
Lexical Analysis - Part 1

Y.N. Srikant

Department of Computer Science and Automation
Indian Institute of Science

Bangalore 560 012

NPTEL Course on Principles of Compiler Design

Y.N. Srikant Lexical Analysis - Part 1

Outline of the Lecture

What is lexical analysis?
Why should LA be separated from syntax analysis?
Tokens, patterns, and lexemes
Difficulties in lexical analysis
Recognition of tokens - finite automata and transition
diagrams
Specification of tokens - regular expressions and regular
definitions
LEX - A Lexical Analyzer Generator

Y.N. Srikant Lexical Analysis - Part 1

Compiler Overview

Y.N. Srikant Lexical Analysis - Part 1

What is Lexical Analysis?

The input is a high level language program, such as a ’C’
program in the form of a sequence of characters
The output is a sequence of tokens that is sent to the
parser for syntax analysis
Strips off blanks, tabs, newlines, and comments from the
source program
Keeps track of line numbers and associates error
messages from various parts of a compiler with line
numbers
Performs some preprocessor functions such as #define
and #include in ’C’

Y.N. Srikant Lexical Analysis - Part 1

Separation of Lexical Analysis from Syntax Analysis

Simplification of design - software engineering reason
I/O issues are limited LA alone
More compact and faster parser

Comments, blanks, etc., need not be handled by the parser
A parser is more complicated than a lexical analyzer and
shrinking the grammar makes the parser faster

No rules for numbers, names, comments, etc., are needed in
the parser

LA based on finite automata are more efficient to
implement than pushdown automata used for parsing (due
to stack)

Y.N. Srikant Lexical Analysis - Part 1

Tokens, Patterns, and Lexemes

Running example: float abs_zero_Kelvin = -273;
Token (also called word)

A string of characters which logically belong together
float, identifier, equal, minus, intnum, semicolon
Tokens are treated as terminal symbols of the grammar
specifying the source language

Pattern
The set of strings for which the same token is produced
The pattern is said to match each string in the set
float, l(l+d+_)*, =, -, d+, ;

Lexeme
The sequence of characters matched by a pattern to form
the corresponding token
“float”, “abs_zero_Kelvin”, “=”, “-”, “273”, “;”

Y.N. Srikant Lexical Analysis - Part 1

Tokens in Programming Languages

Keywords, operators, identifiers (names), constants, literal
strings, punctuation symbols such as parentheses,
brackets, commas, semicolons, and colons, etc.
A unique integer representing the token is passed by LA to
the parser
Attributes for tokens (apart from the integer representing
the token)

identifier: the lexeme of the token, or a pointer into the
symbol table where the lexeme is stored by the LA
intnum: the value of the integer (similarly for floatnum, etc.)
string: the string itself
The exact set of attributes are dependent on the compiler
designer

Y.N. Srikant Lexical Analysis - Part 1

Difficulties in Lexical Analysis

Certain languages do not have any reserved words, e.g.,
while, do, if, else, etc., are reserved in ’C’, but not in PL/1
In FORTRAN, some keywords are context-dependent

In the statement, DO 10 I = 10.86, DO10I is an identifier,
and DO is not a keyword
But in the statement, DO 10 I = 10, 86, DO is a keyword
Such features require substantial look ahead for resolution

Blanks are not significant in FORTRAN and can appear in
the midst of identifiers, but not so in ’C’
LA cannot catch any significant errors except for simple
errors such as, illegal symbols, etc.
In such cases, LA skips characters in the input until a
well-formed token is found

Y.N. Srikant Lexical Analysis - Part 1

Specification and Recognition of Tokens

Regular definitions, a mechansm based on regular
expressions are very popular for specification of tokens

Has been implemented in the lexical analyzer generator
tool, LEX
We study regular expressions first, and then, token
specification using LEX

Transition diagrams, a variant of finite state automata, are
used to implement regular definitions and to recognize
tokens

Transition diagrams are usually used to model LA before
translating them to programs by hand
LEX automatically generates optimized FSA from regular
definitions
We study FSA and their generation from regular
expressions in order to understand transition diagrams and
LEX

Y.N. Srikant Lexical Analysis - Part 1

Languages

Symbol: An abstract entity, not defined
Examples: letters and digits

String: A finite sequence of juxtaposed symbols
abcb, caba are strings over the symbols a,b, and c
|w | is the length of the string w, and is the #symbols in it
ε is the empty string and is of length 0

Alphabet: A finite set of symbols
Language: A set of strings of symbols from some alphabet

Φ and {ε} are languages
The set of palindromes over {0,1} is an infinite language
The set of strings, {01, 10, 111} over {0,1} is a finite
language

If Σ is an alphabet, Σ∗ is the set of all strings over Σ

Y.N. Srikant Lexical Analysis - Part 1

Language Representations

Each subset of Σ∗ is a language
This set of languages over Σ∗ is uncountably infinite
Each language must have by a finite representation

A finite representation can be encoded by a finite string
Thus, each string of Σ∗ can be thought of as representing
some language over the alphabet Σ
Σ∗ is countably infinite
Hence, there are more languages than language
representations

Regular expressions (type-3 or regular languages),
context-free grammars (type-2 or context-free
languages), context-sensitive grammars (type-1 or
context-sensitive languages), and type-0 grammars are
finite representations of respective languages
RL << CFL << CSL << type-0 languages

Y.N. Srikant Lexical Analysis - Part 1

Examples of Languages

Let Σ = {a,b, c}
L1 = {ambn|m,n ≥ 0} is regular
L2 = {anbn|n ≥ 0} is context-free but not regular
L3 = {anbncn|n ≥ 0} is context-sensitive but neither
regular nor context-free
Showing a language that is type-0, but none of CSL, CFL,
or RL is very intricate and is omitted

Y.N. Srikant Lexical Analysis - Part 1

Automata

Automata are machines that accept languages
Finite State Automata accept RLs (corresponding to REs)
Pushdown Automata accept CFLs (corresponding to CFGs)
Linear Bounded Automata accept CSLs (corresponding to
CSGs)
Turing Machines accept type-0 languages (corresponding
to type-0 grammars)

Applications of Automata
Switching circuit design
Lexical analyzer in a compiler
String processing (grep, awk), etc.
State charts used in object-oriented design
Modelling control applications, e.g., elevator operation
Parsers of all types
Compilers

Y.N. Srikant Lexical Analysis - Part 1

Finite State Automaton

An FSA is an acceptor or recognizer of regular languages
An FSA is a 5-tuple, (Q,Σ, δ,q0,F), where

Q is a finite set of states
Σ is the input alphabet
δ is the transition function, δ : Q × Σ→ Q
That is, δ(q,a) is a state for each state q and input symbol a
q0 is the start state
F is the set of final or accepting states

In one move from some state q, an FSA reads an input
symbol, changes the state based on δ, and gets ready to
read the next input symbol
An FSA accepts its input string, if starting from q0, it
consumes the entire input string, and reaches a final state
If the last state reached is not a final state, then the input
string is rejected

Y.N. Srikant Lexical Analysis - Part 1

FSA Example - 1

Y.N. Srikant Lexical Analysis - Part 1

FSA Example -1 (Contd.)

Q = {q0,q1,q2,q3}
Σ = {a,b, c}
q0 is the start state and F = {q0,q2}
The transition function δ is defined by the table below

state symbol
a b c

q0 q1 q3 q3
q1 q1 q1 q2
q2 q3 q3 q3
q3 q3 q3 q3

The accepted language is the set of all strings beginning with
an ’a’ and ending with a ’c’ (ε is also accepted)

Y.N. Srikant Lexical Analysis - Part 1

FSA Example - 2

Q = {q0,q1,q2,q3},q0 is the start state
F = {q0}, δ is as in the figure
Language accepted is the set of all strings of 0’s and 1’s, in
which the no. of 0’s and the no. of 1’s are even numbers

Y.N. Srikant Lexical Analysis - Part 1

Regular Languages

The language accepted by an FSA is the set of all strings
accepted by it, i.e., δ(q0, x)εF
This is a regular language or a regular set
Later we will define regular expressions and regular
grammars which are generators of regular languages
It can be shown that for every regular expression, an FSA
can be constructed and vice-versa

Y.N. Srikant Lexical Analysis - Part 1

Nondeterministic FSA

NFAs are FSA which allow 0, 1, or more transitions from a
state on a given input symbol
An NFA is a 5-tuple as before, but the transition function δ
is different
δ(q,a) = the set of all states p, such that there is a
transition labelled a from q to p
δ : Q × Σ→ 2Q

A string is accepted by an NFA if there exists a sequence
of transitions corresponding to the string, that leads from
the start state to some final state
Every NFA can be converted to an equivalent deterministic
FA (DFA), that accepts the same language as the NFA

Y.N. Srikant Lexical Analysis - Part 1

Nondeterministic FSA Example - 1

Y.N. Srikant Lexical Analysis - Part 1

