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Some Issues in Register Allocation 

n  Which values in a program reside in registers? 
(register allocation)  

n  In which register? (register assignment)   
q  The two together are usually loosely referred to as register 

allocation 
n  What is the unit at the level of which register 

allocation is done?  
q  Typical units are basic blocks, functions and regions. 
q  RA within basic blocks is called local RA 
q  The other two are known as global RA 
q  Global RA requires much more time than local RA 
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Some Issues in Register Allocation 

n  Phase ordering between register allocation  and 
instruction scheduling 
q  Performing RA first restricts movement of code during 

scheduling – not recommended 
q  Scheduling instructions first cannot handle spill code 

introduced during RA 
n  Requires another pass of scheduling 

n  Tradeoff between speed and quality of allocation 
q  In some cases e.g., in Just-In-Time compilation, cannot 

afford to spend too much time in register allocation. 
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The Problem 

n  Global Register Allocation assumes that allocation is 
done beyond basic blocks and usually at function level 

n  Decision problem related to register allocation : 
q  Given an intermediate language program represented as a 

control flow graph and a number k, is there an assignment 
of registers to program variables such that no conflicting 
variables are assigned the same register, no extra loads or 
stores are introduced, and at most k registers are used. 

n  This problem has been shown to be NP-hard (Sethi 
1970). 

n  Graph colouring is the most popular heuristic used. 
n  However, there are simpler algorithms as well 
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Conflicting variables 

n  Two variables interfere or conflict if their live 
ranges intersect 
q  A variable is live at a point p in the flow graph, if 

there is a use of that variable in the path from p to 
the end of the flow graph 

q  A live range of a variable is the smallest set of 
program points at which it is live. 

q  Typically, instruction no. in the basic block along 
with the basic block no. is the representation for a 
point. 
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Example 

   If (cond)          A not live 
       then A = 
       else B = 
X: if (cond)         B not live 
        then = A 
        else = B 
----------------------------- 
   A and B both live 

If (cond) 

A= B= 

If (cond) 

=A =B 

T F 

F 

B1 

B2 B3 

B4 

B6 
B5 

Live range of A: B2, B4 B5 
Live range of B: B3, B4, B6 
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Global Register Allocation via 
Usage Counts (for Single Loops) 
n  Allocate registers for variables used within loops 
n  Requires information about liveness of variables 

at the entry and exit of each basic block (BB) of 
a loop 

n  Once a variable is computed into a register, it 
stays in that register until the end of of the BB 
(subject to existence of next-uses) 

n  Load/Store instructions cost 2 units (because 
they occupy two words) 
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Global Register Allocation via 
Usage Counts (for Single Loops) 
1.  For every usage of a variable v in a BB, 

until it is first defined, do:  
Ø  savings(v) = savings(v) + 1 
Ø  after v is defined, it stays in the register any way, 

and all further references are to that register 
2.  For every variable v computed in a BB, if it 

is live on exit from the BB,  
Ø  count a savings of 2, since it is not necessary to 

store it at the end of the BB 
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Global Register Allocation via 
Usage Counts (for Single Loops) 
n  Total savings per variable v are 

q  liveandcomputed(v,B) in the second term is 1 or 0 
n  On entry to (exit from) the loop, we load (store) a 

variable live on entry (exit), and lose 2 units for each 
q  But, these are “one time” costs and are neglected 

n  Variables, whose savings are the highest will reside 
in registers 

  

( ( , ) 2* ( , ))
B Loop

savings v B liveandcomputed v B
∈

+∑
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Global Register Allocation via 
Usage Counts (for Single Loops) 

Savings  for the variables 
       B1      B2      B3     B4 
a: (0+2)+(1+0)+(1+0)+(0+0) = 4 
b: (3+0)+(0+0)+(0+0)+(0+2) = 5 
c: (1+0)+(1+0)+(0+0)+(1+0) = 3 
d: (0+2)+(1+0)+(0+0)+(1+0) = 4 
e: (0+2)+(0+2)+(1+0)+(0+0) = 5 
f:  (1+0)+(1+0)+(0+2)+(0+0) = 4 
 
If there are 3 registers, they will 
be allocated to the variables, a, b,  
and e 

a = b*c 
d = b-a 
e = b/f 

b = a-f 
e = d+c f = e * a 

b = c - d 

bcf 

B1 

B2 

B3 

B4 

acde acdf 

cdef 

bcdf abcdef 

aef 
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Global Register Allocation via 
Usage Counts (for Nested Loops) 
n  We first assign registers for inner loops and then 

consider outer loops. Let L1 nest L2 
n  For variables assigned registers in L2, but not in L1 

q  load these variables on entry to L2 and store them on exit 
from L2 

n  For variables assigned registers in L1, but not in L2 
q  store these variables on entry to L2 and load them on exit 

from L2 
n  All costs are calculated keeping the above rules 
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Global Register Allocation via 
Usage Counts (for Nested Loops) 

n  case 1: variables x,y,z 
assigned registers in L2, but 
not in L1 
q  Load x,y,z on entry to L2 
q  Store x,y,z on exit from L2 

n  case 2: variables a,b,c 
assigned registers in L1, but 
not in L2 
q  Store a,b,c on entry to L2 
q  Load a,b,c on exit from L2 

n  case 3: variables p,q assigned 
registers in both L1 and L2 
q  No special action 

Body 
of L2 

L2 L1 



Y.N. Srikant 14 

A Fast Register Allocation Scheme 

n  Linear scan register allocation(Poletto and 
Sarkar 1999) uses the notion of a live interval 
rather than a live range. 

n  Is relevant for applications where compile 
time is important, such as in dynamic 
compilation and in just-in-time compilers. 

n  Other register allocation schemes based on 
graph colouring are slow and are not suitable 
for JIT and dynamic compilers  
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Linear Scan Register Allocation 

n  Assume that there is some numbering of the 
instructions in the intermediate form 

n  An interval [i,j] is a live interval for variable v 
if there is no instruction with number j’> j 
such that v is live at j’ and no instruction with 
number i’< i such that v is live at i 

n  This is a conservative approximation of live 
ranges: there may be subranges of [i,j] in 
which v is not live but these are ignored 
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Live Interval Example 

     ... 
i’:  
     ... 
i:  
     ... 
j: 
     ... 
j’: 
     ... 

sequentially 
numbered 
instructions 

} i – j : live interval for variable v 

i’ does not exist 

j’ does not exist 

v live 

v live 
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Example 

     If (cond) 
        then A= 
        else B= 
X: if (cond)  
    then =A 
    else = B 
 

If (cond) 

A= B= 

If (cond) 

=A =B 

T F 

F 

LIVE INTERVAL FOR A 

A NOT LIVE HERE 
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Live Intervals 

n  Given an order for pseudo-instructions and 
live variable information, live intervals can be 
computed easily with one pass through the 
intermediate representation. 

n  Interference among live intervals is assumed 
if they overlap. 

n  Number of overlapping intervals changes 
only at start and end points of an interval. 
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The Data Structures 

n  Live intervals are stored in the sorted order of 
increasing start point. 

n  At each point of the program, the algorithm 
maintains a list (active list) of live intervals 
that overlap the current point and that have 
been placed in registers. 

n  active list is kept in the order of increasing 
end point. 
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i1 i2 i3 i4 

i5 i6 i7 

i8 i9 i10 i11 
A B 

Active lists (in order 
of increasing end pt) 
 
Active(A)= {i1} 
Active(B)={i1,i5} 
Active(C)={i8,i5} 
Active(D)= {i7,i4,i11} 

C 

Example 

Three registers enough for computation without spills 

D 

Sorted order of intervals 
(according to start point): 
i1, i5, i8, i2, i9, i6, i3, i10, i7, i4, i11 
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The Algorithm (1) 

{ active :=  []; 
  for each live interval i, in order of increasing  
       start point do 
  { ExpireOldIntervals (i); 
    if length(active) == R then SpillAtInterval(i); 
    else { register[i] := a register removed from the  
                                  pool of free registers; 
              add i to active, sorted by increasing end point 
            } 
   } 
} 
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The Algorithm (2) 

ExpireOldIntervals (i) 
{ for each interval j in active, in order of   
     increasing end point do 
   { if endpoint[j] > startpoint[i] then continue 
     else { remove j from active; 
               add register[j] to pool of free registers; 
             } 
    } 
} 
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The Algorithm (3) 

SpillAtInterval (i) 
{ spill := last interval in active; 
  if endpoint [spill] > endpoint [i] then 
    { register [i] := register [spill]; 
      location [spill] := new stack location; 
      remove spill from active; 
      add i to active, sorted by increasing end point; 
     } else location [i] := new stack location; 
} 
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i1 i2 i3 i4 

i5 i6 i7 

i8 i9 i10 i11 
A B C 

Example 1 

Three registers enough for computation without spills 

D 

Sorted order of intervals 
(according to start point): 
i1, i5, i8, i2, i9, i6, i3, i10, i7, i4, i11 

Active lists (in order 
of increasing end pt) 
 
Active(A)= {i1} 
Active(B)={i1,i5} 
Active(C)={i8,i5} 
Active(D)= {i7,i4,i11} 
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Example 2 
A 

B 

C 

D 

E 

1           2       3               4        5 

1,2 : give A,B register 
3: Spill C since endpoint[C] > endpoint [B] 

4: A expires, give D register 
5: B expires, E gets register 

2 registers 
available 
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Example 3 
A 

B 

C 

D 

E 

1           2       3               4        5 

1,2 : give A,B register 
3: Spill B since endpoint[B] > endpoint [C] 
    give register to C 

4: A expires, give D register 
5: C expires, E gets register 

2 registers 
available 
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Complexity of the Linear Scan 
Algorithm 
n  If V is the number of live intervals and R the number of 

available physical registers, then if a balanced binary 
tree is used for storing the active intervals, complexity is 
O(V log R). 
q  Active list can be at most ‘R’ long 
q  Insertion and deletion are the important operations 

n  Empirical results reported in literature indicate that linear 
scan is significantly faster than graph colouring 
algorithms and code emitted is at most 10% slower than 
that generated by an aggressive graph colouring 
algorithm. 
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Chaitin’s Formulation of the  
Register Allocation Problem 
n  A graph colouring formulation on the 

interference graph 
n  Nodes in the graph represent either live ranges 

of variables or entities called webs 
n  An edge connects two live ranges that interfere 

or conflict with one another 
n  Usually both adjacency matrix and adjacency 

lists are used to represent the graph. 
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Chaitin’s Formulation of the  
Register Allocation Problem 

n  Assign colours to the nodes such that two 
nodes connected by an edge are not assigned 
the same colour 
q  The number of colours available is the number 

of registers available on the machine 
q  A k-colouring of the interference graph is 

mapped onto an allocation with k registers 
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Example 

n  Two colourable              Three colourable 
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Idea behind Chaitin’s Algorithm 

n  Choose an arbitrary node of degree less than k and 
put it on the stack 

n  Remove that vertex and all its edges from the graph 
q  This may decrease the degree of some other nodes and 

cause some more nodes to have degree less than k 
n  At some point, if all vertices have degree greater 

than or equal to k, some node has to be spilled 
n  If no vertex needs to be spilled, successively pop 

vertices off stack and colour them in a colour not 
used by neighbours (reuse colours as far as 
possible) 
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Simple example – Given Graph 

2 

3 

4 5 1 

STACK 

3 REGISTERS 
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Simple Example – Delete Node 1 

STACK 
3 REGISTERS 

2 

3 

4 5 1 

2 

    1 
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Simple Example – Delete Node 2 

STACK 
3 REGISTERS 

2 

3 

4 5 1 

    1 
    2 
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Simple Example – Delete Node 4 

STACK 

3 REGISTERS 

2 

3 

4 5 1 

    1 
    2 
    4 
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Simple Example – Delete Nodes 3 

STACK 
3 REGISTERS 

2 

3 

4 5 1 

    1 
    2 
    4 
    3 
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Simple Example – Delete Nodes 5 

STACK 
3 REGISTERS 

2 

3 

4 5 1 

    1 
    2 
    4 
    3 
    5 
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Simple Example – Colour Node 5 

STACK 

COLOURS 

5 

3 REGISTERS 

    1 
    2 
    4 
    3 
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Simple Example – Colour Node 3 

STACK 

COLOURS 

5 

3 

3 REGISTERS 

    1 
    2 
    4 
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Simple Example – Colour Node 4 

STACK 

COLOURS 

5 

3 

4 

3 REGISTERS 

    1 
    2 
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Simple Example – Colour Node 2 

STACK 

COLOURS 

5 

3 

4 

2 

3 REGISTERS 

    1 
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Simple Example – Colour Node 1 

STACK 

COLOURS 

5 

3 

2 

1 4 

3 REGISTERS 
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Steps in Chaitin’s Algorithm 

n  Identify units for allocation 
q  Renames variables/symbolic registers in the IR such 

that each live range has a unique name (number) 
n  Build the interference graph 
n  Coalesce  by removing unnecessary move or 

copy instructions 
n  Colour the graph, thereby selecting registers 
n  Compute spill costs, simplify and add spill code 

till graph is colourable 



Y.N. Srikant 44 

The Chaitin Framework 

RENUMBER    BUILD COALESCE SIMPLIFY 

SPILL CODE 

SPILL COST SELECT 



Example of Renaming 
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a =  a =  

= a 
 

a =  

= a  = a  

s1 =  s1 =  

= s1 
 

s2 =  

= s2  = s2  

Renaming 
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An Example 

Original code 
 
x= 2 
y = 4 
w = x+ y 
z = x+1 
u = x*y 
x= z*2 
 
 

Code with symbolic registers 
 
1.  s1=2; (lv of s1: 1-5) 
2.  s2=4; (lv of s2: 2-5) 
3.  s3=s1+s2; (lv of s3: 3-4) 
4.  s4=s1+1; (lv of s4: 4-6) 
5.  s5=s1*s2; (lv of s5: 5-6) 
6.  s6=s4*2; (lv of s6: 6- ...) 
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s5 
s1 s3 r3 

s6 s2 s4 
r1 r2 

INTERFERENCE    GRAPH 
HERE ASSUME VARIABLE Z (s4)  CANNOT OCCUPY r1 
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Example(continued) 
 
Final register allocated code 
 
r1 = 2 
r2= 4 
r3= r1+r2 
r3= r1+1 
r1= r1 *r2 
r2= r3+r2 

Three registers are  
sufficient for no spills 
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Renumbering - Webs 

n  The definition points and the use points for each 
variable v are assumed to be known 

n  Each definition with its set of uses for v is a du-
chain 

n  A web is a maximal union of du-chains such that, 
for each definition d and use u, either u is in the 
du-chain of d, or there exists a sequence  

    d =d1 ,u1 ,d2 ,u2 ,…, dn ,un  such that for each i, ui 
is in the du-chains of both di and di+1. 
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Renumbering - Webs 

n  Each web is given a unique symbolic register. 
n  Webs arise when variables are redefined 

several times in a program 
n  Webs have intersecting du-chains, 

intersecting at the points of join in the control 
flow graph 
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Example of Webs 

Def y 

Use x 

Def x 

Def y 

Use x 

Use y 
Use x 
Def x 

Def x 
Use y 

B2 
B1 

B3 

B4 B5 

B6 

W1: def x in B2, def x in B3, use x in 
B4, Use x in B5 
W2: def x in B5, use x in B6 
W3: def y in B2, use y in B4 
W4: def y in B1, use y in B3 

w3 w1 

w2 w4 
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Build Interference Graph 

n  Create a node for each web and for each 
physical register in the interference graph 

n  If two distinct webs interfere, that is, a 
variable associated with one web is live at a 
definition point of another add an edge 
between the two webs 

n  If a  particular variable cannot reside in a 
register, add an edge between all webs 
associated with that variable and the register 
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Copy Subsumption or Coalescing 

n  Consider a copy instruction: b := e in the program 
n  If the live ranges of b and e do  not overlap, then b 

and e can be given the same register (colour) 
q  Implied by lack of any edges between b and e in the 

interference graph 
n  The copy instruction can then be removed from the 

final program 
n  Coalesce by merging b and e into one node that 

contains the edges of both nodes 
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Copy Subsumption or Coalescing 

b = e b = e 

l.r of  
old b 

l.r of  
new b 

l.r of e 

l.r of  
old b 

l.r of  
new b 

l.r of e 

copy subsumption 
is not possible; lr(e) 
and lr(new b) interfere 

copy subsumption is  
possible; lr(e) and lr(new b)  
do not interfere 
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Example of coalescing 

c 

b 

d 

e 

a 

f 

c 

be 

d 

a 

f 

BEFORE AFTER 

Copy inst: b:=e 
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Copy Subsumption Repeatedly 

b = e 

l.r of  x 

l.r of  b 

l.r of e 

copy subsumption happens  
twice - once between b and e,  
and second time between 
a and b. e, b, and a are all  
given the same register. a = b 

l.r of  a 
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Coalescing 
 
n  Coalesce all possible copy instructions  

q  Rebuild the graph  
n  may offer further opportunities for coalescing 
n  build-coalesce phase is repeated till no further 

coalescing is possible. 
n  Coalescing reduces the size of the 

graph and possibly reduces spilling 
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Simple fact 
 
n  Suppose the no. of registers available is R.  
n  If a graph G contains a node n with fewer 

than R neighbors then removing n and its 
edges from G will not affect its R-colourability  

n  If G’ = G-{n} can be coloured with R colours, 
then so can G.   

n  After colouring G’,  just assign to n, a colour 
different from its R-1 neighbours.  
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Simplification 

n  If a node n in the interference graph has 
degree less than R, remove n and all its 
edges from the graph and place n on a 
colouring stack. 

n  When no more such nodes are removable 
then we need to spill a node. 

n  Spilling a variable x implies 
q  loading x into a register at every use of x 
q  storing x from register into memory at every 

definition of x 
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Spilling Cost 

n  The node to be spilled is decided on the basis of a 
spill cost for the live range represented by the node. 

n  Chaitin’s estimate of spill cost of a live range v 
 

q  cost(v) =  

q  where c is the cost of the op and d, the loop nesting depth. 
q  10 in the eqn above approximates the no. of iterations of 

any loop 
q  The node to be spilled is the one with MIN(cost(v)/deg(v)) 

all load or store 
operations in 
a live range v

*10dc∑
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Spilling Heuristics 

n  Multiple heuristic functions are available for making spill 
decisions  (cost(v) as before) 

1.  h0(v) = cost(v)/degree(v) : Chaitin’s heuristic 
2.  h1(v) = cost(v)/[degree(v)]2 
3.  h2(v) = cost(v)/[area(v)*degree(v)] 
4.  h3(v) = cost(v)/[area(v)*(degree(v))2]  
 
 
 
        where area(v) = 
 
 

n  width(v,I) is the number of live ranges overlapping with 
instruction I and depth(v,I) is the depth of loop nesting of I in v 

( , )

all instructions I 
in the live range v

( , )*5depth v Iwidth v I∑
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Spilling Heuristics 

n  area(v) represents the global contribution by v to 
register pressure, a measure of the need for 
registers at a point 

n  Spilling a live range with high area releases register 
pressure; i.e., releases a register when it is most 
needed 

n  Choose v with MIN(hi(v)), as the candidate to spill, 
if hi is the heuristic chosen 

n  It is possible to use different heuristics at different 
times 
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Here R = 3 and the graph is 3-colourable 
No spilling is necessary 

Example 
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1 2 

3 

4 
5 

A 3-colourable graph which is not  
3-coloured by colouring heuristic 

Example 
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Spilling a Node 
n  To spill a node we remove it from the graph and 

represent the effect of spilling as follows (It cannot 
just be removed from the graph). 
q  Reload the spilled object at each use and store it in 

memory at each definition point  
q  This creates new webs with small live ranges but which will 

need registers. 
n  After all spill decisions are made, insert spill code, 

rebuild the interference graph and then repeat the 
attempt to colour. 

n  When simplification yields an empty graph then 
select colours, that is, registers 
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Effect of Spilling 

Def y 

Use x 

Def x 

Def y 

Use x 

Use y 
Use x 
Def x 

Def x 
Use y 

B2 
B1 

B3 

B4 B5 

B6 

W1: def x in B2, def x in B3, use x in 
B4, Use x in B5 
W2: def x in B5, use x in B6 
W3: def y in B2, use y in B4 
W4: def y in B1, use y in B3 

w3 w1 

w2 w4 

x is spilled in 
web W1 
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Effect of Spilling 
 

Def x 
store x 
Def y 

load x 
Use x  
Use y 

load x 
Use x 
Def x 

Def x 
store x  
Use y  

Use x 

Def y 

B2 

B4 B5 

B6 

B1 

B3 

w4 

w6 

w5 

w1 w2 

w3 

w7 

Interference Graph 

W2 

W3 

W4 

W5 

W6 W7 

W1 
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Colouring the Graph(selection) 

Repeat 
v= pop(stack). 
Colours_used(v)= colours used by neighbours of v 
Colours_free(v)=all colours - Colours_used(v). 
Colour (v) = any colour in Colours_free(v). 
Until stack is empty 
 
n  Convert the colour assigned to a symbolic register to 

the corresponding real register’s name in the code. 
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A Complete Example 

1.          t1 = 202 
2.         i = 1  
3.  L1:  t2 = i>100 
4.         if t2 goto L2 
5.         t1 = t1-2 
6.         t3 = addr(a) 
7.         t4 = t3 - 4 
8.         t5 = 4*i 
9.         t6 = t4 + t5 
10.      *t6 = t1 
11.       i = i+1 
12.       goto L1 
13. L2: 

variable live range 
t1 1-10 
i 2-11 

t2 3-4 
t3 6-7 
t4 7-9 
t5 8-9 
t6 9-10 
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A Complete Example 

variable live range 
t1 1-10 
i 2-11 

t2 3-4 
t3 6-7 
t4 7-9 
t5 8-9 
t6 9-10 

t1 i 

t2 t3 

t4 

t5 t6 
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A Complete Example 

t1 i 

t2 t3 

t4 

t5 t6 
Assume 3 registers. Nodes t6,t2, 
and t3 are first pushed onto a 
stack during reduction. 

t1 i 

t4 

t5 

This graph cannot be reduced  
further. Spilling is necessary. 
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A Complete Example 

t1 i 

t4 

t5 

Node V Cost(v) deg(v) h0(v) 
t1 31 3 10 
i 41 3 14 

t4 20 3 7 
t5 20 3 7 

t1: 1+(1+1+1)*10 = 31 
i  : 1+(1+1+1+1)*10 = 41 
t4: (1+1)*10 = 20 
t5: (1+1)*10 = 20 
t5 will be spilled. Then the 
graph can be coloured. 

1.          t1 = 202 
2.         i = 1  
3.  L1:  t2 = i>100 
4.         if t2 goto L2 
5.         t1 = t1-2 
6.         t3 = addr(a) 
7.         t4 = t3 - 4 
8.         t5 = 4*i 
9.         t6 = t4 + t5 
10.      *t6 = t1 
11.       i = i+1 
12.       goto L1 
13. L2: 
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A Complete Example 

t1 i 

t4 

i 
t1 
t4 
t3 
t2 
t6 

t1 i 

t2 t3 

t4 

t5 t6 

spilled 

R1 

R3 

R3 

R3 

R3 

R2 

1.          R1 = 202 
2.         R2 = 1  
3.  L1:  R3 = i>100 
4.         if R3 goto L2 
5.         R1 = R1 - 2 
6.         R3 = addr(a) 
7.         R3 = R3 - 4 
8.         t5 = 4*R2 
9.         R3 = R3 + t5 
10.      *R3 = R1 
11.       R2 = R2+1 
12.       goto L1 
13. L2: 

t5: spilled node, will be provided with a temporary register during code generation 
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Drawbacks of the Algorithm 

n  Constructing and modifying interference 
graphs is  very costly as interference graphs 
are typically huge. 

n  For example, the combined interference 
graphs of procedures and functions of gcc in 
mid-90’s have approximately 4.6 million 
edges. 
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Some modifications 

n  Careful coalescing: Do not coalesce if 
coalescing increases the degree of a node to 
more than the number of registers 

n  Optimistic colouring: When a node needs to 
be spilled, push it onto the colouring stack 
instead of spilling it right away 
q  spill it only when it is popped and if there is no 

colour available for it 
q  this could result in colouring graphs that need 

spills using Chaitin’s technique. 
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1 2 

3 

4 
5 

A 3-colourable graph which is not  
3-coloured by colouring heuristic, 
but coloured by optimistic colouring Example 

Say, 1 is chosen for spilling.  
Push it onto the stack, and 
remove it from the graph. The 
remaining graph (2,3,4,5) is 
3-colourable. Now, when 1 is 
popped from the colouring 
stack, there is a colour with 
which 1 can be coloured. It 
need not be spilled. 


