INDIAN INSTITUTE OF TECHNOLOGY HYDERABAD DEPARTMENT OF MATHEMATICS

Problem Sheet 3

Date : 26.02.17 MA 1140 : Linear Algebra

- 1. Let $T : \mathbb{R}^2 \to \mathbb{R}^1$ be defined by $T((x_1, x_2)) = x_1^2 + x_2^2$. Is *T* a linear transformation?
 - Let $T : \mathbb{C}^2 \to \mathbb{C}^2$ defined by $T((z_1, z_2)) = (z_1 + z_2, z_1 2z_2)$. Is *T* a linear transformation?
- 2. Let $T : \mathbb{R}^2 \to \mathbb{R}^3$ be the linear transformation defined by

$$T(x_1, x_2) = (x_1 - x_2, 3x_2, 4x_1 + 5x_2)$$

Find the matrix *A* such that $T(\underline{x}) = A\underline{x}$ for all $\underline{x} \in \mathbb{R}^2$.

- 3. Consider the basis $A = \{(1,0,1), (1,1,0), (2,2,-3)\}$ and $B = \{(3,1,1), (0,0,1), (-1,2,0)\}$ of \mathbb{R}^3 . Find the matrix for a change of basis from *B* to *A*.
- 4. Are the matrices *A* and *B* similar, where

	Γ1	0	-1	2]	, B =	[-1	2	4	2]
4	0	2	3	-1		3	5	1	0
A =	4	1	-2	1		-2	0	-2	0
	1	2	-1	0		1	3	2	-1

5. Find the determinant of the following matrix

$$\begin{bmatrix} a+b+c & -c & -b \\ -c & a+b+c & -a \\ -b & -a & a+b+c \end{bmatrix}.$$

6. Find the eigen values and eigen vectors of the following matrix

0	1	2]	
2	3	0	
0	4	5	

- 7. If *A* is a matrix with distinct eigen values, then the matrix formed with columns as eigen vectors of *A* is called the modal matrix *P*. If $A = \begin{bmatrix} -1 & 4 \\ 0 & 3 \end{bmatrix}$, then calculate the modal matrix of *A*. What can you say about the matrix obtained from $P^{-1}AP$?
- 8. Find the eigenvalues of the following matrix

$$\begin{bmatrix} 1 & 2 & 1 \\ 6 & -1 & 0 \\ -1 & -2 & -1 \end{bmatrix}.$$

9. Find the characteristic and minimal polynomial of

$$A = \begin{bmatrix} 8 & -6 & 12 \\ -18 & 11 & 18 \\ -6 & -3 & 26 \end{bmatrix}.$$

10. Verify the Cayley-Hamilton theorem for the matrix *A* and also find A^{-1} , where

$$A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}.$$