Indian Institute of Technology Hyderabad

Department of Mathematics

Problem Sheet 4

Date : 06.03.17
MA 1140 : Linear Algebra

1. Find the algebraic and geometric multiplicities of each distinct eigenvalues of the following matrix

$$
\left[\begin{array}{lll}
3 & 2 & 4 \\
2 & 0 & 2 \\
4 & 2 & 3
\end{array}\right] .
$$

2. Using diagonalisation, find A^{5}, where

$$
A=\left[\begin{array}{cc}
1 & 1 \\
-2 & 4
\end{array}\right]
$$

3. Solve the initial value problem of the following system of differential equations using diagonalisation of matrices.

$$
\begin{gathered}
\frac{d x}{d t}=4 x-2 y \\
\frac{d y}{d t}=x+y
\end{gathered}
$$

and initial conditions are $x(0)=3 ; y(0)=5$.
4. Suppose $u, v \in V$, where V is a real inner product space. Then prove that

- $\langle u+v, u-v\rangle=\|u\|^{2}-\|v\|^{2}$
- $\|u+v\|^{2}+\|u-v\|^{2}=2\left(\|u\|^{2}+\|v\|^{2}\right)$.

5. Compute the orthonormal basis for the subspace generated by the span $\{(1,1,1,1),(-1,4,4,-1),(4,-2,2,0)\}$ in \mathbb{R}^{4}.
6. Suppose $u, v \in V$, where V is a real inner product space. Then prove that u and v are orthogonal vectors iff $\|u+v\|=\|u-v\|$.
7. The matrices A and B have same eigenvalues, where

$$
A=\left[\begin{array}{cc}
a & 1 \\
-2 & d
\end{array}\right] ; B=\left[\begin{array}{cc}
114 / 25 & 48 / 25 \\
48 / 25 & 86 / 25
\end{array}\right]
$$

Find the values of a and d.
8. Determine the orthogonal projection of the vector $(2,0,-1,3)$ onto the plane generated by the span of $\{(0,1,1,1),(-1,1,0,1)\}$ in \mathbb{R}^{4}.

