Indian Institute of Technology Hyderabad

Department of Mathematics

Problem Sheet 2
Date : 19.02.17
MA 1140 : Linear Algebra

1. Does the vector b lie in the column space of A, where

$$
A=\left[\begin{array}{ccc}
1 & 2 & -1 \\
1 & 2 & 0 \\
0 & 1 & 2
\end{array}\right] \text { and } b=(3,4,5)^{T} ?
$$

2. Find the column space, row space, and the null space of the following matrix.

$$
\left[\begin{array}{cccc}
2 & 4 & 8 & 16 \\
3 & 9 & 27 & 81 \\
4 & 8 & 16 & 64
\end{array}\right] .
$$

3. Consider two $n \times n$ matrices A and B such that $A B=0$. Show that

- The column space of B is contained in the null space of A.
- The row space of A is contained in the left null space of B.

4. Let $v_{1}=(2,0,-1), v_{2}=(3,1,0), v_{3}=(1,-1, c)$ for some $c \in \mathbb{R}$. Under what conditions on c, the set $\left\{v_{1}, v_{2}, v_{3}\right\}$ forms a basis of \mathbb{R}^{3} ?
5. Find the rank of the following matrix :

$$
\left[\begin{array}{cccc}
1 & 2 & 1 & 3 \\
0 & 3 & -1 & 1 \\
5 & -4 & 2 & 0
\end{array}\right]
$$

6. Determine the basis and dimension of the following :

- The space of cubic polynomials $p(x) \in \mathbb{R}[X]$ such that $p(3)=0$.
- The space of cubic polynomials $p(x) \in \mathbb{R}[X]$ such that $p(3)=p(5)=$ 0.

7. Determine the rank and nullity of matrix A, where

$$
A=\left[\begin{array}{ccccc}
1 & 2 & 0 & 2 & 1 \\
3 & -7 & -5 & 5 & 1 \\
1 & -5 & -3 & 2 & 0 \\
7 & 5 & -1 & 9 & 5
\end{array}\right]
$$

Verify rank - nullity theorem for the matrix A.
8. Determine the rank, nullity for A^{T}, where A is given in above problem. Verify the rank - nullity theorem for the matrix A^{T}. What is the relation between the rank of A and A^{T}. What about the nullity?

