Indian Institute of Technology Hyderabad

Department of Mathematics

Problem Sheet 3

Date : 26.02.17
MA 1140 : Linear Algebra

1. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{1}$ be defined by $T\left(\left(x_{1}, x_{2}\right)\right)=x_{1}^{2}+x_{2}^{2}$. Is T a linear transformation?

- Let $T: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ defined by $T\left(\left(z_{1}, z_{2}\right)\right)=\left(z_{1}+z_{2}, z_{1}-2 z_{2}\right)$. Is T a linear transformation?

2. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be the linear transformation defined by

$$
T\left(x_{1}, x_{2}\right)=\left(x_{1}-x_{2}, 3 x_{2}, 4 x_{1}+5 x_{2}\right)
$$

Find the matrix A such that $T(\underline{x})=A \underline{x}$ for all $\underline{x} \in \mathbb{R}^{2}$.
3. Consider the basis $A=\{(1,0,1),(1,1,0),(2,2,-3)\}$ and $B=\{(3,1,1),(0,0,1),(-1,2,0)\}$ of \mathbb{R}^{3}. Find the matrix for a change of basis from B to A.
4. Are the matrices A and B similar, where

$$
A=\left[\begin{array}{cccc}
1 & 0 & -1 & 2 \\
0 & 2 & 3 & -1 \\
4 & 1 & -2 & 1 \\
1 & 2 & -1 & 0
\end{array}\right], B=\left[\begin{array}{cccc}
-1 & 2 & 4 & 2 \\
3 & 5 & 1 & 0 \\
-2 & 0 & -2 & 0 \\
1 & 3 & 2 & -1
\end{array}\right]
$$

5. Find the determinant of the following matrix

$$
\left[\begin{array}{ccc}
a+b+c & -c & -b \\
-c & a+b+c & -a \\
-b & -a & a+b+c
\end{array}\right]
$$

6. Find the eigen values and eigen vectors of the following matrix

$$
\left[\begin{array}{lll}
0 & 1 & 2 \\
2 & 3 & 0 \\
0 & 4 & 5
\end{array}\right] .
$$

7. If A is a matrix with distinct eigen values, then the matrix formed with columns as eigen vectors of A is called the modal matrix P. If $A=\left[\begin{array}{cc}-1 & 4 \\ 0 & 3\end{array}\right]$, then calculate the modal matrix of A. What can you say about the matrix obtained from $P^{-1} A P$?
8. Find the eigenvalues of the following matrix

$$
\left[\begin{array}{ccc}
1 & 2 & 1 \\
6 & -1 & 0 \\
-1 & -2 & -1
\end{array}\right]
$$

9. Find the characteristic and minimal polynomial of

$$
A=\left[\begin{array}{ccc}
8 & -6 & 12 \\
-18 & 11 & 18 \\
-6 & -3 & 26
\end{array}\right]
$$

10. Verify the Cayley-Hamilton theorem for the matrix A and also find A^{-1}, where

$$
A=\left[\begin{array}{ccc}
2 & -1 & 1 \\
-1 & 2 & -1 \\
1 & -1 & 2
\end{array}\right] .
$$

