
remove it from the graph. The
remaining graph (2,3,4,5) is
3-colourable. Now, when 1 is
popped from the colouring
stack, there is a colour with
which 1 can be coloured. It
need not be spilled.

