Core-annular miscible two-fluid flow in a slippery pipe: A stability analysis

Geetanjali Chattopadhyay,1, b) Ranganathan Usha,1, c) and Kirti Chandra Sahu2, d)
1) Department of Mathematics, Indian Institute of Technology Madras, Chennai - 600036, Tamilnadu, India
2) Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy - 502285 Telangana, India

(Dated: 30 August 2017)

This study is motivated by the preliminary DNS simulations in double-diffusive (DD) core-annular flows with slip at the wall which displayed elliptical shaped instability patterns as in a rigid pipe case; however, slip at the pipe wall delays the onset of instability for a range of parameters and increases the phase speed. This increased our curiosity to have a thorough understanding of the linear stability characteristics of the miscible DD two-fluid flow in a pipe with slip at the pipe wall. The present study, therefore addresses the linear stability of viscosity-stratified core-annular Poiseuille flow of miscible fluids with matched density in a slippery pipe in the presence of two scalars diffusing at different rates. The physical mechanisms responsible for the occurrence of instabilities in the DD system are explained through an energy budget analysis. The differences and similarities between core-annular flow in a slippery pipe and in a plane channel with velocity slip at the walls are explored. The stability characteristics are significantly affected by the presence of slip. The diffusivity effect is non-monotonic in a DD system. A striking feature of instability is that only a band of wavenumbers is destabilized in the presence of moderate to large inertial effects. Both the long and shortwaves are stabilized at small Reynolds numbers. Slip exhibits a dual role of stabilizing or destabilizing the flow. The preliminary direct numerical simulations confirm the predictions of the linear stability analysis. The present study reveals that it may be possible to control the instabilities in core-annular pressure driven pipe flows by imposing a velocity slip at the walls.

PACS numbers: Valid PACS appear here

Keywords: core-annular flow double, diffusive convection, velocity slip at the wall, viscosity stratification, miscible flow

I. INTRODUCTION:

The study of instabilities in core-annular immiscible or miscible flow configurations gains its importance due to its relevance in a number of applications and the details of several aspects of the analysis with respect to both axisymmetric and swirling disturbances are summarized in1–3 and the references therein.

Motivated by the curiosity to understand the differences and similarities between miscible core-annular flows in a pipe and those in a plane channel, several researchers (Ranganathan & Govindarajan4, Govindarajan5, Ern et al.6, Malik & Hooper7) have conducted linear stability analysis in two-fluid channel flows. Selvam et al.8 have examined the linear stability of variable miscible core-annular flow in a pipe. Their study revealed that the flow is stable at any Reynolds number upto a critical value of viscosity ratio and this is in contrast with the immiscible counterpart which is unstable at any viscosity ratio (Joseph et al.3). The

1) Footnote to title of article.
2) Also at Department of Mathematics, Indian Institute of Technology Madras.
3) Electronic mail: ushar@iitm.ac.in
4) ksahu@iith.ac.in
Instability in a core-annular slippery pipe flow

stability properties in pipe flows are different from those observed in plane channel flows with finite interface thickness, when the less viscous fluid is adjacent to the wall. While the plane channel flow is stabilized with respect to single fluid flow, the core-annular flow is destabilized beyond the critical value of viscosity ratio and this is also in contrast with the miscible planar channel flows (Govindarajan et al., Malik & Hooper, Sahu et al.). For a pipe flow with more viscous core, the axisymmetric mode is more unstable than the swirl mode which is again different from the single fluid pipe flow, in which the swirl mode is the most unstable one.

The studies on the double-diffusive (DD) effects on the stability properties of miscible plane channel (Sahu & Govindarajan) and core-annular flows (Sahu) clearly demonstrate different characteristics displayed by the two geometries. Sahu has shown that a stable flow configuration in the context of single-component (SC) flows become unstable due to DD phenomenon. An increase in diffusivity ratio of faster to slower-diffusing scalar enhances the instability. The diffusion and the radial location of the mixed layer display non-monotonic effects on the stability characteristics. This is in contrast to that observed in a single-component (SC) flow of miscible fluids examined by Selvam et al. The physical mechanism responsible for DD instability in core-annular pipe flows has been examined and explained by Sahu through an energy budget analysis and an inviscid stability analysis. He show that the rate of transfer of energy from the basic flow to the perturbations (the Reynolds stress term) and the rate of energy associated with the gradient of viscosity perturbations in the radial direction are responsible for the DD instability. The inviscid analysis reveals that the DD flows in a cylindrical pipe are inviscidly stable. Further, the direct numerical simulation (DNS) results are presented on DD effects in the nonlinear regime and the simulations reveal an interesting new type of elliptical shaped instability pattern in Sahu.

As a preliminary investigation, we extended the DNS computations of Sahu by incorporating the slip effects appropriately and the results revealed (Fig. 1) that the slip at the pipe wall delayed the occurrence of instability in a DD core-annular flow configuration for the range of parameters considered and that the instabilities propagated with greater phase speed (c_s) in a slippery pipe ($\alpha_s = 2.21$, $\omega_{r_{max}}/\alpha_c = c_r = 1.2684$; $\beta_s = 0.05$; $\alpha_c = 2.21$, $\omega_{r_{max}}/\alpha_c = c_r = 1.3379$; where β_s is the slip parameter, $\omega_{r_{max}}$ is the real part of the perturbation frequency (ω) when the growth rate (ω_i) is maximum and α_c is the critical wave number where this maximum value is attained). The DNS results with slip effects increased our curiosity to understand the slip effects on the linear stability characteristics of core-annular flows of miscible two-fluid flow in a slippery pipe and it is with this as our objective, the present study has been taken up. Such a study would also provide an opportunity to understand the similarities and differences between the present results in a slippery pipe and the results by Ghosh et al. in a slippery channel. Ghosh et al. have considered the linear stability analysis of pressure-driven miscible two-fluid three layer channel flows with slip at the walls of the channel. Their results demonstrated that the slip plays a dual role of either stabilizing or destabilizing the flow in a rigid channel and this in turn provides an effective way to control the flow in such a configuration with viscosity stratification. The present study gains its significance in applications where the walls of the pipe are porous, chemically patterned or molecular rough surfaces, and which can be modeled and represented by appropriate velocity slip at the walls. What does the slip do? The velocity slip at the wall reduces the flow resistance provided by viscous drag and thus enhances significantly the primary flow distribution near the wall; thereby slip plays a crucial role on instability behavior.

It is important to note that such investigations have been carried out to assess slip effects in different flow configurations. Note that, slip length measures the surface slip and it is the depth beyond the macroscopic solid surface at which the velocity extrapolates to zero. Slip length is equal in magnitude to the slip velocity per unit shear rate of the flow near a boundary surface, and it can be of the order of 10 nm - 10 µm (Vinogradova et al., Lee & Choi, Ou et al.). In view of the necessity to understand the effects of slip (arising due to wettability, surface chemistry and surface roughness), there are reports on the plane Poiseuille flow with both symmetric and asymmetric slip conditions at the walls (Gersting, Spille et al., Gan & Wu, Lauga & Cossu). The linear stability analysis...
Instability in a core-annular slippery pipe flow

FIG. 1. Evolutions of the slowly diffusing species \((s)\) contour in a DD flow for (a) \(\beta_s = 0\) (rigid pipe), and (b) \(\beta_s = 0.05\) (slippery pipe) for \(\delta = 100\) with other parameters as \(Re = 500, Sc = 1000, q = 0.1, R_1 = 0.6, R_s = 1, R_f = -1.1\). From top to bottom \(t = 100, 150, 200, 250, 350\) and 750. Here, \(\beta_s\) denotes the slip parameter the other dimensionless parameters are introduced and described in section II. The phase speed \(= \omega_r \alpha_c\) where \(c_r = 1.2684\) in rigid pipe and \(c_r = 1.3379\) in slippery pipe. Here \(\omega_{r, \text{max}}\) denotes maximum frequency, \(\alpha_c\) denotes the critical wave number. The results were generated with no slip/slip conditions for the velocity components at the wall of the pipe together with the no-flux conditions for the slowly diffusing (scalar \(s\)) and faster diffusing (scalar \(f\)) species at the pipe wall and with a periodic boundary condition along the axis of the pipe.

by Lauga & Cossu\(^{20}\) reveals that the presence of slip at the wall increases the critical value of the Reynolds number significantly. An asymmetric slip condition imposed at the walls by Ling \textit{et al.}\(^{21}\) shows that the slip plays a dual role of stabilizing/destabilizing the flow without slip and it depends on the slip length. The results for a diverging channel flow, with slip at the wall, examined by Sahu \textit{et al.}\(^{22}\) show that the wall slip has a destabilizing influence at low Knudsen numbers, \(Kn\) (ratio of slip-length to half the local width of the channel). In their study, the Maxwell slip boundary condition (Maxwell\(^{23}\)) has been used to model the velocity slip at the walls. If the slip wall conditions are used, then the Navier-Stokes equations are valid upto \(Kn = 0.1\) (Karniadakis & Beskok\(^{24}\)).

The interface dominated flow of two immiscible fluids in a slippery channel analyzed by You & Zheng\(^{25}\) shows that the stability of viscosity stratified microchannel flow is enhanced by slip. The slip effects have been observed to be strong (relatively weak) at small and large (close to one) viscosity contrasts. The linear stability of pressure-driven miscible two-fluid three-layer channel flows with slip at the walls of the channel examined by Ghosh \textit{et al.}\(^{12,13}\) reveal that when the less viscous fluid is adjacent to the slippery walls, the flow is stable for single component (SC) system but is unstable at low Reynolds numbers in the presence of double-diffusive (DD) phenomenon. A new unstable mode (DD mode) distinct from TS mode arises at Reynolds numbers smaller than the critical Reynolds number for the TS mode, when the mixed layer of the fluids moves towards the slippery walls of the channel. This mode is prominent when the mixed layer overlaps with the critical layer. The velocity slip at the channel wall has a non-monotonic effect on the stability properties of the DD system. The first occurrence of the DD mode is delayed as the slip velocity at the wall increases. In a DD configuration, when the less viscous fluid is placed adjacent to the slippery wall with strong slip effects, the DD system is more stable than the corresponding
Instability in a core-annular slippery pipe flow

FIG. 2. Schematic diagram of the problem considered. The core \((0 \leq r \leq R_1)\) and the annular \((R_1 + q \leq r < R)\) regions of the slippery pipe contain fluids ‘1’ and ‘2’ respectively. A mixed layer of thickness \(q\) occupies the region \(R_1 \leq r \leq R_1 + q\). There is velocity slip at the walls of the pipe \((r = R)\).

flow system in a rigid channel. However, for weak slip effects, there exists a region in the \(\alpha - Re\) plane, where the DD system in a slippery channel is more unstable than in a rigid channel. There are several investigations on the mechanisms of slip flow past a surface (rough/ porous/ hydrophobic) in the past decade, which have been reviewed in Neto et al.\(^{26}\), Lauga et al.\(^{27}\), Zhang et al.\(^{28}\), Rothstein\(^{29}\), Kumar et al.\(^{30}\), Ng et al.\(^{31}\), and references therein.

The paper is organized as follows: The mathematical formulation and the linear stability analysis are presented in Sections II and III; the energy budget analysis is presented in Section IV; the results for the DD core-annular flow systems in a slippery pipe are discussed in Section V; The concluding remarks are given in Section VI.

II. MATHEMATICAL FORMULATION

We consider the linear stability of pressure-driven core annular, laminar flow of two miscible, incompressible Newtonian fluids of matched densities and different viscosities in a circular tube of radius \(R\), with velocity slip at the walls of the tube. The fluids contain the same solvent but have two species diffusing at different rates; \(F(S)\) is the species with high (low) diffusion rate \(D_f (D_s)\). The ratio \(D_f/D_s\) is denoted by \(\delta (\delta \geq 1)\). The diffusion of the fluids is proportional to the inverse of the Peclet number \((Pe)\), where \(Pe = ReSc\). Here \(Re\) and \(Sc\) are the Reynolds and Schmidt numbers defined in the discussion below. We will also see later that the Peclet number is the ratio of convective to diffusive transport in the species concentration equation. A cylindrical polar coordinate system \((r, \theta, z)\), where \(r\), \(\theta\) and \(z\) denote respectively the radial, azimuthal and axial coordinates, is employed. The concentrations of \(S\) and \(F\) in fluid 1 of viscosity \(\mu_1\) (core fluid; occupying \(0 \leq r \leq R_1\)) are \(S_1\) and \(F_1\), respectively. The concentrations of \(S\) and \(F\) in fluid 2 of viscosity \(\mu_2\) (annular fluid; occupying \(R_1 + q \leq r < R\)) are \(S_2\) and \(F_2\) respectively. A mixed layer of uniform thickness \(q\) separates the two-fluids and occupies the region \(R_1 \leq r \leq R_1 + q\) (Selvam et al.\(^{8}\), Sahu\(^{11}\), Sahu & Govindarajan\(^{10}\), Ghosh et al.\(^{12}\), Govindarajan\(^{5}\)). The parallel flow approximation (see appendix C in Sahu\(^{11}\) for justification) is used in assuming the thickness \(q\) to be uniform. As the Reynolds numbers considered in this study are atleast of \(O(10^2)\), the above assumption is justified unless \(Sc \ll 1\). The dynamic viscosity \(\mu\), of the two fluids is assumed to depend exponentially on concentration of the solute species\(^{10}\):

\[
\mu = \mu_1 \exp \left[R_s \left(\frac{S - S_1}{S_2 - S_1} \right) + R_f \left(\frac{F - F_1}{F_2 - F_1} \right) \right],
\]

where \(R_s = (S_2 - S_1) \frac{\partial (\ln \mu)}{\partial S} \) and \(R_f = (F_2 - F_1) \frac{\partial (\ln \mu)}{\partial F} \) are the log-mobility ratios of the slower and faster diffusing scalars \(S\) and \(F\), respectively.
Instability in a core-annular slippery pipe flow

The incompressible Navier-Stokes equations along with convection-diffusion equation for both the scalars are made dimensionless by taking the radius \((R)\) of the pipe as the length scale and \(V = \frac{Q}{\pi R^2}\) (\(Q\) is the volumetric flow rate) as the velocity scale, \(\rho V^2\) and \(\mu_1\) as pressure and viscosity scales. The dimensionless governing equations are given by

\[
\nabla \cdot \vec{v} = 0, \\
\left[\frac{\partial \vec{v}}{\partial t} + \vec{v} \cdot \nabla \vec{v} \right] = -\nabla p + \frac{1}{Re} \nabla \left[\mu(\nabla \vec{v} + \nabla \vec{v}^T) \right],
\]

\[
\frac{\partial s}{\partial t} + \vec{v} \cdot \nabla s = \frac{1}{ReSc} \nabla^2 s,
\]

\[
\frac{\partial f}{\partial t} + \vec{v} \cdot \nabla f = \frac{\delta}{ReSc} \nabla^2 f,
\]

where \((v_r, v_\theta, v_z)\) denote the dimensionless flow velocity in the \(r, \theta\) and \(z\) directions respectively, \(t\) is time and \(p\) denotes the pressure. Here, \(Re \equiv \rho VR/\mu_1, \ Sc \equiv \mu_1/\rho D_2 \equiv Pe/Re\) are the Reynolds number and Schmidt numbers, respectively. The effective Schmidt number of the faster diffusing fluid is \(Sc/\delta\).

The dimensionless viscosity is given by

\[
\mu = \exp(R_s s + R_f f).
\]

When \(R_s + R_f > 0\) \((< 0)\), the flow configuration has more (less) viscous fluid in the annular region than in the core. \(R_s + R_f = 0\) corresponds to a system without viscosity stratification; when either \(R_f = 0\) or \(R_s = 0\), the configuration corresponds to continuously viscosity stratified single component (SC) system of miscible fluids.

The dimensionless boundary conditions are the Navier slip condition Pruša32, Ding \textit{et al.}33, which are given by

\[
v_r = 0 \quad \text{on} \quad r = 1, \\
v_z = -\beta_s \frac{\partial v_z}{\partial r} \quad \text{on} \quad r = 1,
\]

along with the symmetry condition on the center line \(r = 0\), given by

\[
\frac{\partial v_z}{\partial r} = 0 \quad \text{on} \quad r = 0,
\]

where \(\beta_s\) is the dimensionless slip coefficient. In the present study, the focus is on the effects of slip on DD phenomenon related instabilities in core-annular flows that are stable/unstable in a rigid pipe11, and on the comparison of the present results with miscible double-diffusive flows in a channel with slippery walls.

In the present study, the slip parameter \((\beta_s)\) values considered are \((0 < \beta_s \leq 0.1)\) based on the experimental observations presented in the review by Lauga \& Cossu20 and are the same as those employed in the investigations of a single or immiscible/miscible two-fluid flows in channels with velocity slip at the walls12,13,17,20,25,34. The range of \(\beta_s\) used in the computations are realized for a flow in a hydrophobic channel of height ranging from 0.8\(\mu m\)\((40\mu m)\) to 4\(\mu m\)\((200\mu m)\) and corresponds to a slip length of 20 \(nm\)\((40 nm)\). It is also worth mentioning here that the experimental measurements of slip lengths corresponding to different solid substrates have been provided by Voronov \textit{et al.}35 and this is in accordance with the definition of slip proposed by Blake36 and Vinogradova37. In some cases, it is possible that the maximum value of slip length can reach upto 250\(\mu m\).

III. LINEAR STABILITY ANALYSIS

The temporal stability of the base flow (see Appendix A) to infinitesimal perturbations is considered in this section. The flow variables are decomposed as a sum of quasi-steady base state and small perturbations as:

\[
(v_r, v_\theta, v_z, p, s, f)(r, \theta, z, t) = (0, 0, U_z(r), P, s_0(r), f_0(r)) + (i\dot{v}_r, \dot{v}_\theta, \dot{v}_z, \dot{p}, \dot{s}, \dot{f})(r)e^{i(\alpha z + \beta \theta - \omega t)},
\]
where $i = \sqrt{-1}$, α, β are the wavenumbers in the axial and the azimuthal directions respectively, and $\omega \equiv \alpha c$ is the frequency of the perturbation, c is the complex phase speed $(c = c_r + ic_i)$ of the perturbation. Note that α_i represents the growth of the disturbance amplitude and α_c gives the phase velocity of the disturbance wave. The flow is linearly unstable if $\omega_i > 0$, stable if $\omega_i < 0$ and neutrally stable if $\omega_i = 0$. The perturbation viscosity is given by $\mu = \frac{\partial \mu_0}{\partial s} \hat{s} + \frac{\partial \mu_0}{\partial s} \hat{f}$. Using the standard procedure (Schmid & Henningson38), the linearized equations governing the stability problem for the perturbations are obtained (after suppressing the hat (ˆ)) as

\begin{equation}
\frac{v_r'}{r} + \frac{v_r}{r} + \frac{\beta v_\theta}{r} + \alpha v_z = 0, \tag{11}
\end{equation}

\begin{equation}
-\omega v_r + \alpha v_r U_z = \frac{p'}{r} - \frac{i \mu_0}{\text{Re}} \left\{ \mu_0 \left\{ v_r'' + \frac{v_r'}{r} - \left(\frac{\beta^2 + 1}{r^2} + \alpha^2 \right) v_r - \frac{2\beta}{r^2} v_\theta \right\} + 2\mu_0' v_r' + \alpha U_z \mu \right\}, \tag{12}
\end{equation}

\begin{equation}
-\omega v_\theta + \alpha v_\theta U_z = -\frac{\beta p}{r} - \frac{i \mu_0}{\text{Re}} \left\{ v_\theta'' + \frac{v_\theta'}{r} - \left(\frac{\beta^2 + 1}{r^2} + \alpha^2 \right) v_\theta - \frac{2\beta}{r^2} v_r \right\} - \frac{i \mu_0'}{\text{Re}} \left\{ v_\theta' - \frac{v_\theta}{r} - \frac{\beta v_r}{r} \right\}, \tag{13}
\end{equation}

\begin{equation}
-\omega v_z + U_z v_r + \alpha U_z v_z = -\alpha p - \frac{i \mu_0}{\text{Re}} \left\{ v_z'' + \frac{v_z'}{r} - \left(\frac{\beta^2}{r^2} + \alpha^2 \right) v_z \right\} - \frac{i \mu_0'}{\text{Re}} \left\{ v_z' - \alpha v_r \right\} - \frac{i U_z'}{\text{Re}} \mu' - \frac{i \mu}{\text{Re}} \left\{ U_z'' + \frac{U_z'}{r} \right\}, \tag{14}
\end{equation}

\begin{equation}
-\omega s + s_0' v_r + \alpha U_z s = -\frac{i}{\text{ReSc}} \left\{ s'' + \frac{s'}{r} - \left(\frac{\beta^2}{r^2} + \alpha^2 \right) s \right\}, \tag{15}
\end{equation}

\begin{equation}
-\omega f + f_0' v_r + \alpha U_z f = -\frac{i \delta}{\text{ReSc}} \left\{ f'' + \frac{f'}{r} - \left(\frac{\beta^2}{r^2} + \alpha^2 \right) f \right\}. \tag{16}
\end{equation}

In the above equations, a prime denotes differentiation with respect to r. Eqs. (11) - (16) reduce to the linearized stability equations for the Hagen-Poiseuille flow of a single fluid in a pipe (Schmid & Henningson38) by setting $R_f = R_s = 0$, $\delta = 1$ and $\mu_0 = 1$. The slip boundary condition at the wall of the pipe ($r = 1$) and the symmetry condition at the centerline ($r = 0$) are given by

\begin{equation}
v_r = 0, \ v_\theta = 0, \ v_z = -\beta_s \frac{\partial v_z}{\partial r}, \ s' = 0 \ and \ f' = 0, \ on \ r = 1, \tag{17}
\end{equation}

and

\begin{equation}
v_r = 0, \ v_\theta = 0, \ v_z' = 0, \ p' = 0, \ s' = 0 \ and \ f' = 0 \ for \ \beta = 0, \tag{18}
\end{equation}

\begin{equation}
v_r + v_\theta = 0, \ 2v_r' + v_\theta' = 0, \ v_z = 0, \ p = 0, \ s = 0 \ and \ f = 0 \ for \ \beta = 1, \tag{19}
\end{equation}

\begin{equation}
v_r = 0, \ v_\theta = 0, \ v_z = 0, \ p = 0, \ s = 0, \ and \ f = 0 \ for \ \beta \geq 2. \tag{20}
\end{equation}
Instability in a core-annular slippery pipe flow

In the absence of slip at the wall, Eqs. (17) - (20) reduce to those of a DD \((R_f + R_s \neq 0)\) flow system in a rigid pipe \((11)\) and reduce to those of a SC system when either \(R_s = 0\) or \(R_f = 0\). The above system of equations (Eqs. (11) - (16)) and boundary conditions (Eqs. (17) - (20)) constitutes an eigenvalue problem \(AX = \omega BX\) and the linear stability characteristics of the flow system is determined by the sign of the eigenvalue, \(\omega = \alpha \epsilon_i\), which is obtained by solving the dispersion relation

\[
F(\alpha, \beta, \omega, Re, Pe, Sc, R_s, R_f, R_1, \delta, \beta_s) = 0. \tag{21}
\]

Here \(X = (v_r, v_\theta, v_z, p, s, f)\) is the eigenvector and the entries in matrices \(A\) and \(B\) are presented in Appendix B.

The eigenvalue problem is solved numerically by the public domain software, LAPACK, after discretizing the domain \((0 < r < 1)\) using the Chebyshev spectral collocation method\(^{39}\). Large gradients in the mixed layer region are taken care of in the computation by using sufficiently large number of grid points. This is achieved by using the stretching function\(^5\)

\[
r_j = \frac{a}{\sinh(br_0)} \left[\sinh \left((r_c - r_0)b \right) + \sinh(br_0) \right], \tag{22}
\]

where \(r_j\) are the grid point locations, \(r_c\) is a Chebyshev collocation point defined by \(2r_c = \cos \left\{ \left[\frac{\pi(j-1)}{(n-1)} \right] + 1 \right\}\), \(n\) is the number of collocation points, \(a\) is the mid-point of the mixed layer, \(b\) is the degree of clustering and \(r_0\) is given by

\[
r_0 = \frac{1}{2b} \ln \left[\frac{1 + (e^b - 1)a}{1 + (e^{-b} - 1)a} \right]. \tag{23}
\]

For the range of parameters considered in this study, the computations yielded results that are accurate at least up to five decimal places with \(b = 8\).

IV. ENERGY BUDGET ANALYSIS

An energy budget analysis is presented here to facilitate the understanding of the physical mechanism underlying the instabilities that occur due to DD phenomenon in a slippery pipe. This will help in assessing the role of wall slip on the instabilities that occur in a DD flow in a rigid pipe\(^8,11\). The derivation is similar to those presented for SC miscible flow systems in a pipe\(^8\) and for a two-dimensional channel\(^11\) and for DD miscible flow systems\(^12\) in a channel. Eqs. (12), (13) and (14) are respectively multiplied by the radial, azimuthal and axial components of the disturbances in velocity, added and integrated across the domain \((0 < r < 1)\) to obtain the energy budget equations, given by

\[
\dot{E} = P - D + A + B_r + B_z + C. \tag{24}
\]

Here \(\dot{E}\) representing the temporal rate of change of the perturbation kinetic energy, is

\[
\dot{E} = \int_0^1 \dot{E} r dr = \omega_i \int_0^1 (v_r v_r^* + v_\theta v_\theta^* + v_z v_z^*) r dr, \tag{25}
\]

and the term on the right in 25 are

\[
P = \int_0^1 P_d r dr = \int_0^1 \text{Imag} (v_r v_z^*) U_z^* r dr, \tag{26}
\]

the “Reynolds stress” term, which denotes the rate of energy transfer from the base flow to the perturbations,

\[
D = \int_0^1 D r dr = \frac{1}{Re} \int_0^1 \mu_0 \left[v_r' v_r'^* + v_\theta' v_\theta'^* + v_z' v_z'^* + \right.
\]

\[
\left. + v_r'' v_r''^* + v_\theta'' v_\theta''^* + v_z'' v_z''^* \right] r dr, \tag{27}
\]

\[
A = \int_0^1 (v_r v_r + v_\theta v_\theta + v_z v_z + p + s) r dr,
\]

\[
B_r = \int_0^1 (v_r v_r') r dr,
\]

\[
B_z = \int_0^1 (v_z v_z') r dr,
\]

\[
C = \int_0^1 (v r r + v_\theta \theta + v_z z + p + s) r dr.
\]
$$\left(\frac{\beta^2}{\tau^2} + \alpha^2 \right) (v_r v_r^* + v_\theta v_\theta^* + v_z v_z^*) + \frac{1}{\tau^2} \{ \nu_r v_r^* + \nu_\theta v_\theta^* + 4 \beta \text{Real} (\nu v_r^*) \} r dr,$$

(27)
corresponds to the viscous dissipation of energy of the perturbation,

$$\mathcal{A} = \int_0^1 A r dr = \frac{1}{Re} \int_0^1 \mu_0' \left(\frac{d}{dr} (rv_r v_r^*) - \nu_\theta v_\theta^* \right) r dr,$$

(28)
determines the energy of the perturbations due to mean viscosity gradients,

$$\mathcal{C} = \int_0^1 C r dr = \frac{dP}{dz} \int_0^1 \text{Real} (\nu z v_z^*) r dr.$$

(29)

the perturbation energies due to viscosity perturbations,

$$\mathcal{B}_r = \frac{1}{Re} \int_0^1 U_r' \text{Real} (\nu z^*) r dr,$$

(30)

$$\mathcal{B}_z = \frac{1}{Re} \int_0^1 U_z' \text{Real} (\alpha \nu z^*) r dr,$$

(31)

the perturbation energies associated with the gradient of viscosity perturbations in the radial and axial directions, respectively. The new features of the energy equation are the extra terms arising from the interface; it is important to note that these terms in the linearized energy equation incorporate the viscosity stratification effects and slip effects.

V. RESULTS AND DISCUSSION

The effects of velocity slip (β_s) at the pipe wall on the stability characteristics of the flow system in a rigid pipe when the location of the mixed layer (R_1), the ratio of diffusion coefficients of the species (δ) and diffusivity level (Sc) are varied, are examined in this section, for DD flow configuration. The results are first validated with those obtained by Schmid & Henningson for Poiseuille flow of a single fluid in a rigid pipe for $Re_{SH} = 2000$. Schmid & Henningson have employed the centerline velocity as a characteristic scale while the average velocity is used in the present computations. As a result, $Re = 2Re_{SH}$ and $c = 2c_{SH}$. The eigenspectrum is obtained by setting $\delta = 1$ and $R_s = R_f = 0$. The results obtained for different values of axial and azimuthal wavenumbers ($(\alpha, \beta) = (1, 0), (0.5, 1)$ and $(0.25, 2)$ are in good agreement with SH results for the rigid pipe case, namely the flow is linearly stable at $Re_{SH} = 2000$. Note that, SH have reported that the flow is linearly stable for all Reynolds numbers. Further, the growth rates are negative in a slippery pipe ($\beta_s = 0.05, 0.1$) indicating that the flow is also stable for the parameter values mentioned above.

In the case of miscible two-fluid (DD) channel flow with no slip at the walls, the configuration with less viscous fluid near the walls has a stabilizing influence as the base velocity profile goes away from the inflection profile. This is also true for the SC channel flow systems without or with slip. But, the scenario is different in DD rigid pipe flow configurations, where the axisymmetric mode and/or swirl mode is unstable above a critical viscosity ratio, when the annular fluid is less viscous. It is of interest to see the influence of slip on the instabilities exhibited by the axisymmetric and swirl modes in DD flow configuration in a rigid pipe. In the next section, the results are presented for miscible DD flow in a slippery pipe. Further, the results for both the axisymmetric mode ($\beta = 0$) and the swirl mode ($\beta = 1$) are presented since one of these modes dominate and is more unstable than the higher order modes ($\beta > 1$).

Preliminary results of the DD flow show that it may be possible to either enhance or suppress the growth rates of the axisymmetric modes in the presence of slip (figure not shown); this is true not only when less viscous fluid is in the annular region ($R_f + R_s < 0$)
Instability in a core-annular slippery pipe flow

FIG. 3. Growth rates (ω_i) as a function of wavenumber (α) in rigid/slippery pipes with less viscous fluid in the annular region. (a), (b) Axisymmetric mode ($\beta = 0$) (c), (d) Swirl mode ($\beta = 1$). In (a) and (c) $R_1 = 0.75$. In (b) $R_1 = 0.425$ and in (d) $R_1 = 0.49$. The other parameters are fixed as $Re = 150$, $\delta = 20$, $Sc = 10$, $R_s = 1$, $R_f = -1.1$ and $q = 0.1$. The solid lines without symbols represents the results in a rigid pipe ($\beta_s = 0$); The solid lines with symbols display results in a slippery pipe ($\beta_s = 0.05$, $\beta_s = 0.07$, $\beta_s = 0.1$). The SC equivalent flow ($Sc_{eq} = 2Sc/(\delta + 1)$, $R_s = -0.1$ and $R_f = 0$) is stable ($\omega_i < 0$) in this parameter regime. The points A_1, B_1, C_1 and D_1 in (a) correspond to $\alpha = 1.95, 1.8, 1.7$ and 1.6, respectively. The points A_2, B_2, C_2 and D_2 in (b) correspond to $\alpha = 1.61, 1.56, 1.56$ and 1.51, respectively. The points A_3, B_3, C_3 and D_3 in (c) correspond to $\alpha = 1.56, 1.56, 1.46$ and 1.31, respectively. The points A_4, B_4, C_4 and D_4 in (d) correspond to $\alpha = 2.21, 2.16, 2.16$ and 2.16, respectively.

but also when more viscous fluid is in the annular region ($R_f + R_s > 0$). Swirl modes also display similar scenarios in the presence of slip. This motivates us to explore the details of the slip effects in the present study. Further, it is important to understand the physical mechanism that is responsible for different scenarios that are observed in DD flow system in a slippery pipe and the explanations are provided through energy budget analysis (section IV).

A. Influence of location of the mixed layer

The growth rates of the axisymmetric mode ($\beta = 0$), when $Re = 150$ are presented for a flow system with less viscous fluid occupying the annular region ($R_f = -1.1, R_s = 1.0$) in Fig. 3(a). The mixed layer is located at $R_1 = 0.75$ and is closer to the pipe wall. The other parameters are fixed as $Sc = 10$, $q = 0.1$ and $\delta = 20$. The DD flow in a rigid pipe ($\beta_s = 0$, solid line) is stable. The presence of slip ($\beta_s = 0.05, 0.07$ and 0.1) destabilizes the flow system for moderate wavenumbers. At this $Re(= 150)$, there is a window of unstable wavenumbers, in the presence of slip. The bandwidth of unstable wavenumbers increases
TABLE I. Energy budget for the points A_1, B_1, C_1 and D_1 in Fig. 3(a).

<table>
<thead>
<tr>
<th>Points</th>
<th>α</th>
<th>ω_i</th>
<th>\dot{E}</th>
<th>\dot{P}</th>
<th>$-\dot{D}$</th>
<th>A</th>
<th>B_r</th>
<th>B_s</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>1.95</td>
<td>-0.03351</td>
<td>-0.0040</td>
<td>-0.0017</td>
<td>-0.1596</td>
<td>0.0003</td>
<td>0.1671</td>
<td>-0.0058</td>
<td>-0.0043</td>
</tr>
<tr>
<td>B_1</td>
<td>1.80</td>
<td>0.00333</td>
<td>0.0100</td>
<td>-0.0025</td>
<td>-0.1415</td>
<td>0.0003</td>
<td>0.1617</td>
<td>-0.0051</td>
<td>-0.0028</td>
</tr>
<tr>
<td>C_1</td>
<td>1.70</td>
<td>0.00883</td>
<td>0.0124</td>
<td>-0.0034</td>
<td>-0.1351</td>
<td>0.0003</td>
<td>0.1577</td>
<td>-0.0046</td>
<td>-0.0024</td>
</tr>
<tr>
<td>D_1</td>
<td>1.60</td>
<td>0.01421</td>
<td>0.0149</td>
<td>-0.0044</td>
<td>-0.1281</td>
<td>0.0002</td>
<td>0.1532</td>
<td>-0.0040</td>
<td>-0.0020</td>
</tr>
</tbody>
</table>

with an increase in slip parameter (β_s).

Why does slip at the wall promote instabilities in the above configuration? Table I presents the details of energy budget analysis performed for DD miscible flow system in rigid ($\beta_s = 0$) and slippery ($\beta_s = 0.05, 0.07, 0.1$) pipes for the above flow configuration. The contributions from the different terms in the energy budget analysis as obtained at points A_1, B_1, C_1 and D_1 in Fig. 3(a) are presented. These are the points on the growth rate curves at which growth rate is maximum for that value of β_s. The wavenumber at which it occurs are $\alpha_{A_1} = 1.95$, $\alpha_{B_1} = 1.8$, $\alpha_{C_1} = 1.7$ and $\alpha_{D_1} = 1.6$. The faster diffusing species has a stabilizing role ($R_I = -1.1$); it diffuses faster leaving the slower diffusing species ($R_s = 1$). The net stratification ($R_s + R_I = -0.1$) is negative for the DD flow in a rigid pipe. Note that the positive contribution from B_r almost balances the contribution from viscous dissipation of energy of perturbation (\dot{D}) for DD flow in a rigid pipe. The contribution from the rate of energy of the perturbation due to mean viscosity gradients (\dot{A}), the perturbation energy associated with the viscosity gradient perturbation in the radial direction (\dot{B}_r) and perturbation energy that arises due to viscosity perturbation (\dot{C}) are negligibly small both for DD flow in a rigid pipe and in a slippery pipe. However, the rate of transfer of energy from the basic flow to the perturbations (\dot{P}, namely the Reynolds stress) contributes to the temporal rate of change of the perturbation KE which is therefore negative (i.e \dot{E} is negative) for DD flow in a rigid pipe. As a result, the DD flow in a rigid pipe ($\beta_s = 0$) remains stable for the set of parameters considered (see Fig. 3(a)). However, in the case of a DD flow in a slippery pipe, the positive contribution from B_r, the rate of perturbation energy associated with the gradient of viscosity perturbation in the radial direction dominates the negative contribution from \dot{D} (the rate of viscous dissipation energy of the perturbation) and is thus responsible for the destabilization in this flow system (see Fig. 3(a), $\beta_s = 0.05, 0.07, 0.1$). It is worth mentioning here that the contribution from B_r in the energy budget, which causes destabilization is due to the nonzero value of $\frac{\partial \nu}{\partial r}$ at the slippery wall. Observe also that an increase in velocity slip corresponds to a decrease in B_r, which results in a reduction in the flow resistance provided by viscous drag. This causes significant enhancement in the primary flow distribution near the wall and this paves the way for the flow to become unstable in a slippery pipe. In the case of a rigid pipe, B_r is positive as for a flow configuration in a slippery pipe but is large enough to offer flow resistance arising due to viscous drag thereby suppresses the base flow distribution near the wall and hence remains stable for the set of parameters considered in this figure. The radial variations of \dot{E}, \dot{D}, \dot{P}_d and \dot{B}_r are also presented in Fig. 4(a) - 4(d) and they clearly show for $\beta_s \neq 0$, the gradient of viscosity perturbations in the radial direction (\dot{B}_r) gain energy from the mean flow, which results in a destabilization of the flow system in a slippery pipe.

When the location of the interface is moved closer to the centerline ($R_1 = 0.425$; Fig. 3(b)), the slip has a stabilizing effect on the axisymmetric mode. The DD flow in a slippery pipe is more stable than that in a rigid pipe in which the axisymmetric mode exhibits positive growth rate. Why does slip play a different role in this case? The answer to this is inferred from table II and Fig. 5(a) - 5(d). The rate of viscous dissipation (\dot{D}) which represents rate of energy transfer from the perturbation to the mean flow is negative at the mixed layer, near the pipe wall and also near the center line (Fig. 5(b)). The rate of energy transfer from the basic flow to the perturbation \dot{P} is negative in the mixed layer (Fig. 5(c)). However, rate of energy production associated with the gradient of viscosity perturbation...
Instability in a core-annular slippery pipe flow

FIG. 4. Radial variations of (a) the rate of change of kinetic energy, \(\dot{E} \), (b) the negative of the dissipation rate \(-D \), (c) the production rate, \(P_d \) and (d) \(B_r \) of the most dangerous modes at \(A_1 \), \(B_1 \), \(C_1 \) and \(D_1 \) in Fig. 3(a) for different values of \(\beta_s \), respectively. The rest of the parameter values are the same as in Fig. 3(a).

TABLE II. Energy budget for the points \(A_2 \), \(B_2 \), \(C_2 \) and \(D_2 \) in Fig. 3(b).

<table>
<thead>
<tr>
<th>Points</th>
<th>(\alpha)</th>
<th>(\omega_i)</th>
<th>(\dot{E})</th>
<th>(P)</th>
<th>(-D)</th>
<th>(A)</th>
<th>(B_r)</th>
<th>(B_z)</th>
<th>(C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A_2)</td>
<td>1.61</td>
<td>0.00324</td>
<td>0.0005</td>
<td>-0.0020</td>
<td>-0.0739</td>
<td>0.0000</td>
<td>0.0726</td>
<td>-0.0026</td>
<td>0.0063</td>
</tr>
<tr>
<td>(B_2)</td>
<td>1.56</td>
<td>-0.00203</td>
<td>0.0011</td>
<td>-0.0034</td>
<td>-0.0712</td>
<td>0.0000</td>
<td>0.0718</td>
<td>-0.0026</td>
<td>0.0065</td>
</tr>
<tr>
<td>(C_2)</td>
<td>1.56</td>
<td>-0.00406</td>
<td>0.0008</td>
<td>-0.0038</td>
<td>-0.0698</td>
<td>0.0000</td>
<td>0.0705</td>
<td>-0.0026</td>
<td>0.0064</td>
</tr>
<tr>
<td>(D_2)</td>
<td>1.51</td>
<td>-0.00684</td>
<td>0.0003</td>
<td>-0.0042</td>
<td>-0.0661</td>
<td>0.0000</td>
<td>0.0668</td>
<td>-0.0024</td>
<td>0.0062</td>
</tr>
</tbody>
</table>

TABLE III. Energy budget for the points \(A_3 \), \(B_3 \), \(C_3 \) and \(D_3 \) in Fig. 3(c).

<table>
<thead>
<tr>
<th>Points</th>
<th>(\alpha)</th>
<th>(\omega_i)</th>
<th>(\dot{E})</th>
<th>(P)</th>
<th>(-D)</th>
<th>(A)</th>
<th>(B_r)</th>
<th>(B_z)</th>
<th>(C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A_3)</td>
<td>1.56</td>
<td>0.02032</td>
<td>0.0068</td>
<td>0.0745</td>
<td>-0.1263</td>
<td>0.0004</td>
<td>0.0529</td>
<td>-0.0012</td>
<td>0.0067</td>
</tr>
<tr>
<td>(B_3)</td>
<td>1.56</td>
<td>0.02144</td>
<td>0.0098</td>
<td>0.0641</td>
<td>-0.1199</td>
<td>0.0004</td>
<td>0.0585</td>
<td>-0.0010</td>
<td>0.0078</td>
</tr>
<tr>
<td>(C_3)</td>
<td>1.46</td>
<td>0.02005</td>
<td>0.0094</td>
<td>0.0551</td>
<td>-0.1048</td>
<td>0.0003</td>
<td>0.0516</td>
<td>-0.0007</td>
<td>0.0079</td>
</tr>
<tr>
<td>(D_3)</td>
<td>1.31</td>
<td>0.01988</td>
<td>0.0093</td>
<td>0.0445</td>
<td>-0.0851</td>
<td>0.0002</td>
<td>0.0421</td>
<td>-0.0003</td>
<td>0.0079</td>
</tr>
</tbody>
</table>
Table IV. Energy budget for the points A_4, B_4, C_4 and D_4 in Fig. 3(d).

<table>
<thead>
<tr>
<th>Points</th>
<th>α</th>
<th>ω_i</th>
<th>\dot{E}</th>
<th>P</th>
<th>$-D$</th>
<th>A</th>
<th>B_r</th>
<th>B_z</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_4</td>
<td>2.21</td>
<td>0.008095</td>
<td>0.0009</td>
<td>0.0304</td>
<td>-0.0835</td>
<td>0.0002</td>
<td>0.0445</td>
<td>-0.0008</td>
<td>0.0101</td>
</tr>
<tr>
<td>B_4</td>
<td>2.16</td>
<td>0.000069</td>
<td>-0.0003</td>
<td>0.0269</td>
<td>-0.0792</td>
<td>0.0002</td>
<td>0.0424</td>
<td>-0.0006</td>
<td>0.0101</td>
</tr>
<tr>
<td>C_4</td>
<td>2.16</td>
<td>-0.002607</td>
<td>-0.0007</td>
<td>0.0260</td>
<td>-0.0786</td>
<td>0.0002</td>
<td>0.0422</td>
<td>-0.0006</td>
<td>0.0102</td>
</tr>
<tr>
<td>D_4</td>
<td>2.16</td>
<td>-0.006190</td>
<td>-0.0014</td>
<td>0.0247</td>
<td>-0.0778</td>
<td>0.0002</td>
<td>0.0419</td>
<td>-0.0006</td>
<td>0.0102</td>
</tr>
</tbody>
</table>

FIG. 5. Radial variations of (a) the rate of change of kinetic energy, \dot{E}, (b) the negative of the dissipation rate (D), (c) the production rate, P_d and (d) B_r of the most dangerous modes at A_2, B_2, C_2 and D_2 in Fig. 3(b) for different values of β_s, respectively. The rest of the parameter values are the same as in Fig. 3(b).

in the radial direction (B_r) is positive (Fig. 5(d), table 2) in the mixed layer and it almost balances the contribution from (D). It is seen from table 2 that the transfer of energy from base flow to perturbation (P) is negative and it decreases with an increase in β_s. Further, the negative contribution from B_z is almost the same at all slip parameter values considered. The positive contributions to \dot{E} coming from C decreases with an increase in β_s. In this case, there is not only positive contribution to the energy budget from the perturbation energies associated with the gradient of viscosity perturbation (B_r) in the radial direction, but also from the perturbation energies due to viscosity perturbation (C). This suppresses the basic flow distribution near the wall and the resistance to flow offered by viscous drag increases, resulting in stabilization of the flow in a slippery pipe. It is again the contribution from B_r. That is responsible for stabilization of DD flow in a slippery pipe for the configuration in
which the mixed layer is closer to the centerline.

Fig. 3(c) shows that the swirl mode ($\beta = 1$) is unstable for the DD configuration with less viscous fluid in the annular region in a rigid pipe. The other parameters are the same as in Fig. 3(a). The growth rates are more for swirl mode than for axisymmetric mode in a rigid as well as in a slippery pipe. There is a critical wavenumber α (around $\alpha = 1.4$) below which the DD flow in a slippery pipe has higher growth rate than that in a rigid pipe. Above this critical α, the growth rates exhibit non-monotonic trend. The physical mechanism responsible for the scenarios displayed in Fig. 3(c) for the swirl mode can be similarly understood from table III. The other parameters in table III are the same as in table I. Note from table III that when R similarly understood from table III. The bandwidth of unstable wavenumbers is larger in destabilization of the flow system. The bandwidth of unstable wavenumbers is larger in destabilization of DD flow in a rigid as well as in a slippery pipe.

When the mixed layer location is moved closer to the centerline ($R_1 = 0.425$), the swirl mode remains stable in a rigid as well as in a slippery pipe (figure not shown). However, when $R_1 = 0.49$, the scenario is different as seen in Fig. 3(d), namely, the swirl mode for DD flow in a rigid pipe displays positive growth rate while that in a slippery pipe is stable. In this case ($R_1 = 0.49$), both $P(>0)$ and $B_r(>0)$ decrease with an increase in slip for the swirl mode ($\beta = 1$) but dominate the viscous dissipation energy of the perturbation, thus resulting in a destabilization of DD flow in a rigid pipe. However, in a slippery pipe, the total contribution from $B_r + P$ is insufficient to generate significant base flow distribution near the wall which enhances the resistance to flow by viscous drag, resulting in stabilization of flow in this case. The results in table III and table IV are also confirmed by the radial variation of E, D, B_r, and P but are not shown.

The results show that DD flow in a rigid pipe can be destabilized (stabilized) by wall slip according as the mixed layer is located closer to the wall (nearer the centerline), when the less viscous fluid occupies the annular region, when $Re = 150$.

It is of interest to know the critical value of Re at which the instability sets in first in the presence of slip and how this critical Reynolds number is affected by changes in ratio of the diffusion coefficients of the species (δ). With this in view, the neutral stability boundaries in the α-Re plane are presented in Fig. 6(a) for $Sc = 10$, $q = 0.1$, $R_s = 1$, $R_f = -1.1$, $\delta = 20$ and $R_1 = 0.75$. The slip effects are incorporated ($\beta_s = 0$, solid line; $\beta_s = 0.05$, dashed line). The long and short waves are stabilized (axisymmetric mode, $\beta = 0$) for DD flow configurations in a rigid as well as in a slippery pipe, when the less viscous fluid occupies the annular region and the mixed layer is closer to the pipe wall ($R_1 = 0.75$). The unstable region lies inside the enclosed curves. It is clear that finite viscosity contrast and inertial effects are required for the first occurrence of instability in a rigid as well as in a slippery pipe. We observe from Fig. 4 and table I that at $\delta = 20$, the combined contribution from B_r and P is positive and is more than the negative viscous dissipation ($-D$) in the mixed layer. This enhances the rate of energy transfer from the base flow to the perturbations which is responsible for destabilization of the axisymmetric mode in a DD system. As δ is decreased ($\delta = 10$), the combined positive (figure and table not shown) contribution from B_r, P and $-D$ decreases, thereby, increasing the critical Reynolds number of the axisymmetric mode. This effect reveals that an increase in relative diffusion rate δ enhances instability in a DD system (for rigid as well as slippery pipes). The critical Reynolds number is less for DD flow in a slippery pipe than that in a rigid pipe, indicating the destabilizing role of slip for this set of parameters. In fact, an increase in slip at the wall increases the slope of the base flow profile, thereby suppresses the resistance offered to the flow by viscous forces, resulting in destabilization of the flow system. The bandwidth of unstable wavenumbers is larger for the axisymmetric mode for flow in a slippery pipe as compared to that in a rigid pipe, resulting in a larger unstable region in the α-Re plane.

The same scenario is displayed by swirl mode ($\beta = 1$: Fig. 6(b)); however, the critical Reynolds number for the swirl mode is lesser than that for the axisymmetric mode; this is so both for the DD flow in a rigid as well as in a slippery pipe. This clearly shows that
FIG. 6. Effects of slip and the diffusion ratio (δ) on the neutral stability curves in the α-Re plane. The less viscous fluid ($R_s = 1$, $R_f = -1.1$) is nearer to the pipe wall. The mixed layer is located at $R_1 = 0.75$. The other parameters are fixed as $Sc = 10$, $q = 0.1$. (a), (c) Axisymmetric mode ($\beta = 0$) (b), (d) Swirl mode ($\beta = 1$) $\delta = 20$ in (a) and (b); $\delta = 10$ in (c) and (d). The solid lines represent the results in a rigid pipe ($\beta_s = 0$); the dashed lines are for flow in a slippery pipe ($\beta_s = 0.05$).

The swirl mode is more unstable than the axisymmetric mode for the set of parameters considered.

As the diffusivity ratio δ decreases ($\delta = 10$), the axisymmetric mode in the DD flow in a rigid /slippery pipe becomes stable as indicated by the increase in critical Reynolds number (Fig. 6(c), $R_1 = 0.75$); however, an interesting phenomenon occurs, as seen in Fig. 6(d) for the swirl mode; ($\beta = 1$, $\delta = 10$). In this case, the critical Reynolds number in a rigid pipe is smaller than that in a slippery pipe, showing the stabilizing role of slip for the swirl mode. Further, the range of unstable wavenumbers is less for the swirl mode in a slippery pipe.

In what follows, we examine how the location of the mixed layer influences the instability characteristics of the axisymmetric and the swirl modes, in the presence of slip, when the less viscous fluid is nearer to the pipe wall ($R_s = 1$ and $R_f = -1.1$). Fig. 7 gives the critical Reynolds number as a function of radial location of the mixed layer (R_1) for different values of δ ($\delta = 10$ in Fig. 7(a) and 7(b); $\delta = 20$ in Fig. 7(c) and 7(d) and $\delta = 100$ in Fig. 7(e) and 7(f)). The slip effects are incorporated. Figures 7(a), (c), (e) present details for the axisymmetric mode ($\beta = 0$) and figures 7(b), (d) and (f) show the results for swirl mode ($\beta = 1$). The other parameters are fixed as $Sc = 10$, $q = 0.1$. The critical Reynolds number (Re_{cr}) decreases as the mixed layer is shifted away from the centerline Fig. 7(a) - 7(f). Beyond a certain location (say R_{1cr}), which depends on the diffusivity ratio δ, Re_{cr} begins to increase. This demonstrates that the intermediate interface location is the most unstable; the critical Reynolds number is more in a slippery pipe than in a rigid pipe upto
Instability in a core-annular slippery pipe flow

Fig. 7. The critical Reynolds number (Re_{cr}) as a function of the location of the mixed layer (R_1), when the less viscous fluid is nearer to the pipe wall ($R_s = 1, R_f = -1.1$). The slip effects are presented (lines with symbols; $\beta_s = 0.05, \beta_s = 0.1$). Solid lines show the results in a rigid pipe ($\beta_s = 0.0$). The other parameters are Sc = 10, $q = 0.1$. (a), (c) and (e) show the results for axisymmetric mode $\beta = 0$ and (b), (d) and (f) show the results for swirl mode $\beta = 1$.

R_{1cr} for both the axisymmetric and the swirl modes Fig. 7(a) - 7(f). This indicates that when the mixed layer is located nearer to the centerline, the two modes in a slippery pipe are more stable than the corresponding ones in a rigid pipe. Beyond R_{1cr}, the critical Reynolds numbers for the two modes in a rigid pipe are larger than those in a slippery pipe Fig. 7(a), Fig. 7(c) - 7(f). Thus, when the mixed layer is located nearer to the pipe wall, slip at the wall tends to destabilize the flow system by advancing the onset of instability. An exception to the above scenario is observed for swirl mode (Fig. 7(b); $\delta = 10$) when Re_{cr} is more in a slippery pipe than in a rigid pipe for any location of the mixed layer. An
FIG. 8. The destabilizing effect of thinner mixed layer (q) and effect of wall slip (β_s) when the less viscous fluid is in the annular region ($R_f = -1.1, R_s = 1$), (a), (b) dispersion curves for $Re = 500$, (c), (d) neutral boundaries for axisymmetric mode ($\beta = 0$) and swirl mode ($\beta = 1$) respectively, with the rest of the parameters $R_1 = 0.75$, $Sc = 10$, $\delta = 20$. The \triangle represents $\beta_s = 0.07$. The solid and dashed lines without symbols represent the results for $\beta_s = 0$. $\beta_s(=0, 0.07)$ effects alter with Reynolds number (Re).

TABLE V. Effects of mixed layer thickness (q) on the critical Reynolds number (Re_{cr}) for flow in a rigid/slippery pipe. Values are obtained from Fig. 8.

<table>
<thead>
<tr>
<th>q = 0.1, β_s</th>
<th>$q = 0.05$, β_s</th>
<th>$q = 0.1$, $\beta = 0$</th>
<th>$q = 0.05$, $\beta = 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\beta_s = 0$</td>
<td>201.73</td>
<td>121.77</td>
<td>133.38</td>
</tr>
<tr>
<td>$\beta_s = 0.05$</td>
<td>143.86</td>
<td>91.06</td>
<td>105.212</td>
</tr>
<tr>
<td>$\beta_s = 0.07$</td>
<td>131.38</td>
<td>78.94</td>
<td>99.43</td>
</tr>
</tbody>
</table>

Increase in diffusivity ratio results in a decrease in Re_{cr} for both the axisymmetric and the swirl modes, for any location R_1 of the mixed layer which is less than R_{1cr} (that is, when the mixed layer is closer to the centerline) which shows the destabilizing effect of diffusivity ratio δ. But, when the mixed layer is located closer to the pipe wall and with $R_1 > R_{1cr}$, the reverse trend is observed (with an exception for $\delta = 10$ as mentioned earlier). At any δ, slip destabilizes (stabilizes) both the modes when $R_1 > R_{1cr}$ ($R_1 < R_{1cr}$) by decreasing (increasing) the critical Reynolds numbers (with an exception for $\delta = 10$, $\beta = 1$; in this case slip always stabilizes the swirl mode).
The dispersion relation for axisymmetric mode (the mixed layer and some information in this regard is presented in Fig. 8 and table V.

B. Role of mixed layer thickness

One is curious to know if the stability characteristics are affected by the thickness of the mixed layer and some information in this regard is presented in Fig. 8 and table V. The dispersion relation for axisymmetric mode ($\beta = 0$; Fig. 8(a)) and swirl mode ($\beta = 1$; Fig. 8(b)) are presented for non-zero thickness of the interface, when the mixed layer is located nearer the slippery wall ($R_1 = 0.75$, $\delta = 20$ and $Re = 500$ with $R_f = -1.1$ and $Re_1 = 1$). The slip effects are incorporated ($\beta_s = 0$, no symbol; and $\beta_s = 0.07$, (\triangle)). The solid (dashed) lines present the growth rates for $q = 0.1$ ($q = 0.05$). An increase in the mixed layer thickness results in shifting of the maximum growth rate to longwaves, in a rigid as well as in a slippery pipe; the shortwaves are stabilized and the growth rates are decreased. An increase in slip suppresses the maximum growth rate; the bandwidth of unstable wavenumbers is smaller for a thicker mixed layer. The swirl mode displays slightly higher growth rates (Fig. 8(b)).

The neutral stability curves plotted in the $\alpha - Re$ plane for $\beta = 0$ (Fig. 8(c)) and $\beta = 1$ (Fig. 8(d)) clearly show the destabilizing effect of thinner mixed layer. The mixed layer is located closer to the slippery wall ($R_1 = 0.75$). Table V presents the critical Reynolds numbers for a thinner ($q = 0.05$) and thicker ($q = 0.1$) mixed layer as the slip varies ($\beta_s = 0$, 0.05 and 0.07). The critical Reynolds number is higher for axisymmetric mode ($\beta = 0$) than for swirl mode ($\beta = 1$) for $q = 0.05$ and $q = 0.1$. An increase in slip decreases the critical Reynolds number for the axisymmetric and swirl modes, indicating the destabilizing role of slip for the set of parameters considered.
Instability in a core-annular slippery pipe flow

FIG. 10. The terms of the energy equation for flow in a slippery pipe ($\beta_s = 0.05$) as a function of Reynolds number (Re) with $Sc = 10$, $q = 0.1$, $Rs = 1$, $R_f = -1.1$, $\delta = 20$, $\beta = 0$ and $R_1 = 0.75$. The dominant contributing term is the Reynolds stress term (P), the terms Br and D almost cancel each other. Solid line represents E, dashed line represents P, dash-dotted line represents A, \Diamond represents C, \triangle represents B_z, \Box represents B_r, \circ represent $-D$.

FIG. 11. The Reynolds stress term P as a function of the Reynolds number (Re) for different values of Sc with other parameters same as in Fig. 10. P is non-monotonic with respect to Sc in the window $150 < Re < 700$ for DD flow in a rigid pipe (solid lines; $\beta_s = 0$) and in the window $150 < Re < 900$ for DD flow in a slippery pipe (dashed lines; $\beta_s = 0.05$). The lines solid or dashed without symbols correspond to $Sc = 10$ and with triangles (\triangle) and squares (\Box) correspond to $Sc = 100$ and $Sc = 1000$, respectively.

C. Role of Schmidt number on DD instability

We now consider the effects of Schmidt number (Sc) on the growth rates of the axisymmetric modes ($\beta = 0$) for DD flow in a rigid ($\beta_s = 0$) and in a slippery pipe ($\beta_s = 0.05$). Fig. 9 presents the growth rates as a function of α for different values of Sc, the other parameters are same as in Fig. 3(a). It is observed that Schmidt number has a non-monotonic effect for a DD flow in rigid as well as in slippery pipes.

At higher $Sc (= 1000)$, the long-waves are destabilized for DD flow in a pipe (rigid and slippery). At any Sc, the growth rate is higher and the bandwidth of unstable wavenumbers is larger for flow in a slippery pipe. This non-monotonic behavior with respect to Sc can be clearly understood through energy budget analysis and this is presented in table VI for $Re = 150$, $q = 0.1$, $Rs = 1$, $R_f = -1.1$, $R_1 = 0.75$, $\delta = 20$, $\beta_s = 0$ and $\beta_s = 0.05$. At this Re, the contributions from B_r and D almost cancel out; A, B_z and C are negligible. The contribution from P is seen to be responsible for the non-monotonic behavior of Sc which is exhibited in Fig. 9. This is displayed by DD flow in a rigid as well as in a slippery pipe.
At a fixed Reynolds number, as Sc increases, diffusion slows down. There is some intermediate Schmidt numbers beyond which when Sc increases, the growth rate of the dominant mode of instability is suppressed. This can be attributed to the nonmonotonic behavior displayed by the Reynolds stress term (\mathcal{P} see table VI). It can be seen that with the increase in Sc, \mathcal{P} increases initially but beyond some Sc, it begins to decrease due to insufficient rate of energy transferred from base flow to the perturbations. As a result growth rate exhibits non-monotonic behavior as Sc is increased. This may be attributed to the contribution from the shear stress that arises due to slip.

Note from table VI that for a fixed Re and Sc, the rate of energy transfer from the base flow to the perturbations in enhanced with slip which results in higher growth rate in a slippery duct. Further, as Sc increases, the contribution from \mathcal{P} is higher in a slippery pipe than that in a rigid pipe.

Figs. 10 and 11 also confirm the above conclusions. The contribution from all the terms to the energy budget are presented as a function of Re, when $Sc = 10$ and $\beta_s = 0.05$ in a slippery pipe and all the other parameters are as in table VI. The above results for $Sc = 100$ and $Sc = 1000$ are also obtained but are not shown here as the trend is observed to be similar to that for $Sc = 10$. From Fig. 10, it is observed that, at any Re, the positive and negative contributions from \mathcal{B}_r and \mathcal{D} almost cancel out each other and \mathcal{P} is the dominant contributing term. Fig. 11 presents the effects of Schmidt number on the contribution to energy budget from the Reynolds stress term that determines the rate of transfer of energy to the perturbation from the basic flow (\mathcal{P}). Note that, the contribution to the Reynolds stress production is from the derivative of base flow velocity. It is clear that there is a window of Reynolds numbers where \mathcal{P} is non-monotonic with respect to Sc ($150 < Re < 700$ for flow in a rigid pipe and $150 < Re < 900$ for flow in a slippery pipe), beyond this $Re \approx 700$ ($Re \approx 900$), \mathcal{P} is monotonically decreasing for rigid (slippery) case.

VI. CONCLUSIONS

The present investigation addresses the temporal instability of viscosity stratified miscible core-annular flows (DD systems) in a slippery pipe. The results demonstrate that miscible core-annular flows in a slippery pipe are linearly unstable towards longwave and intermediate wave disturbances, for a wide range of governing parameters. When the less viscous fluid is in the annular region and the mixed layer is closer to the slippery wall, then while the DD flow is unstable, the equivalent SC flow is stable, showing that the stability characteristics are analogous to that in a rigid pipe (Fig. 3). Further, an increase in relative diffusion rate (δ) enhances the instability of an axisymmetric mode in a DD system with more destabilization due to slip effects. At moderate to high diffusivity ratios, the swirl mode displays the same scenario but at small diffusion ratios, slip has a stabilizing effect on the swirl mode (Fig. 7). Diffusion effects are observed to be non-monotonic (as in rigid wall case) for the DD system (Fig. 9), whereas in a SC system, its effects are monotonic (not shown). The energy transfer from base flow to the perturbation, namely, the Reynolds stress is responsible for this non-monotonic effect of Sc. The source of instability in this configuration is due to increase in slope of base flow velocity. The location of the mixed layer also has non-monotonic effect on the stability characteristics; slip has a dual role of stabilizing or destabilizing depending on whether the mixed layer is nearer the centerline or closer to the pipe wall (Figs. 3, 7). The DD flow in a plane slippery channel is more stable than that in core-annular flow in a slippery pipe (figure 9 in Ghosh et al. 13; Fig. 6(a) in the present study). Energy budget analysis reveals clearly that the mechanism of energy transfer from the base flow to the disturbance depends on Schmid number (Sc) and slip (β_s). The transfer of energy may be through the Reynolds stress term (Figs. 9, 10, 11) or through stresses due to gradient of viscosity perturbation in radial direction (Fig. 3). Note that the preliminary DNS computations, (Fig. 1) not only confirm the linear stability results but provide information in the nonlinear regime. The results show that the slip delays the occurrence of instability in a DD core-annular flow for some range of parameter values while it does the reverse for other range of parameters of interest in the present study. Slip plays a dual role of stabilizing or destabilizing the miscible core annular
Instability in a core-annular slippery pipe flow

DD flow in a pipe. For the flow configuration with mixed layer closer to the wall when the faster diffusing scalar is stabilizing and the slower diffusing scalar is destabilizing, we see that an increase in slip length (which arises due to slip at the wall) decreases the critical Reynolds number. It is possible to further destabilize the flow configuration by decreasing the mixing layer thickness (table V). This clearly shows that both the slip length and the mixed layer thickness play a crucial role on the stability characteristics of the DD miscible core annular flow in a pipe.

The present study has relevance in micro-electro mechanical systems, in which velocity slip boundary condition is more appropriate than the no-slip condition, to describe the flow dynamics. The study also gains its significance due to the dual role played by slip at the wall, as it suggests an effective way of controlling miscible core-annular flow in rigid pipe. The study can be extended to consider non-modal stability analysis for core-annular flows so that there is a possibility for quantifying the wall slip effects of the present study on the non-modal stability analysis.

Appendix A: Base state

The base state (U_z, μ_0) corresponds to a steady locally parallel, fully developed flow $(U_r = 0, U_\theta = 0, U_z = U_z(r)$ and P is linear in z) satisfying

$$\frac{1}{r} \frac{\partial}{\partial r} \left[r \mu_0 \frac{\partial U_z}{\partial r} \right] = Re \frac{dP}{dz} \quad (A1)$$

and the boundary conditions

$$U_z = -\beta_s \frac{\partial U_z}{\partial r} \quad \text{on} \quad r = 1, \quad (A2)$$
$$\frac{\partial U_z}{\partial r} = 0 \quad \text{on} \quad r = 0. \quad (A3)$$

The condition $\int_0^1 U_z r \, dr = 1$ is used to fix the pressure gradient dP/dz. Here $\mu_0 = \exp(R_s s_0 + R_f f_0)$, where the scalars s_0 and f_0 are chosen to be fifth degree polynomials (11,10) and this assumes the continuity up to the second derivative for the concentration of the scalars at $r = R_1$ and $r = R_1 + q$:

$$s_0 = f_0 = 0, \quad 0 \leq r \leq R_1,$$
$$s_0 = f_0 = \sum_{i=1}^{6} a_i r^{i-1}, \quad R_1 \leq r \leq R_1 + q,$$
$$s_0 = f_0 = 1, \quad R_1 + q \leq r \leq 1, \quad (A4)$$

where $a_i (i = 1 \text{ to } 6)$ are given by

$$a_1 = -\frac{R_1^3}{q^5} (6R_1^2 + 15R_1 q + 10q^2), \quad a_2 = \frac{30R_1^2}{q^5} (R_1 + q)^2,$$
$$a_3 = -\frac{30R_1}{q^5} (R_1 + q)(2R_1 + q), \quad a_4 = \frac{10}{q^5} (6R_1^2 + 6R_1 q + q^2),$$
$$a_5 = -\frac{15}{q^5} (2R_1 + q) \quad \text{and} \quad a_6 = \frac{6}{q^5}. \quad (A5)$$

Sahu11 has remarked that the base state profiles generated by using sufficiently smooth concentration profiles with $s_0 = f_0 = 0.5 + 0.5 \text{ erf} \left(\frac{r-R_1-0.5q}{0.25q} \right)$ considered by Selvam \textit{et al.}8

Instability in a core-annular slippery pipe flow

FIG. 12. Basic velocity profiles in a DD flow configuration when $R_1 = 0.7$ and $q = 0.1$ with less viscous fluid ($R_f = -1.1$, $R_s = 1$; dashed line) and more viscous fluid ($R_f = -0.9$, $R_s = 1$; solid line) in the annular region.

are similar to those obtained using (A4) and (A5). The validity of the choice of the Eqs. (A4) and (A5) is presented in Appendix C in Sahu.

The base velocity profiles are plotted in Fig. 12 for DD flow configurations with $R_s = 1$, when the mixed layer of thickness $q = 0.1$ is located near to the pipe wall ($R_1 = 0.7$). The presence of slip provokes larger velocities near the pipe wall. The axial velocity in the mixed layer ($0.7 < r < 0.8$) is more for the DD flow system with less viscous fluid ($R_f = -1.1$, $R_s = 1$; dashed line) as compared to that with more viscous fluid ($R_f = -0.9$, $R_s = 1$; solid line) in the annular region. This is observed for flow in a rigid ($\beta_s = 0$) as well as in a slippery ($\beta_s \neq 0$) pipe. Slip at the wall enhances this axial velocity in the mixed layer.

The results for a rigid pipe ($\beta_s = 0$) agree with those in figure 2 of Sahu. The centerline velocity for DD flow system in a rigid pipe exceeds that in a slippery pipe; it is more when the high viscous fluid is in the annular region than when the less viscous fluid is in the annular region. The wall shear is more in a rigid pipe than in a slippery pipe. Further, the wall shear in a slippery pipe ($\beta_s = 0.05$, $\beta_s = 0.1$) is less for a configuration with the less viscous fluid occupying the annular region than the one with more viscous fluid in the annular region.

Appendix B:

$$A_{11} = \alpha U_z + \frac{i\mu_0}{Re} \left\{ D^2 + \frac{D}{r} - \left(\frac{\beta^2 + 1}{r^2} + \alpha^2 \right) \right\} + \frac{2i\mu_0'}{Re} D, \quad A_{12} = \frac{-2i\beta\mu_0}{r^2 Re}, \quad A_{14} = -D,$$

$$A_{15} = \frac{iU_z'\alpha}{R - \mu_0 R_s}, \quad A_{16} = \frac{iU_z'\alpha}{R - \mu_0 R_f}, \quad A_{21} = \frac{-2i\beta\mu_0}{r^2 Re} - \frac{i\beta\mu_0'}{r Re},$$

$$A_{22} = \alpha U_z + \frac{i\mu_0}{Re} \left\{ D^2 + \frac{D}{r} - \left(\frac{\beta^2 + 1}{r^2} + \alpha^2 \right) \right\} + \frac{i\mu_0'}{Re} \left(D - \frac{1}{r} \right), \quad A_{24} = \frac{\beta}{r},$$

$$A_{31} = U_z' - \frac{i\mu_0\alpha}{Re}, \quad A_{33} = \alpha U_z + \frac{i\mu_0}{Re} \left\{ D^2 + \frac{D}{r} - \left(\frac{\beta^2 + 1}{r^2} + \alpha^2 \right) \right\} + \frac{i\mu_0'}{Re} D, \quad A_{34} = \alpha,$$

$$A_{35} = \frac{iU_z'}{Re} (R_s\mu_0 + R_s\mu_0') + \frac{iR_s\mu_0}{Re} \left(U_z'' + \frac{U_z'}{r} \right),$$

$$A_{36} = -\frac{2i\beta\mu_0}{r^2 Re} - \frac{i\beta\mu_0'}{r Re}.$$
Instability in a core-annular slippery pipe flow

\[A_{36} = \frac{iU'}{Re} (R_f \mu_0 + R_f \mu'_0) + \frac{iR_f \mu_0}{Re} \left(U''_z + \frac{U'_z}{r} \right), \quad A_{41} = rD + 1, \quad A_{42} = \beta, \quad A_{43} = r\alpha, \]

\[A_{51} = s'_0, \quad A_{55} = \alpha U_z + \frac{i}{ReSc} \left\{ D^2 + \frac{D}{r} - \left(\frac{\beta^2}{r^2} + \alpha^2 \right) \right\}, \]

\[A_{61} = f'_0, \quad A_{66} = \alpha U_z + \frac{i\delta}{ReSc} \left\{ D^2 + \frac{D}{r} - \left(\frac{\beta^2}{r^2} + \alpha^2 \right) \right\}, \]

\[B_{11} = B_{22} = B_{23} = B_{35} = B_{66} = 1. \]

Here \(D = d/dr. \)

Instability in a core-annular slippery pipe flow

44J. Hoyt, Swimming and flying in nature (Springer, ADDRESS, 1975), pp. 653–672.