
Lexical Analysis - Part 2

Y.N. Srikant

Department of Computer Science and Automation
Indian Institute of Science

Bangalore 560 012

NPTEL Course on Principles of Compiler Design

Y.N. Srikant Lexical Analysis - Part 2

Outline of the Lecture

What is lexical analysis? (covered in part 1)
Why should LA be separated from syntax analysis?
(covered in part 1)
Tokens, patterns, and lexemes (covered in part 1)
Difficulties in lexical analysis (covered in part 1)
Recognition of tokens - finite automata and transition
diagrams
Specification of tokens - regular expressions and regular
definitions
LEX - A Lexical Analyzer Generator

Y.N. Srikant Lexical Analysis - Part 2

Nondeterministic FSA

NFAs are FSA which allow 0, 1, or more transitions from a
state on a given input symbol
An NFA is a 5-tuple as before, but the transition function δ
is different
δ(q,a) = the set of all states p, such that there is a
transition labelled a from q to p
δ : Q × Σ→ 2Q

A string is accepted by an NFA if there exists a sequence
of transitions corresponding to the string, that leads from
the start state to some final state
Every NFA can be converted to an equivalent deterministic
FA (DFA), that accepts the same language as the NFA

Y.N. Srikant Lexical Analysis - Part 2

Nondeterministic FSA Example - 1

Y.N. Srikant Lexical Analysis - Part 2

An NFA and an Equivalent DFA

Y.N. Srikant Lexical Analysis - Part 2

Example of NFA to DFA conversion

The start state of the DFA would correspond to the set
{q0} and will be represented by [q0]
Starting from δ([q0],a), the new states of the DFA are
constructed on demand
Each subset of NFA states is a possible DFA state
All the states of the DFA containing some final state as a
member would be final states of the DFA
For the NFA presented before (whose equivalent DFA was
also presented)

δ[q0],a) = [q0,q1], δ([q0],b) = φ
δ([q0,q1],a) = [q0,q1], δ([q0,q1],b) = [q1,q2]
δ(φ,a) = φ, δ(φ,b) = φ
δ([q1,q2],a) = φ, δ([q1,q2],b) = [q1,q2]
[q1,q2] is the final state

In the worst case, the converted DFA may have 2n states,
where n is the no. of states of the NFA

Y.N. Srikant Lexical Analysis - Part 2

NFA with ε-Moves

ε-NFA is equivalent to NFA in power

Y.N. Srikant Lexical Analysis - Part 2

Regular Expressions

Let Σ be an alphabet. The REs over Σ and the languages they
denote (or generate) are defined as below

1 φ is an RE. L(φ) = φ

2 ε is an RE. L(ε) = {ε}
3 For each a ∈ Σ, a is an RE. L(a) = {a}
4 If r and s are REs denoting the languages R and S,

respectively
(rs) is an RE, L(rs) = R.S = {xy | x ∈ R ∧ y ∈ S}
(r + s) is an RE, L(r + s) = R ∪ S

(r∗) is an RE, L(r∗) = R∗ =
∞⋃
i=0

R i

(L∗ is called the Kleene closure or closure of L)

Y.N. Srikant Lexical Analysis - Part 2

Examples of Regular Expressions

1 L = set of all strings of 0’s and 1’s
r = (0 + 1)∗

How to generate the string 101 ?
(0 + 1)∗ ⇒4 (0 + 1)(0 + 1)(0 + 1)ε⇒4 101

2 L = set of all strings of 0’s and 1’s, with at least two
consecutive 0’s
r = (0 + 1)∗00(0 + 1)∗

3 L = {w ∈ {0,1}∗ | w has two or three occurrences of 1, the
first and second of which are not consecutive}
r = 0∗10∗010∗(10∗ + ε)

4 r = (1 + 10)∗

L = set of all strings of 0’s and 1’s, beginning with 1 and not
having two consecutive 0’s

5 r = (0 + 1)∗011
L = set of all strings of 0’s and 1’s ending in 011

Y.N. Srikant Lexical Analysis - Part 2

Examples of Regular Expressions

6 r = c∗(a + bc∗)∗

L = set of all strings over {a,b,c} that do not have the
substring ac

7 L = {w | w ∈ {a,b}∗ ∧ w ends with a}
r = (a + b)∗a

8 L = {if, then, else, while, do, begin, end}
r = if + then + else + while + do + begin + end

Y.N. Srikant Lexical Analysis - Part 2

Examples of Regular Definitions

A regular definition is a sequence of "equations" of the form
d1 = r1; d2 = r2; ... ; dn = rn, where each di is a distinct name,
and each ri is a regular expression over the symbols
Σ ∪ {d1,d2, ...,di−1}

1 identifiers and integers
letter = a + b + c + d + e; digit = 0 + 1 + 2 + 3 + 4;
identifier = letter(letter + digit)∗; number = digit digit∗

2 unsigned numbers
digit = 0 + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9;
digits = digit digit∗;
optional_fraction = ḋ igits + ε;
optional_exponent = (E(+| − |ε)digits) + ε
unsigned_number =
digits optional_fraction optional_exponent

Y.N. Srikant Lexical Analysis - Part 2

Equivalence of REs and FSA

Let r be an RE. Then there exists an NFA with ε-transitions
that accepts L(r). The proof is by construction.
If L is accepted by a DFA, then L is generated by an RE.
The proof is tedious.

Y.N. Srikant Lexical Analysis - Part 2

Construction of FSA from RE - r = φ, ε, or a

Y.N. Srikant Lexical Analysis - Part 2

FSA for r = r1 + r2

Y.N. Srikant Lexical Analysis - Part 2

FSA for r = r1 r2

Y.N. Srikant Lexical Analysis - Part 2

FSA for r = r1*

Y.N. Srikant Lexical Analysis - Part 2

NFA Construction for r = (a+b)*c

Y.N. Srikant Lexical Analysis - Part 2

Transition Diagrams

Transition diagrams are generalized DFAs with the
following differences

Edges may be labelled by a symbol, a set of symbols, or a
regular definition
Some accepting states may be indicated as retracting
states, indicating that the lexeme does not include the
symbol that brought us to the accepting state
Each accepting state has an action attached to it, which is
executed when that state is reached. Typically, such an
action returns a token and its attribute value

Transition diagrams are not meant for machine translation
but only for manual translation

Y.N. Srikant Lexical Analysis - Part 2

Y.N. Srikant Lexical Analysis - Part 2

Y.N. Srikant Lexical Analysis - Part 2

Y.N. Srikant Lexical Analysis - Part 2

Y.N. Srikant Lexical Analysis - Part 2

Y.N. Srikant Lexical Analysis - Part 2

Lexical Analyzer Implementation from Trans. Diagrams

TOKEN gettoken() {
TOKEN mytoken; char c;
while(1) { switch (state) {
/* recognize reserved words and identifiers */
case 0: c = nextchar(); if (letter(c))

state = 1; else state = failure();
break;

case 1: c = nextchar();
if (letter(c) || digit(c))
state = 1; else state = 2; break;

case 2: retract(1);
mytoken.token = search_token();
if (mytoken.token == IDENTIFIER)
mytoken.value = get_id_string();
return(mytoken);

Y.N. Srikant Lexical Analysis - Part 2

Y.N. Srikant Lexical Analysis - Part 2

Lexical Analyzer Implementation from Trans. Diagrams

/* recognize hexa and octal constants */
case 3: c = nextchar();

if (c == ’0’) state = 4; break;
else state = failure();

case 4: c = nextchar();
if ((c == ’x’) || (c == ’X’))
state = 5; else if (digitoct(c))
state = 9; else state = failure();
break;

case 5: c = nextchar(); if (digithex(c))
state = 6; else state = failure();
break;

Y.N. Srikant Lexical Analysis - Part 2

Y.N. Srikant Lexical Analysis - Part 2

Lexical Analyzer Implementation from Trans. Diagrams

case 6: c = nextchar(); if (digithex(c))
state = 6; else if ((c == ’u’)||
(c == ’U’)||(c == ’l’)||
(c == ’L’)) state = 8;
else state = 7; break;

case 7: retract(1);
/* fall through to case 8, to save coding */

case 8: mytoken.token = INT_CONST;
mytoken.value = eval_hex_num();
return(mytoken);

case 9: c = nextchar(); if (digitoct(c))
state = 9; else if ((c == ’u’)||
(c == ’U’)||(c == ’l’)||(c == ’L’))
state = 11; else state = 10; break;

Y.N. Srikant Lexical Analysis - Part 2

Lexical Analyzer Implementation from Trans. Diagrams

case 10: retract(1);
/* fall through to case 11, to save coding */

case 11: mytoken.token = INT_CONST;
mytoken.value = eval_oct_num();
return(mytoken);

Y.N. Srikant Lexical Analysis - Part 2

Y.N. Srikant Lexical Analysis - Part 2

Lexical Analyzer Implementation from Trans. Diagrams

/* recognize integer constants */
case 12: c = nextchar(); if (digit(c))

state = 13; else state = failure();
case 13: c = nextchar(); if (digit(c))

state = 13;else if ((c == ’u’)||
(c == ’U’)||(c == ’l’)||(c == ’L’))
state = 15; else state = 14; break;

case 14: retract(1);
/* fall through to case 15, to save coding */

case 15: mytoken.token = INT_CONST;
mytoken.value = eval_int_num();
return(mytoken);

default: recover();
}

}
}

Y.N. Srikant Lexical Analysis - Part 2

