
Graph Pattern Polynomials1

Markus Bläser2

Department of Computer Science, Saarland University, Saarland Informatics Campus,3

Saarbrücken, Germany4

mblaeser@cs.uni-saarland.de5

https://www-cc.cs.uni-saarland.de/mblaeser/6

Balagopal Komarath7

Saarland University, Saarland Informatics Campus, Saarbrücken, Germany8

baluks@gmail.com9

http://www-cc.cs.uni-saarland.de/bkomarath/10

Karteek Sreenivasaiah11

Department of Computer Science and Engineering, Indian Institute of Technology Hyderabad,12

India13

karteek@iith.ac.in14

http://www.iith.ac.in/~karteek15

Abstract16

Given a host graph G and a pattern graph H, the induced subgraph isomorphism problem is17

to decide whether G contains an induced subgraph that is isomorphic to H. We study the18

time complexity of induced subgraph isomorphism problems where the pattern graph is fixed.19

Nešetřil and Poljak gave an O(nkω) time algorithm that decides the induced subgraph isomophism20

problem for any 3k vertex pattern graph (The universal algorithm), where ω is the current matrix21

multiplication exponent.22

Algorithms that are faster than the universal algorithm are known only for a finite number of23

pattern graphs. In this paper, we obtain algorithms that are faster than the universal algorithm24

for infinitely many pattern graphs. More specifically, we show that there exists a family of pattern25

graphs (H3k)k≥0 such that the induced subgraph isomorphism problem for H3k (on 3k vertices)26

has a O(nkω−ε) time algorithm where ε > 0 and k = 2r, r ≥ 1.27

This algorithm is obtained by a reduction to the multilinear term detection problem in a class28

of polynomials called graph pattern polynomials. We formally define this class of polynomials29

along with a notion of reduction between these polynomials that allows us to argue about the30

fine-grained complexity of isomosphism problems for different pattern graphs. We obtain the31

following algorithms for induced subgraph isomorphism problems:32

1. Faster than universal algorithm for Pk (k-vertex paths) when 5 ≤ k ≤ 9 and Ck (k-vertex33

cycles) for k ∈ {5, 7, 9}. In particular, we obtain O(nω) time algorithms for P5 and C5 that34

are optimal under reasonable hardness assumptions.35

2. Faster than universal algorithm for all pattern graphs except Kk (k-vertex cliques) and Ik36

(k-vertex independent sets) for k ≤ 8.37

3. Combinatorial algorithms (algorithms that do not use fast matrix multiplication) that take38

O(nk−2) time for Pk and Ck.39

4. Combinatorial algorithms that take O(nk−1) time for all pattern graphs except Kk and Ik40

for k.41

Our notion of reduction can also be used to argue about hardness of detecting patterns within42

our framework. Since this method is used (explicitly or implicitly) by many existing algorithms43

(including the universal algorithm) for solving subgraph isomorphism problems, these hardness44

results show the limitations of existing methods. We obtain the following relative hardness45

results:46

1. Induced subgraph isomorphism problem for any pattern containing a k-clique is at least as47

hard as k-clique.48

mailto:mblaeser@cs.uni-saarland.de
https://www-cc.cs.uni-saarland.de/mblaeser/
mailto:baluks@gmail.com
http://www-cc.cs.uni-saarland.de/bkomarath/
mailto:karteek@iith.ac.in
http://www.iith.ac.in/~karteek

XX:2 Graph Pattern Polynomials

2. For almost all patterns, induced subgraph isomorphism is harder than subgraph isomorphism.49

3. For almost all patterns, the subgraph isomorphism problem for any of its supergraphs is50

harder than subgraph isomorphism for the pattern.51

2012 ACM Subject Classification Theory of computation→ Probabilistic computationOA The-52

ory of computation → Problems, reductions and completeness53

Keywords and phrases algorithms, induced subgraph detection, algebraic framework54

1 Introduction55

The induced subgraph isomorphism problem asks, given simple and undirected graphs G and56

H, whether there is an induced subgraph of G that is isomorphic to H. The graph G is called57

the host graph and the graph H is called the pattern graph. This problem is NP-complete58

(See [10], problem [GT21]). If the pattern graph H is fixed, there is a simple O(n|V (H)|) time59

algorithm to decide the induced subgraph isomorphism problem for H. We study the time60

complexity of the induced subgraph isomorphism problem for fixed pattern graphs on the61

Word-RAM model.62

The earliest non-trivial algorithm for this problem was given by Itai and Rodeh[11]63

who showed that the number of triangles can be computed in O(nω) time on n-vertex64

graphs, where ω is the exponent of matrix multiplication. Later, Nešetřil and Poljak[14]65

generalized this algorithm to count K3k in O(nkω) time, where K3k is the clique on 3k66

vertices. Eisenbrand and Grandoni[6] extended this algorithm further to count K3k+j for67

j ∈ {0, 1, 2} using rectangular matrix multiplication in O(nω(k+dj/2e,k,k+bj/2c)) time. Here68

ω(i, j, k) denotes the exponent of the running time of matrix multiplication when multiplying69

an i × j matrix with a j × k matrix. Their algorithm uses fast matrix multiplication to70

achieve the speedup and in fact works for all pattern graphs on 3k + j vertices. Hence we71

call this algorithm the universal algorithm. It is reasonable to expect that one might be able72

to obtain faster algorithms for specific pattern graphs. However, algorithms faster than the73

universal algorithm are only known for finitely many pattern graphs.74

Algorithms that do not use fast matrix multiplication, called combinatorial algorithms,75

have also been studied. No combinatorial algorithm that beats the trivial O(nk) time76

algorithm is known for detecting k-cliques in n vertex graphs. However, improvements77

for certain pattern graphs such as Kk − e has been shown by Virginia Williams (See [15],78

p.45). They show a combinatorial algorithm that decides the induced subgraph isomorphism79

problem for Kk − e in time O(nk−1). An O(nk−1) combinatorial algorithm is also known for80

deciding induced subgraph isomorphism problem for Pk.81

The use of algebraic methods has been particularly useful in finding fast combinatorial82

algorithms for detecting pattern graphs. Ryan Williams [16] gave a linear time algorithm83

for the (not necessarily induced) subgraph isomorphism problem for Pk. This was later84

generalized by Fomin, Lokshtanov, Raman, Saurabh, and Rao [9] to give O(ntw(H)+1) time85

algorithms for the (not necessarily induced) subgraph isomorphism problem for H in n vertex86

graphs. These results use efficient constructions for homomorphism polynomials (defined87

later).88

The question of whether improving algorithms for detecting a certain pattern implies89

faster algorithms for another pattern has also been studied. In particular, Nešetřil and90

Poljak show that improved algorithms for detecting k-cliques yield improved algorithms for91

all k-vertex pattern graphs. More precisely:92

M. Bläser, B. Komarath, K. Sreenivasaiah XX:3

I Theorem 1.1. ([14]) If the induced subgraph isomorphism problem for Kk can be decided93

in O(nf(k)) time for some f(k), then the induced subgraph isomorphism problem for H can94

be decided in time O(nf(k)) time, where H is any k-vertex pattern graph.95

In this sense, the k-clique is a universal pattern.96

Nešetřil and Poljak’s[14] algorithm can be easily modified to output the homomorphism97

polynomial no host graphs of n vertices for the pattern K3k in O(nkω) time given 1n as98

input. For cliques, counting (or detecting) homomorphisms1 and counting (or detecting)99

induced subgraph isomorphisms have the same complexity. It is unclear whether computing100

homomorphism polynomials efficiently for other pattern graphs help with the induced101

subgraph isomorphism problem for those pattern graphs.102

Our Results103

In this paper, we show that we can obtain algorithms that are faster than the universal104

algorithm for infinitely many pattern graphs.105

I Theorem 5.4. There exists a family of pattern graphs (H3k)k≥0 where H3k is a 3k-vertex106

graph such that the induced subgraph isomorphism problem for H3k has an O(nω(k,k−1,k))107

time algorithm for infinitely many k.108

Here, ω(p, q, r) is the exponent of n in the time complexity of computing the product of109

an np × nq matrix and an nq × nr matrix. The best known algorithm for K3k takes time110

O(nkω) and the upper-bound on ω(k, k − 1, k) is strictly smaller than the upper-bound on111

kω for the currently known fastest matrix multiplication algorithms.112

We develop an algebraic framework to study algorithms for the induced subgraph iso-113

morphism problems where we consider the size of pattern graphs to be a constant. The114

above algorithm is obtained using this framework. We show that the existing algorithms for115

natural pattern graphs such as k-paths and k-cycles can be improved by efficiently computing116

homomorphism polynomials for pattern graphs that are much sparser than k-cliques.117

We obtain, in Theorem 6.4 and Theorem 6.8, the following faster (randomized, one-sided118

error) algorithms:119

Faster algorithms for induced subgraph isomorphism problem for Pk for 5 ≤ k ≤ 9.120

Faster algorithms for induced subgraph isomorphism problem for Ck for k ∈ {5, 7, 9}.121

O(nk−2) time combinatorial algorithm for induced subgraph isomorphism problem for Pk122

and Ck.123

O(nk−2) time deterministic combinatorial algorithms for computing the parity of the124

number of induced subgraphs isomorphic to Pk and Ck in n-vertex graphs.125

Unfortunately, we do not know how to compute these homomorphism polynomials for126

smaller graphs using circuits of size smaller than that for homomorphism polynomials for127

k-cliques when k is arbitrary. Therefore, we do not have an improvement similar to the one128

in Theorem 5.4 for paths or cycles.129

In light of Theorem 1.1, which shows that k-cliques are universal, we show that homo-130

morphism polynomials for Kk − e, the k-vertex graph obtained by deleting an edge from Kk,131

are almost universal. We show that the arithmetic circuit complexity of HomKk−e can be132

1 For host G and pattern H, a function f : V (H) 7→ V (G) such that {u, v} ∈ E(H) =⇒ {f(u), f(v)} ∈
E(G)

XX:4 Graph Pattern Polynomials

used to unify many existing results. We show that if HomKk−e has O(nf(k)) size circuits for133

some function f(k), then:134

1. (Theorem 7.4) The induced subgraph isomorphism problem for all k-vertex pattern graphs135

other than Kk and Ik can be decided by an O(nf(k)) time algorithm, where k is regarded136

as a constant and f(k) is any function of k. ([15] gives a combinatorial algorithm for137

Kk − e, [8] gives an algorithm for Pk)138

2. (Theorem 7.5) If there is an O(t(n)) time algorithm for counting the number of induced139

subgraph isomorphisms for a k-vertex pattern H, then the number of induced subgraph140

isomorphisms for all k-vertex patterns can be computed in O(nf(k) + t(n)) time on141

n-vertex graphs. ([12] gives this result for k = 4 and [13] gives a weaker result similar to142

this one)143

The algorithms that we obtain using the above theorems can also be derived from known144

results. We believe that the above formulation in terms of homomorphism polynomials is145

new.146

On the lower bounds front, we show in Theorem 8.3, Theorem 8.6 and Theorem 8.4 that147

within the framework that we develop:148

1. The induced subgraph isomorphism problem for any pattern containing a k-clique or a149

k-independent set is at least as hard as the isomorphism problem for k-clique.150

2. For almost all pattern graphs H, the induced subgraph isomorphism problem for H is151

harder than the subgraph isomorphism problem for H.152

3. For almost all pattern graphs H, the subgraph isomorphism problem for H is easier than153

subgraph isomorphism problems for all supergraphs of H.154

We note that only randomized algorithmic reductions are known for Part 2 of the above155

theorem and Part 3 is unknown. It is not clear whether our reductions imply algorithmic156

hardness for these problems.157

Technique158

The Homomorphism polynomial for a pattern graph H denoted HomH,n is a polynomial such159

that the monomials of the polynomial correspond one-to-one with homomorphisms from H to160

an n-vertex graph. Similarly, we define the graph pattern polynomial families IH = (IH,n)n≥0161

and NH = (NH,n)n≥0 that correspond to the induced subgraph isomorphism problem for162

H and the (not necessarily induced) subgraph isomorphism problem2 for H respectively. It163

can be shown that testing for subgraph isomorphism is equivalent to testing whether the164

homomorphism polynomial has multilinear terms because subgraph isomorphisms are exactly165

the injective homomorphisms. Infact, any polynomial family f such that the multilinear166

terms of f correspond to multilinear terms of NH is enough. This naturally leads to a notion167

of reduction between these graph pattern polynomial families (denoted �. For example,168

we say that NH � HomH). This notion of reduction allows us to compare the hardness of169

different pattern detection problems as well as construct new algorithms as follows:170

I Proposition 4.10. Let f and g be graph pattern polynomial families. If f � g and g has171

O(ns(k)) size arithmetic circuits, then we can detect patterns corresponding to f using an172

O(ns(k)) time algorithm.173

2 Given (G, H), decide whether there exists an injective f : V (H) 7→ V (G) such that {u, v} ∈ E(H) =⇒
{f(u), f(v)} ∈ E(G)}

M. Bläser, B. Komarath, K. Sreenivasaiah XX:5

This framework naturally raises the question whether one can find families f such that174

NH � f and f has smaller circuits than HomH . We show that this is not possible by showing175

that in this case HomH has circuits that is as small as circuits for f .176

Other related work:177

Curticapean, Dell, and Marx[3] showed that algorithms that count homomorphisms can178

be used to count subgraph isomorphisms. Williams, Wang, Williams, and Yu[17] gave179

O(nω) time algorithms for the induced subgraph isomorphism problems for four vertex180

pattern graphs, except for I4 and K4. Floderus, Kowaluk, Lingas, and Lundell[8] invented a181

framework that gives O(nk−1) combinatorial algorithms for induced subgraph isomorphism182

problems for many pattern graphs on k vertices.183

Floderus, Kowaluk, Lingas, and Lundell[7] showed reductions between various induced184

subgraph isomorphism problems. They proved that induced subgraph isomorphism problem185

for H when H contains a k-clique (or k-independent set) that is vertex-disjoint from all other186

k-cliques (or k-independent sets) is at least as hard as the induced subgraph isomorphism187

problem for Kk. They also proved that detecting an induced C4 is at least as hard as188

detecting a K3. The only example known where a pattern is harder than another pattern189

that is not a subgraph. Hardness results are also known for arithmetic circuits computing190

homomorphism polynomials. Austrin, Kaski, and Kubjas[1] proved that tensor networks (a191

restricted form of arithmetic circuits) computing homomorphism polynomials for k-cliques192

require Ω(nd2k/3e) time. Durand, Mahajan, Malod, Rugy-Altherre, and Saurabh[5] proved193

that homomorphism polynomials for certain pattern families are complete for the class VP,194

the algebraic analogue of the class P. This is the only known polynomial family that is195

complete for VP other than the canonical complete family of universal circuits.196

2 Preliminaries197

For a polynomial f , we use deg(f) to denote the degree of f . A monomial is called multilinear,198

if every variable in it has degree at most one. We use ML(f) to denote the multilinear part199

of f , that is, the sum of all multilinear monomials in f . An arithmetic circuit computing200

a polynomial P ∈ K[x1, . . . , xn] is a circuit with +, × gates where the input gates are201

labelled by variables or constants from the underlying field and one gate is designated as202

the output gate. The size of an arithmetic circuit is the number of wires in the circuit. For203

indeterminates x1, . . . , xn and a set S = {s1, . . . , sp} ⊆ {1, . . . , n} of indices, we write xS to204

denote the product xs1 · · ·xsp .205

An induced subgraph isomorphism from H to G is an injective function φ : V (H) ind7→206

V (G) such that {u, v} ∈ E(H) ⇐⇒ {φ(u), φ(v)} ∈ E(G). Any function from V (H) to207

V (G) can be extended to unordered pairs of vertices of H as φ({u, v}) = {φ(u), φ(v)}.208

A subgraph isomorphism from H to G is an injective function φ : V (H) sub7→ V (G) such209

that {u, v} ∈ E(H) =⇒ {φ(u), φ(v)} ∈ E(G). Two subgraph isomorphisms or induced210

subgraph isomorphisms are considered different only if the set of edges in the image are211

different. A graph homomorphism from H to G is a function φ : V (H) hom7→ V (G) such that212

{u, v} ∈ E(H) =⇒ {φ(u), φ(v)} ∈ E(G). Unlike isomorphisms, we consider two distinct213

functions that yield the same set of edges in the image as distinct graph homomorphisms.214

We define φ(S) = {φ(s) : s ∈ S}.215

We write H v H ′ (H w H ′) to specify that H is a subgraph (supergraph) of H ′. The216

number tw(H) stands for the treewidth of H. We denote the number of automorphisms of H217

XX:6 Graph Pattern Polynomials

by #aut(H). The graph Kn is the complete graph on n vertices labelled using [n]. We use218

the fact that #aut(H) = 1 for almost all graphs in many of our results. In this paper, we219

will frequently consider graphs where vertices are labelled by tuples. A vertex (i, p) is said to220

have label i and colour p. An edge {(i1, p1), (i2, p2)} has label {i1, i2} and colour {p1, p2}.221

We will sometimes write this edge as ({i1, i2}, {p1, p2}). Note that both {(i1, p1), (i2, p2)}222

and {(i2, p1), (i1, p2)} are written as ({i1, i2}, {p1, p2}). But the context should make it clear223

which edge is being rewritten.224

We will often use the following short forms to denote specific pattern graphs:225

K` : A clique on ` vertices I` : An independent set on ` vertices
K` − e : A K` with an edge removed K` + e : A K` and exactly one more edge
P` : Path with ` vertices C` : A cycle on ` vertices

226

3 A Motivating Example: Induced-P4 Isomorphism227

In this section, we sketch a one-sided error, randomized O(n2) time algorithm for the induced228

subgraph isomorphism problem for P4 to illustrate the techniques used to derive algorithms229

in this paper.230

We start by giving an algorithm for the subgraph isomorphism problem for P4. Consider231

the following polynomial:232

NP4,n =
∑

(p,q,r,s):p<s

ypyqyrysx{p,q}x{q,r}x{r,s}233

where the summation is over all quadruples over [n] where all four elements are distinct.234

Each monomial in the above polynomial corresponds naturally to a P4 in an n-vertex graph.235

The condition p < s ensures that each path has exactly one monomial corresponding to it.236

Given an n-vertex host graph G and an arithmetic circuit for NP4,n, we can construct an237

arithmetic circuit for the polynomial NP4,n(G) on the y variables obtained by substituting238

xe = 0 when e 6∈ E(G) and xe = 1 when e ∈ E(G). The polynomial NP4,n(G) can be written239

as
∑
X aXyX where the summation is over all four vertex subsets X of V (G) and aX is the240

number of P4s in the induced subgraph G[X]. Therefore, we can decide whether G has a241

subgraph isomorphic to P4 by testing whether NP4,n(G) is identically 0. Since the degree of242

this polynomial is a constant k, this can be done in time linear in the size of the arithmetic243

circuit computing NP4,n.244

However, we do not know how to construct a O(n2) size arithmetic circuit for NP4,n.245

Instead, we construct a O(n2) size arithmetic circuit for the following polynomial called the246

walk polynomial:247

HomP4,n =
∑

φ:P4
hom7→Kn

∏
v∈V (P4)

zv,φ(v)yφ(v)
∏

e∈E(P4)

xφ(e)248

This polynomial is also called the homomorphism polynomial for P4 because its terms are in249

one-to-one correspondence with graph homomorphisms from P4 to Kn. As before, we consider250

the polynomial HomP4,n(G) obtained by substituting for the x variables appropriately. The251

crucial observation is that HomP4,n(G) contains a multilinear term if and only if NP4,n(G)252

is not identically zero. This is because the multilinear terms of HomP4,n correspond to253

injective homomorphisms from P4 which in turn correspond to subgraph isomorphisms from254

P4. More specifically, each P4 corresponds to two injective homomorphisms from P4 since P4255

M. Bläser, B. Komarath, K. Sreenivasaiah XX:7

has two automorphisms. Therefore, we can test whether G has a subgraph isomorphic to256

P4 by testing whether HomP4,n(G) has a multilinear term. We can construct a O(n2) size257

arithmetic circuit for the polynomial p4 = HomP4,n inductively as follows:258

p1,v = yv, v ∈ [n]259

pi+1,v =
∑
u∈[n]

pi,uyvx{u,v}, v ∈ [n], i ≥ 1260

p4 =
∑
v∈[n]

p4,v261

262

The above construction works for any k and not just k = 4. This method is used by263

Ryan Williams [16] to obtain an O(2k(n+m)) time algorithm for the subgraph isomorphism264

problem for Pk.265

In fact, the above method works for any pattern graph H. Extend the definitions above266

to define NH,n and HomH,n in the natural fashion. Then, we can test whether an n-vertex267

graph G has a subgraph isomorphic to H by testing whether NH,n(G) is identically zero268

which in turn can be done by testing whether HomH,n(G) has a multilinear term. Therefore,269

the complexity of subgraph isomorphism problem for any pattern H is as easy as constructing270

the homomophism polynomial for H. This method is used by Fomin et. al. [9] to obtain271

efficient algorithms for subgraph isomorphism problems.272

We now turn our attention to the induced subgraph isomorphism problem for P4. We note273

that the induced subgraph isomorphism problem for Pk is much harder than the subgraph274

isomorphism problem for Pk. The subgraph isomorphism problem for Pk has a linear time275

algorithm as seen above but the induced subgraph isomorphism problem for Pk cannot have276

no(k) time algorithms unless FPT = W[1]. We start by considering the polynomial:277

IP4,n =
∑

(p,q,r,s):p<s

ypyqyrysx{p,q}x{q,r}x{r,s}(1− x{p,r})(1− x{p,s})(1− x{q,s})278

The polynomial IP4,n(G) can be written as
∑
X yX where the summation is over all four279

vertex subsets of V (G) that induces a P4. Notice that all coefficents are 1 because there can280

be at most 1 induced-P4 on any four vertex subset. By expanding terms of the form 1− x∗281

in the above polynomial, we observe that we can rewrite IP4,n as follows:282

IP4,n = NP4,n − 4NC4,n − 2NK3+e,n + 6NK4−e,n + 12NK4,n283

Since the coefficients in IP4,n(G) are all 0 or 1, it is sufficient to check whether IP4,n(G)284

(mod 2) is non-zero to test whether IP4,n(G) is non-zero. From the above equation, we can285

see that IP4,n = NP4,n (mod 2). Therefore, instead of working with IP4,n (mod 2), we can286

work with NP4,n (mod 2). We have already seen that we can use HomP4,n(G) to test whether287

NP4,n(G) is non-zero. However, this is not sufficient to solve induced subgraph isomorphism.288

We want to detect whether NP4,n(G) is non-zero modulo 2. Therefore, the multilinear terms289

of HomP4,n(G) has to be in one-to-one correspondence with the terms of NP4,n(G). We have290

to divide the polynomial HomP4,n(G) by 2 before testing for the existence of multilinear291

terms modulo 2. However, since we are working over a field of characteristic 2, this division292

is not possible. We work around this problem by starting with HomP4,n′ for n′ slightly larger293

than n and we show that this enables the “division” by 2.294

XX:8 Graph Pattern Polynomials

The reader may have observed that instead of the homomorphism polynomial, we could295

have taken any polynomial f for which the multilinear terms of f(G) are in one-to-one296

correspondence with NP4,n(G). This observation leads to the definition of a notion of297

reduction between polynomials. Informally, f � g if detecting multilinear terms in f(G) is298

as easy as detecting multilinear terms in g(G). Additionally, for the evaluation f(G) to be299

well-defined, the polynomial f must have some special structure. We call such polynomials300

graph pattern polynomials.301

On first glance, it appears hard to generalize this algorithm for P4 to sparse pattern302

graphs on an arbitrary number of vertices (For example, Pk) because we have to argue303

about the coefficients of many N∗ polynomials in the expansion. On the other hand, if we304

consider the pattern graph Kk, we have IKk = HomKk . In this paper, we show that for305

many graph patterns sparser than Kk, the induced subgraph isomorphism problem is as easy306

as constructing arithmetic circuits for homomorphism polynomials for those patterns (or307

patterns that are only slightly denser).308

4 Graph pattern polynomial families309

We will consider polynomial families f = (fn) of the following form: Each fn will be a310

polynomial in variables y1, . . . , yn, the vertex variables, and variables x1, . . . , x(n2), the edge311

variables, and at most linear in n number of additional variables.The degree of each fn will312

usually be constant.313

The (not necessarily induced) subgraph isomorphism polynomial family NH = (NH,n)n≥0314

for a fixed pattern graph H on k vertices and ` edges is a family of multilinear polynomials315

of degree k + `. The nth polynomial in the family, defined over the vertex set [n], is the316

polynomial on n+
(
n
2
)
variables given by (1):317

NH,n =
∑

φ:V (H)sub7→V (Kn)

yφ(V (H))xφ(E(H)) (1)318

When context is clear, we will often omit the subscript n and simply write NH . Given319

a (host) graph G on n vertices, we can substitute values for the edge variables of NH,n320

depending on the edges of G (xe = 1 if e ∈ E(G) and xe = 0 otherwise) to obtain a321

polynomial NH,n(G) on the vertex variables. The monomials of this polynomial are in322

one-to-one correspondence with the H-subgraphs of G. i.e., a term ayv1 · · · yvk , where a is a323

positive integer, indicates that there are a subgraphs isomorphic to H in G on the vertices324

v1, . . . , vk. Therefore, to detect if there is an H-subgraph in G, we only have to test whether325

NH,n(G) has a multilinear term.326

The induced subgraph isomorphism polynomial family IH = (IH,n)n≥0 for a pattern327

graph H over the vertex set [n] is defined in (2).328

IH,n =
∑

φ:V (H)ind7→V (Kn)

yφ(V (H))xφ(E(H))
∏

e 6∈E(H)

(1− xφ(e)) (2)329

If we substitute the edge variables of IH,n using a host graph G on n vertices, then the330

monomials of the resulting polynomial IH,n(G) on the vertex variables are in one-to-one331

correspondence with the induced H-subgraphs of G. In particular, all monomials have332

coefficient 0 or 1 because there can be at most one induced copy of H on a set of k vertices.333

M. Bläser, B. Komarath, K. Sreenivasaiah XX:9

This implies that to test if there is an induced H-subgraph in G, we only have to test whether334

IH,n(G) has a multilinear term and we can even do this modulo p for any prime p. Also,335

note that IH is simply IH where all the edge variables xe are replaced by 1− xe.336

The homomorphism polynomial family HomH = (HomH,n)n≥0 for pattern graph H over337

the vertex set [n] is defined in (3).338

HomH,n =
∑

φ:Hhom7→Kn

∏
v∈V (H)

zv,φ(v)yφ(v)
∏

e∈E(H)

xφ(e) (3)339

The variables za,v’s are called the homomorphism variables. They keep track how the340

vertices of H are mapped by the different homomorphisms in the summation. We note341

that the size of the arithmetic circuit computing HomH,n is independent of the labelling342

chosen to define the homomorphism polynomial. The arithmetic circuit complexity of such343

homomorphism polynomials, with respect to properties of the pattern graph, has been studied344

in [?].345

The induced subgraph isomorphism polynomial for any graph H and subgraph isomorph-346

ism polynomials for supergraphs of H are related as follows:347

IH,n =
∑
H′wH

(−1)e(H′)−e(H)#sub(H,H ′)NH′,n (4)348

Here e(H) is the number of edges in H and #sub(H,H ′) is the number of times H349

appears as a subgraph in H ′. The sum is taken over all supergraphs H ′ of H having the350

same vertex set as H. Equation 4 is used by Curticapean, Dell, and Marx [3] in the context351

of counting subgraph isomorphisms.352

I Example 4.1. Let P3 be the path on 3 vertices and let K3 be the triangle.353

NP3,3 = y1y2y3(x{1,2}x{2,3} + x{1,3}x{2,3} + x{1,2}x{1,3})354

IP3,3 = y1y2y3
(
x{1,2}x{2,3}(1− x{1,3})355

+ x{1,3}x{2,3}(1− x{1,2})356

+ x{1,2}x{1,3}(1− x{2,3})
)

357

= NP3,3 − 3NK3,3358
359

For any fixed pattern graph H, the degree of polynomial families NH , IH , and HomH360

are bounded by a constant depending only on the size of H. Such polynomial families are361

called constant-degree polynomial families.362

I Definition 4.2. A constant-degree polynomial family f = (fn) is called a graph pattern363

polynomial family if the nth polynomial in the family has n vertex variables,
(
n
2
)
edge364

variables, and at most cn other variables, where c is a constant, and every non-multilinear365

term of fn has at least one non-edge variable of degree greater than 1.366

It is easy to verify that IH , NH , and HomH are all graph pattern polynomial families. For367

a graph pattern polynomial f , we denote by f(G) the polynomial obtained by substituting368

xe = 0 if e 6∈ E(G) and xe = 1 if e ∈ E(G) for all edge variables xe. Note that for any graph369

pattern polynomial f , we have ML(f(G)) = ML(f)(G). This is because any non-multilinear370

term in f has to remain non-multilinear or become 0 after this substitution.371

XX:10 Graph Pattern Polynomials

I Definition 4.3. 1. A constant degree polynomial family f = (fn) has circuits of size s(n)372

if there is a sequence of arithmetic circuits (Cn) such that Cn computes fn and has size373

at most s(n).374

2. f has uniform s(n)-size circuits, if on input n, we can construct Cn in time O(s(n)) on a375

Word-RAM.3376

We now define a notion of reducibility among graph pattern polynomials.377

I Definition 4.4. A substitution family σ = (σn) is a family of mappings378

σn : {y1, . . . , yn, x1, . . . , x(n2), u1, . . . , um(n)} → K[y1, . . . , yn′ , x1, . . . , x(n′2), v1, . . . , vr(n)]379

mapping variables to polynomials such that:380

1. σ maps vertex variables to constant-degree monomials containing one or more vertex381

variables or other variables, and no edge variables.382

2. σ maps edge variables to polynomials with constant-size circuits containing at most one383

edge variable and no vertex variables.384

3. σ maps other variables to constant-degree monomials containing no vertex or edge385

variables and at least one other variable.386

σn naturally extends to K[y1, . . . , yn, x1, . . . , x(n2), u1, . . . , um].387

I Definition 4.5. A substitution family σ = (σn) is constant-time computable if given n and388

a variable z in the domain of σn, we can compute σn(z) in constant-time on a Word-RAM.389

(Note that an encoding of any z fits into on cell of memory.)390

I Definition 4.6. Let f = (fn) and g = (gn) be graph pattern polynomial families. Then f391

is reducible to g, denoted f � g, via a constant time computable substitution family σ = (σn)392

if for all n there is an m = O(n) and q = O(1) such that393

1. σm(ML(gm)) is a graph pattern polynomial and394

2. ML(σm(gm)) = v[q]ML(fn). (Recall that v[q] = v1 · · · vq.)395

For any prime p, we say that f � g (mod p) if there exists an f ′ = f (mod p) such that396

f ′ � g.397

Property 1 of Definition 4.6 and Properties 1 and 3 of Definition 4.4 imply that σm(gm)398

is a graph pattern polynomial because Properties 1 and 3 of Definition 4.4 ensure that399

non-multilinear terms remain so after the substitution. It is easy to see that � is reflexive400

via the identity substitution. We can also assume w.l.o.g. that the variables v1, . . . , vq are401

fresh variables introduced by the substitution family σ.402

What is the difference between σm(ML(gm)) and ML(σm(gm)) in the Definition 4.6?403

Every monomial in ML(σm(gm)) also appears in σm(ML(gm)), however, the latter may404

contain further monomials that are not multilinear.405

I Proposition 4.7. � is transitive.406

Proof. Let f � g via σ and g � h via τ . Assume that fn is written as a substitution instance407

of gm(n) by σ and gm is written as a substitution instance of hr(m) by τ for some linearly408

bounded functions m and r. Let σm(n)(gm(n)) and τr(m(n))(hr(m(n)))) have u1, . . . , up and409

3 Since we are dealing with fine-grained complexity, we have to be precise with the encoding of the circuit.
We assume an encoding such that evaluating the circuit is linear time and substituting for variables
with polynomials represented by circuits is constant-time.

M. Bläser, B. Komarath, K. Sreenivasaiah XX:11

v1, . . . , vq, respectively, as other variables that are multiplied with the multilinear terms. We410

can assume w.l.o.g. that these two sets of other variables are disjoint.411

Define σ′ as σ extended to vi by σ′n(vi) = vi for all i and n ∈ N. We claim that f � h412

via the family (σ′m(n) ◦ τr(m(n))). We need to verify the two properties of Definition 4.6.413

Property 1 : σ′m(n)(τr(m(n))(ML(hr(m(n))))) = σ′m(n)(v[q]ML(gm(n)) + h′) where h′ is a414

graph pattern polynomial containing only non-multilinear terms. Now, we have h′′ =415

σ′m(n)(v[q]ML(gm(n))) = v[q]σm(n)(ML(gm(n))) because ML(gm(n)) cannot contain vi and416

σ′m(n)(vi) = vi for i ∈ [q]. This implies that h′′ is a graph pattern polynomial because417

σm(n)(ML(gm(n))) is a graph pattern polynomial. Also, σ′m(n)(h′) is a graph pattern polyno-418

mial containing only non-multilinear terms by Properties 1 and 3 of Definition 4.4 proving419

that (σ′m(n) ◦ τr(m(n)))(ML(hr(m(n)))) is a graph pattern polynomial.420

Property 2 is proved as follows:421

ML((σ′m(n) ◦ τr(m(n)))(hr(m(n)))) = ML(σ′m(n)(τr(m(n))(hr(m(n))))))422

= ML(σ′m(n)(v[q]ML(gm(n)) + h′))423

= ML(v[q]σm(n)(ML(gm(n))))424

= v[q]ML(σm(n)(ML(gm(n))))425

= v[q]u[p]ML(fn)426
427

Note that the term h′ vanishes, since σm(n) does not introduce new multilinear monomials428

and also ML(.) is a linear operator. The same happens in the second-last line, we did not429

write the additional term in the equation, since it vanishes anyway.430

We also have r(m(n)) = O(n) and p+ q = O(1). It is easy to verify that (σ′m(n) ◦ τr(m(n)))431

is a constant-time computable substitution family. J432

Efficient algorithms are known for detecting multilinear terms of small degree with433

non-zero coefficient modulo primes. We state two such theorems that we use in this paper.434

I Theorem 4.8. Let k be any constant and let p be any prime. Given an arithmetic circuit435

of size s, there is a randomized, one-sided error O(s)-time algorithm to detect whether the436

polynomial computed by the circuit has a multilinear term of degree atmost k with non-zero437

modulo p coefficient.438

I Theorem 4.9. Let k be any constant. Given an arithmetic circuit of size s computing a439

polynomial of degree k on n variables, there is a deterministic O(s+ ndk/2e)-time algorithm440

to compute the parity of the sum of coefficient of multilinear terms.441

An important algorithmic consequence of reducibility is stated in Proposition 4.10.442

I Proposition 4.10. Let p be any prime. Let f and g be graph pattern polynomial families.443

Let s(n) be a polynomially-bounded function. If f � g and g has size uniform s(n)-size444

arithmetic circuits, then we can test whether fn(G) has a multilinear term with non-zero445

coefficient modulo p in O(s(n)) (randomized one-sided error) time for any n-vertex graph G.446

Proof. Assume that fn is reducible to gm where m = O(n). Since s(n) is polynomially447

bounded, we have size(gm) = O(s(n)). Apply the substitution σm to gm to obtain g′. Let448

u1, . . . , ur be the other variables of g′. We claim that testing whether the polynomial g′(G)449

has a multilinear term is equivalent to testing whether fn(G) has a multilinear term. We450

have u[r]ML(fn) = ML(g′). Since both fn and g′ are graph pattern polynomials, we have451

XX:12 Graph Pattern Polynomials

u[r]ML(fn(G)) = u[r]ML(fn)(G) = ML(g′)(G) = ML(g′(G)). Therefore, testing whether the452

polynomial fn(G) has a multilinear term of degree at most k, where k is some constant,453

reduces to testing whether g′(G) has a multilinear term of degree k + r = O(1). Since g′ has454

O(s(n)) size circuits, this can be done in O(s(n)) (randomized one-sided error) time. J455

On the other hand, if we only have f � g (mod p) for some specific prime p, then it is456

only possible to test for multilinear terms in f that have non-zero coefficients modulo p for457

that prime p.458

I Corollary 4.11. Let f � g (mod p) and g has s(n) size circuits where s(n) is polynomially459

bounded. Then we can test whether fn(G) has a multilinear term with non-zero coefficient460

modulo p in O(s(n)) time for any n-vertex graph G.461

More relaxed notions of reduction allowing an increase of polylog(n) factors in size or462

allowing multilinear terms to be multiplied by arbitrary sets of other variables could also be463

useful to obtain better algorithms. We do not pursue this because we could not find any464

reductions that make use of this freedom.465

The following result allows efficient construction of HomH when H has small treewidth.466

I Theorem 4.12. (Implicit in [4], Also used in [9] and [5]) HomH can be computed by467

O
(
ntw(H)+1) size arithmetic circuits for all graphs H.468

5 Pattern graphs easier than cliques469

In this section, we describe a family H3k of pattern graphs such that the induced subgraph470

isomorphism problem for H3k has an O(nω(k,k−1,k)) time algorithm when k = 2`, ` ≥ 1.471

Note that for the currently known best algorithms for fast matrix multiplication, we have472

ω(k, k − 1, k) < kω. Therefore, these pattern graphs are strictly easier to detect than cliques.473

The pattern graph H3k is defined on 3k vertices and we consider the canonical labelling of474

H3k where there is a (3k− 1)-clique on vertices {1, . . . , 3k− 1} and the vertex 3k is adjacent475

to the vertices {1, . . . , 2k − 1}.476

I Lemma 5.1. IH3k = NH3k (mod 2) when k = 2`, ` ≥ 1477

Proof. We show that the number of times H3k is contained in any of its proper supergraphs478

is even if k is a power of 2. The graph K3k contains 3k
(3k−1

2k−1
)
copies of H3k. This number is479

even when k is even. The graph K3k − e contains 2
(3k−2

2k−1
)
copies of H3k. This number is480

always even. The remaining proper supergraphs of H3k are the graphs K3k−1 + (2k + i)e,481

i.e., a (3k − 1)-clique with 2k + i edges to a single vertex, for 0 ≤ i < k − 2. There are482

mi =
(2k+i

2k−1
)
copies of the graph H3k in these supergraphs. We observe that the numbers483

mi are even when k = 2`, ` ≥ 1 by Lucas’ theorem. Lucas’ theorem states that
(
p
q

)
is even484

if and only if in the binary representation of p and q, there exists some bit position i such485

that qi = 1 and pi = 0. To see why mi is even, observe that in the binary representation of486

2k − 1, all bits 0 through ` are 1 and in the binary representation of 2k + i, 0 ≤ i < k − 2, at487

least one of those bits is 0. J488

I Lemma 5.2. NH3k � HomH3k489

Proof. We start with HomH3k over the vertex set [n]× [3k] and apply the following substi-490

tution.491

M. Bläser, B. Komarath, K. Sreenivasaiah XX:13

σ(za,(v,a)) = za (1)492

σ(za,(v,b)) = z2
a, a 6= b (2)493

σ(y(v,a)) = yv (3)494

σ(x(u,a),(v,b)) = 0, if a, b ∈ {1, . . . , 2k − 1} and a < b and u > v (4)495

σ(x(u,a),(v,b)) = 0, if a, b ∈ {2k, . . . , 3k − 1} and a < b and u > v (5)496

σ(x(u,a),(v,b)) = x{u,v}, otherwise (6)497
498

Rule 3 ensures that in any surviving monomial, all vertices have distinct labels. Rule 4499

ensures that the vertices coloured 1, . . . , 2k − 1 are in increasing order and Rule 5 ensures500

that the vertices coloured 2k, . . . , 3k − 1 are in increasing order.501

Consider an H3k labelled using [n] where the vertices in the (3k − 1)-clique are labelled502

v1, . . . , v3k−1 and the remaining vertex is labelled v3k which is connected to v1 < . . . < v2k−1.503

Also, v2k < . . . < v3k−1. We claim that the monomial corresponding to this labelled H3k504

(say m) is uniquely generated by the monomial m′ =
∏

1≤i≤3k zi,(vi,i)w in HomH3k . Note505

that the vertices and edges in the image of the homomorphism is determined by the map506

i 7→ (vi, i). The monomial w is simply the product of these vertex and edge variables. It is507

easy to see that this monomial yields the required monomial under the above substitution.508

The uniqueness is proved as follows: observe that in any monomial m′′ in HomH3k that509

generates m, the vertex coloured 3k must be v3k. This implies that the vertices coloured510

1, . . . , 2k − 1 must be the set {v1, . . . , v2k−1}. Rule 4 ensures that vertex coloured i must511

be vi for 1 ≤ i ≤ 2k − 1. Similarly, the vertices coloured 2k, . . . , 3k − 1 must be the set512

{v2k, . . . , v3k−1} and Rule 5 ensures that vertex coloured i must be vi for 2k ≤ i ≤ 3k − 1 as513

well. But then the monomials m′ and m′′ are the same. J514

I Lemma 5.3. HomH3k can be computed by arithmetic circuits of size O(nω(k,k−1,k)) for515

k > 1.516

Proof. ConsiderH3k labelled as before. We define the sets S1,k,2k,3k−1 = {1, . . . , k, 2k . . . , 3k−517

1}, Sk+1,3k−1 = {k + 1, . . . , 3k − 1}, Sk+1,2k−1 = {k + 1, . . . , 2k − 1}, and S1,2k−1 =518

{1, . . . , 2k − 1}. We also define the tuples V1,k = (v1, . . . , vk), V2k,3k−1 = (v2k, . . . , v3k−1),519

and Vk+1,2k−1 = (vk+1, . . . , v2k−1) for any set vi of 3k − 1 distinct vertex labels. The al-520

gorithm also uses the matrices defined below. The dimensions of each matrix are specified as521

the superscript. All other entries of the matrix are 0.522

XX:14 Graph Pattern Polynomials

An
k×nk
V1,k,V2k,3k−1

=
∏

i∈S1,k,2k,3k−1

zi,viyvi
∏

i,j∈S1,k,2k,3k−1
i 6=j

x{vi,vj} vi distinct for 1 ≤ i ≤ 3k − 1523

Bn
k×nk−1

V2k,3k−1,Vk+1,2k−1
=
∏

i∈Sk+1,2k−1

zi,viyvi
∏

i∈Sk+1,3k−1
j∈Sk+1,2k−1

i 6=j

x{vi,vj} vi distinct for k + 1 ≤ i ≤ 3k − 1524

Cn
k−1×nk

Vk+1,2k−1,V1,k
= x{(vi,i)i∈S1,2k−1

}
∏

i∈Sk+1,2k−1
j∈[k]
i6=j

x{vi,vj} vis are distinct for 1 ≤ i ≤ 2k − 1525

Dnk×n
V1,k,v3k

= z3k,v3kyv3k

∏
i∈[k]

x{vi,v3k} vi distinct for i ∈ {1, . . . , k, 3k}526

En×n
k−1

v3k,Vk+1,2k−1
=
∏

i∈Sk+1,2k−1

x{vi,v3k} vi distinct for i ∈ {k + 1, . . . , 2k − 1, 3k}527

528

Compute the matrix products ABC and DE. Replace the n2k−1 variables x{(vi,i)i∈S3
}529

with (DE)V1,k,Vk+1,2k−1
. The required polynomial is then just530

HomH3k =
∑

(v1,...,vk)

(ABC)(v1,...,vk),(v1,...,vk)531

532

Consider a homomorphism of H3k defined as φ : i 7→ ui. The monomial corresponding533

to this homomorphism is uniquely generated as follows. Let U∗ be defined similarly to the534

tuples V∗. Set vi = ui for i ∈ [k] in the summation and consider the monomial generated535

by the product AU1,k,U2k,3k−1BU2k,3k−1,Uk+1,2k−1CUk+1,2k−1,U1,k after replacing the variable536

x{(ui,i)i∈S3
} by (DE)U1,k,Uk+1,2k−1

taking the monomial DU1,k,u3kEu3k,Uk+1,2k−1 from that537

entry. It is easy to verify that this generates the required monomial. For uniqueness, observe538

that this is the only way to generate the required product of the homomorphism variables.539

Computing ABC can be done using O(nω(k,k−1,k)) size circuits. Computing DE can be540

done using O(nω(k,1,k−1)) size circuits. The top level sum contributes O(nk) gates. This541

proves the lemma. J542

We conclude this section by stating our main theorem.543

I Theorem 5.4. The induced subgraph isomorphism problem for H3k has an O(nω(k,k−1,k))544

time algorithm when k = 2`, ` ≥ 1.545

6 Algorithms for induced paths and cycles546

In this section, we will prove that the time complexity of the induced subgraph isomorphism547

problems for paths and cycles are upper bounded by the circuit complexities of the homo-548

morphism polynomials for Pk and Kk − Pk−1 respectively. Using this we derive efficient549

algorithms for induced subgraph isomorphism problem for Pk for k ∈ {5, 6, 7, 8, 9} and Ck550

for k ∈ {5, 7, 9}. We also obtain efficient combinatorial algorithms for the induced subgraph551

isomorphism problem for Pk for all k and Ck when k is odd.552

The proof has two main steps: First, we show that the induced subgraph isomorphism553

polynomials for these patterns are reducible to the aforementioned homomorphism polyno-554

mials (Lemmas 6.1, 6.2, 6.5, 6.6). Then, we prove that these homomorphism polynomials555

can be computed efficiently (Theorems 6.4 and 6.8).556

M. Bläser, B. Komarath, K. Sreenivasaiah XX:15

I Lemma 6.1. IPk = NPk (mod 2) for k ≥ 4.557

Proof. We will prove that for any proper super-graph H of Pk, the number #sub(Pk, H)558

is even. Observe that this number is the same as the number of ways to extend a proper559

labelled subgraph of Pk to some labelled Pk. Let H be an arbitrary proper subgraph of Pk.560

Let 2 ≤ ` ≤ k be the number of connected components in H out of which 0 ≤ s ≤ ` of them561

consists only of a single vertex. Then the number of ways to extend H to a Pk is `!2`−s/2.562

We can extend H to a Pk by ordering the connected components from left to right and then563

connecting the endpoints from left to right. There are `! ways to order ` components and564

2 ways to place all components with more than one vertex. Out of these, a configuration565

and its reverse will lead to the same labelled Pk. Since ` ≥ 2, this number is even if ` > s.566

Otherwise, this number is k!/2 because ` = s implies that there are k components. This is567

even when k ≥ 4. We conclude that IPk = NPk (mod 2). J568

I Lemma 6.2. NPk � HomPk
569

Proof. Let f = NPk and g = HomPk
. We fix the labelling of Pk where the vertices of the570

complementary Pk are labelled 1, 2, . . . , k with 1 and k as the endpoints and for every other571

vertex i, the neighbours are i− 1 and i+ 1. Start with g over the vertex set [n]× [k] and use572

the following substitution.573

σ(za,(v,a)) = za (1)574

σ(za,(v,b)) = z2
a, if a 6= b (2)575

σ(y(v,a)) = yv (3)576

σ(x{(u,p),(v,q)}) = 0, if {p, q} 6∈ E(Pk) or if p = 1 and q = k and u > v (4)577

σ(x{(u,p),(v,q)}) = x{u,v}, otherwise (5)578
579

The resulting polynomial g′ satisfies ML(g′) = z1 . . . zkML(fn) as required. The reduction580

works because there is exactly one non-trivial automorphism for Pk and that automorphism581

maps 1 to k. The monomial corresponding to one of these automorphisms become 0 because582

of u > v where u has colour 1 and v has colour k. J583

I Theorem 6.3. If HomPk
can be computed by circuits of size nf(k), then there is an O(nf(k))584

time algorithm for the induced subgraph isomorphism problem for Pk on n-vertex graphs.585

I Theorem 6.4. The following algorithms exist586

1. An O(nω)-time algorithm for induced subgraph isomorphism problem for P5 in n-vertex587

graphs.588

2. An O(nω(2,1,1))-time algorithm for induced subgraph isomorphism problem for P6 in589

n-vertex graphs.590

3. An O(nk−2)-time combinatorial algorithm for induced subgraph isomorphism problem for591

Pk in n-vertex graphs.592

4. An O(nk−2)-time deterministic combinatorial algorithm for computing the parity of the593

number of induced subgraphs isomorphic to Pk in n-vertex graphs.594

Proof. 1. We describe how to compute HomP5
using arithmetic circuits of size O(nω). We595

start by defining the following matrices.596

XX:16 Graph Pattern Polynomials

1 2

5

3

4

Figure 1 A labelled P5

An×ni,j = x{i,j}, i 6= j597

Bn×ni,i = yiz3,i598

Cn×ni,i = yiz4,i599

Dn×n
i,i = yiz5,i600

601

Consider the labelled P5 in Figure 1. Then we can write602

HomP5
=

∑
i,j∈[n],i6=j

z1,iz2,jx{i,j}yiyj(ABA)i,j(ACADA)i,j603

Clearly, this can be implemented using O(nω) size circuits. We will now prove that604

this circuit correctly computes the polynomial HomP5
. Consider a homomorphism605

φ : j 7→ ij . Consider the monomial generated by i = i1, j = i2 in the outer sum, the606

monomial Ai1,i3Bi3,i3Ai3,i2 in the product (ABA)i1,i2 , and the monomial Ai1,i4Ci4,i4607

Ai4,i5Di5,i5Ai5,i2 in the product (ACADA)i1,i2 . This monomial corresponds to the608

homomorphism φ and one can observe that this is the only way to generate this monomial.609

On the other hand, any monomial in the computed polynomial is generated as described610

above and therefore corresponds to a homomorphism.611

2. We show how to compute HomP6
using arithmetic circuits of size O(nω(2,1,1)). We define612

the following matrices.613

An×n
2

i,(j,k) = z2,iz1,jz6,kyiyjykx{(2,i),((1,j),(6,k))}x{j,k}x{k,i}, j 6= k, i 6= k614

Bn
2×n

(j,k),` = z5,`y`x{((1,j),(6,k)),(5,`)}x{j,`}, j 6= k, j 6= `615

Cn×n`,i = x{`,i}, ` 6= i616

Dn2×n
(j,k),p = ypz3,px{((1,j),(6,k)),(3,p)}, j 6= k, j 6= p, k 6= p617

En×np,` = x{p,`}, p 6= `618

Fn
2×n

(j,k),q = yqz4,qx{((1,j),(6,k)),(4,q)}, j 6= k, j 6= q, k 6= q619

Gn×nq,i = x{q,i}, q 6= i620
621

Compute the matrix products ABC, DE, and FG. The output of the circuit is622 ∑
i (ABC)i,i after substituting for the variables as follows. Replace each x{((1,j),(6,k)),(5,`)}623

with DE(j,k),` and each x{((1,j),(6,k)),(2,i)} with FG(j,k),i. Replace each x{((1,j),(6,k)),(3,p)}624

with x{j,p}x{k,p} and each x{((1,j),(6,k)),(4,q)} with x{j,q}x{k,q}.625

Consider the labelling of P6 in Figure 2. After substituting for all variables as mentioned626

above, the monomials of (ABC)i,i correspond to homomorphisms from this labelled P6627

to Kn that maps vertex 2 to i. Therefore, the circuit correctly computes HomP6
.628

M. Bläser, B. Komarath, K. Sreenivasaiah XX:17

1

6

2

5

3

4

Figure 2 A labelled P6

3. We observe that tw(Pk) = k − 3 and therefore using Theorem 4.12, we can compute629

HomPk
using O(nk−2) size circuits.630

4. Consider the substitution in the proof of Lemma 6.2 and replace rules (1) and (2) by the631

following rules.632

σ(za,(v,a)) = 1 (1’)633

σ(za,(v,b)) = 0 (2’)634
635

The multilinear part of the resulting polynomial f is the same as NPk and hence has636

degree-k. Therefore, we only have to compute the parity of the sum of coefficients of the637

multilinear terms of f(G). By Theorem 4.9, this can be done in O(nk−2) time.638

J639

We remark that by computing homomorphism polynomials for Pk for k = 7, 8, 9 using640

small-size circuits, we can obtain the following algorithms for the induced subgraph isomorph-641

ism problem for paths: An O(n2ω) time algorithm for P7, an O(nω(3,2,2)) time algorithm642

for P8, and an O(nω(3,3,2)) time algorithm for P9. All these algorithms are faster than the643

corresponding algorithms for k-cliques.644

I Lemma 6.5. ICk = NCk +NPk +NKk−Pk−1 (mod 2) for k ≥ 5.645

Proof. We claim that the only proper supergraphs of Ck containing it an odd number of646

times are Pk and Kk − Pk−1. There is exactly one way to extend a Pk or a Pk−1 + v to a647

Ck. Let H be a proper subgraph of Ck other than these two graphs. Assume that H has648

2 ≤ ` ≤ k connected components out of which 0 ≤ s ≤ ` are single vertices. Then there649

are m = `!2`−s/2` ways to extend H to Ck. If ` > s, then m is even because (` − 1)! is650

even when ` ≥ 3 and when ` = 2 the number s is 0 and m = 2. If ` = 2 and s = 1, then651

H = Pk−1 + v. If ` = s, then m = `!/2` = (` − 1)!/2. But ` = s implies that ` = k and652

therefore m = (k − 1)!/2 which is even when k ≥ 5. J653

I Lemma 6.6. 1. NCk � HomKk−Pk−1 (mod 2) for odd k ≥ 5.654

2. NPk � HomKk−Pk−1 for k ≥ 5.655

3. NKk−Pk−1 � HomKk−Pk−1 for k ≥ 5.656

4. ICk � HomKk−Pk−1 (mod 2) for odd k ≥ 5.657

Proof. We start with HomKk−Pk−1 over the vertex set [n]× [k] in all cases and apply the658

following substitutions.659

XX:18 Graph Pattern Polynomials

1. Fix the labelling of Ck where the complementary Ck is labelled 1, . . . , k such that the660

vertex 1 has neighbours 2 and k and k has neighbours 1 and k − 1 and every other661

vertex i has i + 1 and i − 1 as its neighours. The crucial observation is that Ck has662

2k automorphisms and if we only select automorphisms where the label of the vertex663

coloured 1 is strictly less than the label of the vertex coloured 3, then we select exactly k664

automorphisms. This allows us to compute a polynomial family h such that k.NCk � h665

and k.NCk = NCk (mod 2).666

σ1(za,(v,a)) = za (1)667

σ1(za,(v,b)) = z2
a, if a 6= b (2)668

σ1(y(v,a)) = yv (3)669

σ1(x{(u,p),(v,q)}) = 0, if p = 1 and q = 3 and u > v (4)670

σ1(x{(u,p),(v,q)}) = 1, if p = 1 and q = 2 or p = 1 and q = k (5)671

σ1(x{(u,p),(v,q)}) = x{u,v}, otherwise (6)672
673

2. Fix the labelling of Pk where the complementary Pk is 1 2 · · · k .674

σ2(za,(v,a)) = za (1)675

σ2(za,(v,b)) = z2
a, if a 6= b (2)676

σ2(y(v,a)) = yv (3)677

σ2(x{(u,p),(v,q)}) = 0, if p = 1 and q = k and u > v (4)678

σ2(x{(u,p),(v,q)}) = 1, if p = 1 and q = 2 (5)679

σ2(x{(u,p),(v,q)}) = x{u,v}, otherwise (6)680
681

3. Fix the labelling of Kk − Pk−1 where the complementary Pk−1 + v is 1 2 3 · · · k .682

σ3(za,(v,a)) = za (1)683

σ3(za,(v,b)) = z2
a, if a 6= b (2)684

σ3(y(v,a)) = yv (3)685

σ3(x{(u,p),(v,q)}) = 0, if p = 2 and q = k and u > v (4)686

σ3(x{(u,p),(v,q)}) = x{u,v}, otherwise (5)687
688

4. We prove that kNCk +NPk +NKk−Pk−1 � HomKk−Pk−1 . Start with HomKk−Pk−1 over689

the vertex set [n]× [k]× [3] and apply the following substitution.690

σ(za,(v,b,i)) = σi(za,(v,b))) (1)691

σ(y(v,a,i)) = σi(y(v,a)) (2)692

σ(x{(u,p,i),(v,q,j)}) = 0, if i 6= j (3)693

σ(x{(u,p,i),(v,q,i)}) = σi(x{(u,p),(v,q)}), otherwise (4)694
695

Rule 3 ensures that only the monomials where every vertex is indexed by the same element696

in [3] survive. The other rules ensure that any monomial m indexed by i ∈ [3] are mapped697

to σi(m′), where m′ is the same as m but with i removed.698

M. Bläser, B. Komarath, K. Sreenivasaiah XX:19

1 2

5

3

4

Figure 3 A labelled K5 − P4

The proof of correctness of these reductions is the same as the argument in Theorem 8.3.699

In addition, the condition that u > v when u is coloured 1 and v is coloured k rules out one700

out of two automorphisms for Pk in part 2 and the condition that u > v when u is coloured701

2 and v is coloured k rules out one out of two automorphisms for Kk − Pk−1 in part 3. J702

I Theorem 6.7. If HomKk−Pk−1 can be computed by circuits of size nf(k), then there is703

an O(nf(k)) time algorithm for induced subgraph isomorphism problem for Ck on n-vertex704

graphs for odd k ≥ 5.705

I Theorem 6.8. The following algorithms exist706

1. An O(nω)-time algorithm for induced subgraph isomorphism problem for C5 in n-vertex707

graphs.708

2. An O(nk−2)-time combinatorial algorithm for induced subgraph isomorphism problem for709

Ck in n-vertex graphs, where k ≥ 5 is odd.710

3. An O(nk−2)-time deterministic combinatorial algorithm for computing the parity of the711

number of induced subgraphs isomorphic to Ck in n-vertex graphs, where k ≥ 5 is odd.712

Proof. 1. We describe how to compute HomK5−P4 using arithmetic circuits of size O(nω).713

We start by defining the following matrices.714

An×ni,j = x{(i,1),(j,3)}, i 6= j715

En×ni,j = x{(i,3),(j,2)}, i 6= j716

Fn×ni,j = x{i,j}, i 6= j717

Bn×ni,i = yiz3,i718

Cn×ni,i = yiz4,i719

Dn×n
i,i = yiz5,i720

721

Consider the labelled K5 − P4 in Figure 3. Compute the matrix products FCF , FDF ,722

and ABE. Compute the polynomial
∑
i,j∈[n],i6=j z1,iz2,jyiyjx{i,j}(ABE)i,j and replace723

x{(i,1),(j,3)} with (FCF)i,j and replace x{(i,3),(j,2)} with (FDF)i,j . It is easy to see that724

the resulting polynomial is HomK5−P4 for this labelled K5 − P4 and the circuit has size725

O(nω).726

2. tw(Kk − Pk−1) = k − 3.727

3. The proof is similar to the proof of Part 4 of Theorem 6.4.728

J729

We remark that by computing homomorphism polynomials for Kk − Pk−1 for k = 7, 9730

using small-size circuits, we can obtain an O(n2ω) time algorithm for induced subgraph731

isomorphism for C7 and an O(nω(3,3,2)) time algorithm for induced subgraph isomorphism732

for C9. These algorithms are faster than the corresponding algorithms for k-cliques.733

XX:20 Graph Pattern Polynomials

7 Algorithms for almost all induced patterns734

In this section, we prove a result that is similar in spirit to Theorem 1.1 in [14] which states735

that the time complexity of induced subgraph isomorphism problem for Kk upper bounds736

that of any k-vertex pattern graph. We show that the circuit complexity of HomKk−e upper737

bounds the time complexity of the induced subgraph isomorphism problem for all k-vertex738

pattern graphs H except Kk and Ik. The algorithms obtained from this statement can be739

obtained from known results. However, we believe that restating these upper-bounds in740

terms of circuits for Kk − e homomorphism polynomials may give new insights to improve741

these algorithms.742

The key idea is that an efficient construction of homomorphism polynomial for Kk − e743

enables efficient construction of homomorphism polynomials for all smaller graphs. First, we744

prove the following technical result.745

I Proposition 7.1. If NH � f and f is a graph pattern polynomial family with uniform746

s(n)-size circuits, then HomH has uniform O(s(n))-size circuits.747

Proof. We can assume w.l.o.g. that H does not have isolated vertices. Let H have k nodes748

and let Kk
n be the complete k-partite graph with n nodes in each partition. The nodes of749

Kk
n are of the form (i, κ), 1 ≤ i ≤ n, 1 ≤ κ ≤ k. Let σ be a family of substitutions realizing750

NH � f . Consider NH,kn. We know that ML(σm(fm)) = v[q]NH,kn for some m = O(n) and751

q = O(1). Since H does not contain isolated vertices, there is a function g that maps V (H)752

to E(H) such that the image of f(v) for any v is an edge incident on v. Now we define the753

substitution τ on the edge and vertex variables:754

τ(x{(i,κ),(j,µ)}) =
{
Yi,κ,{κ,µ}Yj,µ,{κ,µ}x{i,j} if i 6= j,

0 if i = j or {κ, µ} 6∈ E(H),
755

τ(y(i,κ)) = âκ,756
757

where the variables â are fresh variables that we need for book-keeping and we define:758

Yi,κ′,{κ,µ} = zκ,iyi if g(κ′) = {κ, µ}759

Yi,κ′,{κ,µ} = 1 if g(κ′) 6= {κ, µ}760
761

Every embedding of H into Kk
n such that each node of H goes into another part will762

contribute a term that is multilinear in the âκ-variables in τ(NH,kn). The substitution also763

ensures that the colours of edges correspond to edges in H and labels of adjacent vertices764

are different. It is easy to see that these embeddings correspond to homomorphisms to Kn.765

We have proved that the part of τ(NH,kn) multilinear in â variables is,766

âV (H)
∑

φ:Hhom7→Kn

∏
v∈V (H)

zv,φ(v)yφ(v)
∏

e∈E(H)

xφ(e) = â[k]HomH,n.767

Furthermore the part of τ(σm(fm)) multilinear in â and vi variables is v[q]â[k]HomH,n768

since every non-multilinear term stays non-multilinear under τ . Therefore, we get an exact769

computation for HomH,n by differentiating the circuit with respect to v1, . . . , vq, â1, . . . , âk770

once and then setting all variables vi for all i and â1, . . . , âk to 0. Note that each differentiation771

M. Bläser, B. Komarath, K. Sreenivasaiah XX:21

will increase the circuit size by a constant factor and we differentiate a constant number of772

times. This operation is linear-time in the size of the circuit.4 J773

The above result can be interpreted in two different ways: (1) Homomorphism polynomials774

are the best graph pattern polynomials or (2) Efficient constructions for homomorphism775

polynomials can be obtained by obtaining efficient constructions for any pattern family f776

such that NH � f .777

I Lemma 7.2. Let k > 2. If H 6= Kk is a k-vertex graph, then 2NH � HomKk−e.778

Proof. The proof of this claim is similar to the proof of Theorem 8.5. Let M be the labelling779

of Kk − e using [k] such that vertices 1 and k are not adjacent. Let L be a labelling of H780

using [k] such that 1 and k are not adjacent. Therefore, the labelled graph L is a subgraph of781

the labelled graph M . Let q1, . . . , q` be the edges of L and q`+1, . . . , qm be the non-edges of782

L. Let S be the set of all labellings of H. For each labelling L′ in S, associate a permutation783

with L′ such that applying it to L′ yields L. Let P be the set of all such permutations.784

We partition P into P1 and P2 as follows: A permutation φ ∈ P1 if given a sequence of k785

numbers, we can determine whether the sequence is consistent with φ, i.e., the ith smallest786

element in the sequence is at position φ(i), without comparing the first and last elements in787

the sequence. Otherwise, φ ∈ P2. We start with the HomKk−e polynomial over the vertex788

set [n]× [k]× P and apply the following substitution.789

σH(y(v,p,φ)) = yv (1)790

σH(x{(v1,p1,φ),(v2,p2,φ′)}) = 0, if φ 6= φ′ (2)791

σH(x{(v1,p1,φ),(v2,p2,φ)}) = 0, φ−1(p1) < φ−1(p2) ∧ v1 > v2 (3)792

σH(x{(v1,p1,φ),(v2,p2,φ)}) =


x{v1,v2}, {p1, p2} ∈ E(L)
1, {p1, p2} ∈ E(M) \ E(L)
0, otherwise

(4)793

σH(z(1,(v,1,φ))) =
{
u1, φ ∈ P2

2u1, φ ∈ P1
(5)794

σH(z(i,(v,i,φ))) = ui, i > 1 (6)795

σH(z(i,(v,j,φ))) = u2
i , i 6= j (7)796

797

First, we state some properties satisfied by the surviving monomials. Rule 1 ensures that798

all vertices have different labels. Rule 2 ensures that all variables in a surviving monomial799

are indexed by the same permutation. Rules 6 and 7 ensure that all vertices have different800

colours. Let τ = (1 k)(2) · · · (k − 1). Consider an arbitrary surviving monomial indexed801

by a permutation φ. If φ ∈ P1, then Rule 3 ensures that the vertices of the monomial are802

consistent with φ. Assume that the vertices are (v1, 1, φ), . . . , (vk, k, φ) and they are not803

consistent with φ. This is possible only if φ−1(1) < φ−1(k) and v1 > vk or φ−1(1) > φ−1(k)804

and v1 < vk. Since φ ∈ P1, there exists an i′ such that φ−1(1) < φ−1(i′) < φ−1(k) or805

φ−1(1) > φ−1(i′) > φ−1(k). Therefore, we have that the vertices are inconsistent at either806

{1, i′} or {i′, k}, a contradiction. If φ ∈ P2, then Rule 3 ensures that the vertices are807

consistent with φ or τ ◦ φ. To see this, observe that, by Rule 3, the inconsistency with808

4 Note that unlike in the Baur-Strassen theorem, we only compute one derivative!

XX:22 Graph Pattern Polynomials

φ can only occur {1, k}. This implies that the vertices are consistent with τ ◦ φ because809

(τ ◦ φ)−1(1) = φ−1(k) and (τ ◦ φ)−1(k) = φ−1(1) removing the inconsistency at {1, k} and810

for all other i, we have (τ ◦ φ)−1(i) = φ−1(i) preserving consistency at all other points.811

Consider a labelled H, say L′, labelled using v1 < · · · < vk with associated permuta-812

tion φ. Let ψ : vi 7→ i. Let e1, . . . , em be the edges and non-edges of L′ such that813

ei = ψ−1(φ−1(qi)) for all i. We split the proof into two cases: If φ ∈ P1, the monomial814

z(1,(vφ−1(1),1,φ)) · · · z(1,(vφ−1(k),k,φ)) (A monomial in HomKk−e is completely determined by815

the homomorphism variables and we will not specify the other variables for brevity) uniquely816

generates the monomial in NH that corresponds to L′. If φ ∈ P2, then there are two cases to817

consider depending on whether the permutation τ is in Aut(L) or not. If τ 6∈ Aut(L), then818

the monomials z(1,(vφ−1(1),1,φ)) · · · z(1,(vφ−1(k),k,φ)) and z(1,(vφ−1(1),1,τ◦φ)) · · · z(1,(vφ−1(k),k,τ◦φ))819

are the only two monomials that yield the required monomial. If τ ∈ Aut(L), then the820

monomials z(1,(vφ−1(1),1,φ)) · · · z(1,(vφ−1(k),k,φ)) and z(1,(vφ−1(k),1,φ)) · · · z(1,(vφ−1(1),k,φ)) are the821

only two monomials that yield the required monomial. J822

The above lemma shows that, as expected, the polynomial HomKk−e is strong enough to823

compute every other graph homomorphism except that of Kk. This allows us to parameterize824

many existing results in terms of the size of the arithmetic circuits computing HomKk−e.825

I Theorem 7.3. If there are uniform O(ns(k)) size circuits for HomKk−e, then the number826

of subgraph isomorphisms for any k-vertex H 6= Kk can be computed in O(ns(k)) time on827

n-vertex graphs.828

Proof. For all k-vertex H 6= Kk, we have 2NH � HomKk−e. For all H on less than k829

vertices, we have NH � IKk � HomKk−e. Therefore, for all graphs H 6= Kk on at most k830

vertices, we can construct O(ns(k)) size circuits that compute 2HomH . We know that the831

number of subgraph isomorphisms for H can be expressed as a linear combination of the832

number of homomorphisms for H and the number of homomorphisms for graphs on less than833

k vertices [3]. J834

I Theorem 7.4. If there are uniform O(ns(k)) size circuits for HomKk−e, then the induced835

subgraph isomorphism problem for all k-vertex pattern graphs except Kk and Ik have an836

O(ns(k)) time algorithm.837

Proof. We will show how to decide induced subgraph isomorphism for H 6= Kk in O(ns(k))838

time. Now, choose a prime p such that p divides the number of occurences of H in Kk. The839

number of induced subgraph isomorphisms modulo p for H can be expressed as a linear840

combination of the number of subgraph isomorphisms modulo p of k-vertex graphs except Kk841

and can be computed in O(ns(k)) time. It is known that the induced subgraph isomorphism842

problem for H is randomly reducible to this problem [17]. J843

I Theorem 7.5. If there are uniform O(ns(k)) size circuits for HomKk−e and if there is844

an O(t(n)) time algorithm for counting the number of induced subgraph isomorphisms for845

a k-vertex pattern H, then the number of induced subgraph isomorphisms for all k-vertex846

patterns can be computed in O(ns(k) + t(n)) time on n-vertex graphs.847

Proof. We know that iH =
∑
H′wH aH′nH′ , where all aH′ 6= 0, iH is the number of induced848

subgraph isomorphisms from H to G and nH is the number of subgraph isomorphisms from849

H to G. Furthermore, we can compute nH′ for all H ′ 6= Kk in O(ns(k)) time. Therefore, if850

we can compute iH in t(n) time, we can compute nKk in O(ns(k) + t(n)) time. J851

The following corollary follows by observing that tw(Kk − e) = k − 2.852

M. Bläser, B. Komarath, K. Sreenivasaiah XX:23

I Corollary 7.6. All k-vertex pattern graphs except Kk and Ik have an O(nk−1) time853

combinatorial algorithm for deciding induced subgraph isomorphism on n-vertex graphs.854

I Corollary 7.7. For k ∈ {4, 5, 6, 7, 8}, the induced subgraph isomorphism problem for any855

k-vertex pattern graph H except Kk and Ik can be decided faster than currently known best856

clique algorithms.857

Proof. The polynomial family HomKk−e can be computed by uniform arithmetic circuits of858

size O(nω(d k−2
2 e,1,b

k−2
2 c)) for all k. The construction is similar to the other constructions for859

homomorphism polynomials using fast matrix multiplication in this paper. J860

8 Reductions between patterns861

The following proposition is analogous to the obvious fact that the complexity of the induced862

subgraph isomorphism problem is the same for any pattern and its complement.863

I Proposition 8.1. IH � IH for all graphs H.864

Proof. Use the substitution that maps xe to 1− xe for any edge variable xe and maps any865

vertex variable to itself. J866

It is known that #aut(H) = 1 for almost all graphs H. Therefore, the following867

proposition can be interpreted as stating that the homomorphism polynomial is harder than868

the subgraph isomorphism polynomial for almost all pattern graphs H. This is used in [9] to869

obtain algorithms for subgraph isomorphism problems.870

I Proposition 8.2. #aut(H)NH � HomH for all graphs H.871

Proof. Let H be a k vertex graph labelled using [k]. Use the substitution σ(za,v) = ua for872

all a ∈ V (H), v ∈ V (G) and σ(w) = w for all the other variables w in HomH over the vertex873

set [n]. We have #aut(H).u[k].ML(NH) = ML(σ(HomH)) = σ(ML(HomH)). Consider an874

arbitrary automorphism φ of H. For every monomial m = yv1 . . . yvkxe1 . . . xe` in NH , there875

are exactly #aut(H) monomials mφ = z(φ(1),v1) . . . z(φ(k),vk)yv1 . . . yvkxe1 . . . xe` in HomH876

that satisfy σ(mφ) = u[k]m. This proves Properties 1 and 2 of the reduction. It is easy to877

see that the reduction satisfies the other properties too. J878

Intuitively, the subgraph isomorphism problem should become harder when the pattern879

graph becomes larger. However, it is not known whether this is the case. Nevertheless, we880

can show this hardness result holds for subgraph isomorphism polynomials for almost all881

pattern graphs.882

I Theorem 8.3. If H v H ′, then #aut(H)NH � NH′ .883

Proof. Let |V (H)| = k and |V (H ′)| = k + ` for some ` ≥ 0. Choose a labelling L of the884

vertices of H ′ such that the vertices of an H in H ′ are labelled 1, . . . , k. Consider the885

polynomial NH′ over the vertex set ([n]× [k]) ∪ {(n+ i, k + i) : 1 ≤ i ≤ `}. Substitute for886

the variables as follows:887

σ(y(i,p)) =
{
yiup, for all i ∈ [n], p ∈ [k]
up, otherwise

(1)888

σ(x{(i1,p1),(i2,p2)}) =


x{i1,i2} if {p1, p2} ∈ E(H)
1 if {p1, p2} ∈ E(H ′) \ E(H)
0 otherwise

(2)889

890

XX:24 Graph Pattern Polynomials

We say that a monomial in NH′ survives if the monomial does not become non-multilinear891

or 0 after the substitution. First, we will prove that all surviving monomials correspond to892

H ′-subgraphs where the labels and colours of vertices are different and the colours of edges are893

the same as in the labelling L. Rule 1 ensures that the colours and labels of all vertices in the894

surviving monomials are different. Rule 2 ensures that there is a one-to-one correspondence895

between the edges {p1, p2} in the labelling L and the edge variables x{(i1,p1),(i2,p2)}. To see896

this, observe that each monomial in NH′ has |E(H ′)| edge variables. Since all vertices in a897

surviving monomial have different colours, all edges in the monomial must have different898

colours. Since any edge variable that has a colour not in the labelling L is set to 0, the colours of899

edges must be in one-to-one correspondence with the edges in the labelling L. This proves the900

all surviving monomials are of the form y(u1,1) · · · y(uk,k)(
∏
i y(n+i,k+i))x(e1,q1) · · ·x(em,qm)w901

for u1, . . . , uk ∈ [n], where w is the product of edge variables with colour {p, q} such that902

{p, q} is an edge in H ′ but not in H in the labelling L, u1, . . . , uk are all different, and903

q1, . . . , qm are edges in H in the labelling L. Note that the product w is determined uniquely904

by u1, . . . , uk.905

We claim that for each monomial ySxT in NH over the vertex set [n] there are #aut(H)906

monomials ySxTu[k] in σ(NH′). Consider an arbitrary monomial ySxT = yv1 · · · yvkxe1 · · ·xem907

in NH wherem = |E(H)|. The monomials in NH′ that yield ySxTu[k+`] after the substitution908

are exactly the monomials y(w1,1) · · · y(wk,k)(
∏
i y(n+i,k+i))x(e′1,q1) · · ·x(e′m,qm)w where w is909

the product of edge variables with colour {p, q} such that {p, q} is an edge in H ′ but not910

in H in the labelling L, {w1, . . . , wk} = {v1, . . . , vk}, and {e1, . . . , em} = {e′1, . . . , e′m}. But911

this monomial corresponds to the automorphism φ : vi 7→ wi. Since w is uniquely determined912

given w1, . . . , wk, the number of such monomials is #aut(H). Also, each surviving monomial913

yields a monomial in NH .914

Additionally, each non-multilinear term in the polynomial obtained after the substitution915

contains at least one vertex or other variable with degree more than one. This proves the916

theorem. J917

The following theorem states that the induced subgraph isomorphism polynomial is918

harder than the subgraph isomorphism polynomial for almost all graphs.919

I Theorem 8.4. #aut(H)NH � IH for all graphs H.920

Proof. Observe that IH = NH +
∑
H′AH aH′NH′ . Let k be the number of vertices in H921

and fix some labelling of H using [k]. Now consider the polynomial IH over the vertex set922

[n]× [k] and apply the following substitution.923

σ(y(i,p)) = yiup (1)924

σ(x{(i1,p1),(i2,p2)}) =
{
x{i1,i2} if {p1, p2} ∈ E(H)
0 otherwise

(2)925

926

Now observe that any monomial in NH′ for H ′ A H must vanish because it will have927

at least one more edge than H. By the same argument as in the proof of Theorem 8.3,928

we conclude that there are exactly #aut(H) monomials in NH over [n]× [k] that yield the929

monomial ySxTu[k] after the substitution for any monomial ySxT in NH over [n]. J930

We now prove the analogue of Theorem 1.1 in [14] which states that k-clique is harder931

than any other k-vertex pattern graph.932

I Theorem 8.5. For any k-vertex graph H, IH � IKk .933

M. Bläser, B. Komarath, K. Sreenivasaiah XX:25

Proof. Fix a canonical labelling L of the graph H using [k]. Let q1, . . . , q` be the edges in934

the canonical labelling L and let q`+1, . . . , qm be the non-edges in L where ` is the number935

of edges in H and m =
(
k
2
)
. Let S be the set of distinct labellings of H using [k]. Associate936

all labellings L′ ∈ S with a permutation φ such that applying φ to an H labelled L′ yields937

an H labelled L. Let P be the set of all such permutations. For example, there are three938

distinct labellings for P3: L = 1 – 2 – 3, 1 – 3 – 2, and 2 – 1 – 3 with associated permutations939

(1)(2)(3), (1)(23), and (12)(3) (Note that the these permutations are not unique if the graph940

has non-trivial automorphisms). Apply the following substitution to IKk over the vertex set941

[n]× [k]× P :942

σ(y(v,p,φ)) = yvup (1)943

σ(x{(v1,p1,φ),(v2,p2,φ′)}) = 0 if φ 6= φ′ or p1 = p2 or v1 = v2 (2)944

σ(x{(v1,p1,φ),(v2,p2,φ)}) = 0 if φ−1(p1) < φ−1(p2) and v1 > v2 (3)945

σ(x{(v1,p1,φ),(v2,p2,φ)}) =
{
x{v1,v2} if {p1, p2} ∈ E(L)
1− x{v1,v2} if {p1, p2} 6∈ E(L)

(4)946

947

The first two rules ensure that in any surviving monomial, the labels and colours of all948

vertices are different and all vertices are indexed by the same permutation.949

We can extend the correspondence between labellings of H and permutations to arbitrary950

labellings (as opposed to labellings using [k]). Given a labelling of H using v1 < · · · < vk, we951

can obtain a labelling L′ of H using [k] by replacing each vi by i for all i. The permutation952

associated with the labelling M is the same as the permutation associated with labelling L′.953

Consider an arbitrary labellingM ofH using v1 < · · · < vk where each vi ∈ [n]. Let L′ ∈ S954

be the labelling corresponding to the labelling M such that ψ : vi 7→ i is the permutation955

that maps M to L′. Let φ ∈ P be the permutation associated with L′. For convenience,956

we denote the edges and non-edges of M by e1, . . . , em such that ei = ψ−1(φ−1(qi)) for all957

i. We will prove that for the term t = yv1 · · · yvkxe1 · · ·xe`(1− xe`+1) · · · (1− xem) in I(H)958

that encodes M , there is a unique monomial s in IKk such that σ(s) = u[k]t. The monomial959

s = y(v1,φ(1),φ) · · · y(vk,φ(k),φ)x(e1,q1,φ) · · ·x(em,qm,φ). First of all, we have to prove that given960

that vi has colour φ(i), the edges are coloured such that ei gets colour qi. Start with an961

arbitrary qi = (j, k). Then, ei = ψ−1((φ−1(j), φ−1(k))) = (vφ−1(j), vφ−1(k)) which has colour962

(j, k) as required. Also, we have σ(s) 6= 0 because if φ−1(φ(i)) = i < j = φ−1(φ(j)), then963

vi < vj . Given that σ(s) 6= 0, it is easy to see that σ(s) = u[k]t by applying rules 1 and 4.964

Given an arbitrary surviving monomial r = y(v1,1,φ) · · · y(vk,k,φ)x(e1,q1,φ) · · ·x(em,qm,φ) in965

IKk such that σ(r) = u[k]w for some w, we claim that w encodes a labelling M of H where966

the permutation associated with M is φ. It is easy to see that w encodes some labelling967

of H. Observe that for r to survive, the vertices (vi, i, φ) for all i has to be consistent968

with φ, i.e., the vertex coloured φ(i) must be the ith smallest among all vjs by Rule 3. By969

the definition of φ, we have {i, j} ∈ E(L′) if and only if {φ(i), φ(j)} ∈ E(L). By Rule 4,970

we also have if {φ(i), φ(j)} ∈ E(L) then x{vφ(i),vφ(j)} appears in the term w and otherwise971

(1− x{vφ(i),vφ(j)}) appears in w. In other words, in the graph encoded by w, the ith smallest972

and jth smallest vertices are connected if and only if the ith smallest and jth smallest vertices973

are connected in L′. Therefore, the associated permutation is φ as claimed. We can now prove974

that u[k]t is uniquely generated from s. Suppose for contradiction that the monomial s′ =975

y(v′1,1,φ′) · · · y(v′
k
,k,φ′)x(e′1,q1,φ′) · · ·x(e′m,qm,φ′) also satisfies σ(s′) = u[k]t. Then, it must be that976

{v′1, . . . , v′k} = {v1, . . . , vk}, {e1, . . . , e`} = {e′1, . . . , e′`}, and {e`+1, . . . , em} = {e′`+1, . . . , e
′
m}.977

We know that φ = φ′ because the permutation in the monomial must correspond to the978

XX:26 Graph Pattern Polynomials

labelling encoded by t. But, φ = φ′ implies v′i = vi for all i (Otherwise, the third rule ensures979

that at least one edge variable in s′ becomes 0 under σ). But, if v′i = vi for all i, then ej = e′j980

for all j contradicting s 6= s′.981

We have proved that ML(σ(IKk)) = u[k]IH . Observe that the polynomial obtained after982

the substitution cannot contain edge variables of degree more than one because of Rule 2. It983

is easy to see that the substitution satisfies the other properties. J984

The theorem below shows that the induced subgraph isomorphism polynomial for any985

graph containing a k-clique or k-independent set is harder than the k-clique polynomial.986

An analogous hardness result is known for algorithms, only when the pattern H contains a987

k-clique (or k-independent set) that is disjoint from all other k-cliques (or k-independent988

sets) [8].989

I Theorem 8.6. If H contains a k-clique or a k-independent set, then IKk � IH .990

Proof. We will prove the statement when H contains a k-clique. The other part follows991

because if H contains a k-independent set, then the graph H contains a k-clique and992

IKk � IH � IH .993

Fix a labelling of H where the vertices of a k-clique are labelled using [k] and the994

remaining vertices are labelled k + 1, . . . , k + `. Consider the polynomial IH over the vertex995

set ([n]× [k]) ∪ {(n+ i, k + i) : 1 ≤ i ≤ `} and apply the following substitution.996

σ(y(i,p)) =
{
yiup if i ∈ [n] and p ∈ [k]
up otherwise

(1)997

σ(x{(i1,p1),(i2,p2)}) =


x{i1,i2} if {p1, p2} ∈ E(Kk) and p1 < p2 and i1 < i2

1 if {p1, p2} ∈ E(H) \ E(Kk)
0 otherwise

(2)998

999

Consider a k-clique on the vertices i1, . . . , ik ∈ [n] on an n-vertex graph where i1 < · · · < ik.1000

The monomial in IKk corresponding to this clique is generated uniquely from the monomial1001

y(i1,1) . . . y(ik,k)
∏
i y(n+i,k+i)x{(i1,1),(i2,2)}. . . x{(ik−1,k−1),(ik,k)}w in IH , where w is the product1002

of all edge variables corresponding to edges in H but not in Kk. Note that Rules 1 and 21003

ensure that in any surviving monomial, the labels and colours of all vertices are distinct1004

and the colours of the edges must be the same as E(H). The product w is determined1005

by i1, . . . , ik. This proves that ML(σ(IH)) = u[k+`]ML(IKk). It is easy to verify that the1006

substitution satisfies the other properties. J1007

Theorem 8.6 is true with NH or HomH instead of IH . In fact, the same proof works for1008

NH . For HomH , use the substitution in the proof of Theorem 8.6 along with za,(v,a) = ua1009

and za,(v,b) = u2
a when a 6= b for all homomorphism variables.1010

9 Discussion1011

Since the subgraph isomorphism and homomorphism polynomials for cliques have the same1012

size complexity, there is no advantage to be gained by using homomorphism polynomials1013

instead of subgraph isomorphism problem. How hard is it to obtain better circuits for1014

HomKk? As the following proposition shows, improving the size of HomK3 implies improving1015

matrix multiplication.1016

M. Bläser, B. Komarath, K. Sreenivasaiah XX:27

I Proposition 9.1. If NK3 (or IK3 or HomK3) has O(nτ)-size circuits then the exponent of1017

matrix multiplication ω ≤ τ .1018

Proof. Let G be the complete tripartite graph Tn on 3n-vertices with partitions of size1019

n. The vertex set of Tn is [3] × [n]. Instead of substituting a 1 for every edge in Tn, we1020

substitute the variables ai,j for edges {(1, i), (2, j)}, bi,j for edges {(2, i), (3, j)}, and ci,j for1021

edges {(3, i), (1, j)}. The resulting polynomial is:1022

N ′ =
n∑
i=1

n∑
j=1

n∑
k=1

y1,iy2,jy3,k · ai,jbj,kck,i1023

We subsitute 1 for all vertex variables and obtain1024

N ′′ =
n∑
i=1

n∑
j=1

n∑
k=1

ai,jbj,kck,i1025

N ′′ has O(nτ)-size circuits. It is well-known that ω ≤ τ follows from this, see e.g. [2]. J1026

It is interesting to know whether such connections exist for k > 3.1027

References1028

1 Per Austrin, Petteri Kaski, and Kaie Kubjas. Tensor network complexity of multilinear1029

maps. CoRR, abs/1712.09630, 2017. URL: http://arxiv.org/abs/1712.09630, arXiv:1030

1712.09630.1031

2 Markus Bläser. Fast matrix multiplication. Theory of Computing, Graduate Surveys, 5:1–60,1032

2013. URL: https://doi.org/10.4086/toc.gs.2013.005, doi:10.4086/toc.gs.2013.1033

005.1034

3 Radu Curticapean, Holger Dell, and Dániel Marx. Homomorphisms are a good basis for1035

counting small subgraphs. In Hamed Hatami, Pierre McKenzie, and Valerie King, editors,1036

Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC1037

2017, Montreal, QC, Canada, June 19-23, 2017, pages 210–223. ACM, 2017. URL: http:1038

//doi.acm.org/10.1145/3055399.3055502, doi:10.1145/3055399.3055502.1039

4 Josep Díaz, Maria J. Serna, and Dimitrios M. Thilikos. Counting h-colorings of partial1040

k-trees. Theor. Comput. Sci., 281(1-2):291–309, 2002. URL: https://doi.org/10.1016/1041

S0304-3975(02)00017-8, doi:10.1016/S0304-3975(02)00017-8.1042

5 Arnaud Durand, Meena Mahajan, Guillaume Malod, Nicolas de Rugy-Altherre, and Nitin1043

Saurabh. Homomorphism polynomials complete for VP. In 34th International Conference1044

on Foundation of Software Technology and Theoretical Computer Science, FSTTCS 2014,1045

December 15-17, 2014, New Delhi, India, pages 493–504, 2014. URL: https://doi.org/1046

10.4230/LIPIcs.FSTTCS.2014.493, doi:10.4230/LIPIcs.FSTTCS.2014.493.1047

6 Friedrich Eisenbrand and Fabrizio Grandoni. On the complexity of fixed parameter clique1048

and dominating set. Theoretical Computer Science, 326(1):57 – 67, 2004. URL: http:1049

//www.sciencedirect.com/science/article/pii/S030439750400372X, doi:https://1050

doi.org/10.1016/j.tcs.2004.05.009.1051

7 Peter Floderus, Miroslaw Kowaluk, Andrzej Lingas, and Eva-Marta Lundell. Detecting1052

and counting small pattern graphs. SIAM J. Discrete Math., 29(3):1322–1339, 2015. URL:1053

https://doi.org/10.1137/140978211, doi:10.1137/140978211.1054

8 Peter Floderus, Miroslaw Kowaluk, Andrzej Lingas, and Eva-Marta Lundell. Induced1055

subgraph isomorphism: Are some patterns substantially easier than others? Theor.1056

Comput. Sci., 605:119–128, 2015. URL: https://doi.org/10.1016/j.tcs.2015.09.001,1057

doi:10.1016/j.tcs.2015.09.001.1058

http://arxiv.org/abs/1712.09630
http://arxiv.org/abs/1712.09630
http://arxiv.org/abs/1712.09630
http://arxiv.org/abs/1712.09630
https://doi.org/10.4086/toc.gs.2013.005
http://dx.doi.org/10.4086/toc.gs.2013.005
http://dx.doi.org/10.4086/toc.gs.2013.005
http://dx.doi.org/10.4086/toc.gs.2013.005
http://doi.acm.org/10.1145/3055399.3055502
http://doi.acm.org/10.1145/3055399.3055502
http://doi.acm.org/10.1145/3055399.3055502
http://dx.doi.org/10.1145/3055399.3055502
https://doi.org/10.1016/S0304-3975(02)00017-8
https://doi.org/10.1016/S0304-3975(02)00017-8
https://doi.org/10.1016/S0304-3975(02)00017-8
http://dx.doi.org/10.1016/S0304-3975(02)00017-8
https://doi.org/10.4230/LIPIcs.FSTTCS.2014.493
https://doi.org/10.4230/LIPIcs.FSTTCS.2014.493
https://doi.org/10.4230/LIPIcs.FSTTCS.2014.493
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2014.493
http://www.sciencedirect.com/science/article/pii/S030439750400372X
http://www.sciencedirect.com/science/article/pii/S030439750400372X
http://www.sciencedirect.com/science/article/pii/S030439750400372X
http://dx.doi.org/https://doi.org/10.1016/j.tcs.2004.05.009
http://dx.doi.org/https://doi.org/10.1016/j.tcs.2004.05.009
http://dx.doi.org/https://doi.org/10.1016/j.tcs.2004.05.009
https://doi.org/10.1137/140978211
http://dx.doi.org/10.1137/140978211
https://doi.org/10.1016/j.tcs.2015.09.001
http://dx.doi.org/10.1016/j.tcs.2015.09.001

XX:28 Graph Pattern Polynomials

9 Fedor V. Fomin, Daniel Lokshtanov, Venkatesh Raman, Saket Saurabh, and B. V. Raghav-1059

endra Rao. Faster algorithms for finding and counting subgraphs. J. Comput. Syst.1060

Sci., 78(3):698–706, 2012. URL: https://doi.org/10.1016/j.jcss.2011.10.001, doi:1061

10.1016/j.jcss.2011.10.001.1062

10 Michael R. Garey and David S. Johnson. Computers and Intractability; A Guide to the1063

Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1990.1064

11 Alon Itai and Michael Rodeh. Finding a minimum circuit in a graph. SIAM Journal on1065

Computing, 7(4):413–423, 1978. URL: https://doi.org/10.1137/0207033, arXiv:https:1066

//doi.org/10.1137/0207033, doi:10.1137/0207033.1067

12 Ton Kloks, Dieter Kratsch, and Haiko Müller. Finding and counting small induced sub-1068

graphs efficiently. Inf. Process. Lett., 74(3-4):115–121, 2000. URL: https://doi.org/10.1069

1016/S0020-0190(00)00047-8, doi:10.1016/S0020-0190(00)00047-8.1070

13 Miroslaw Kowaluk, Andrzej Lingas, and Eva-Marta Lundell. Counting and detecting small1071

subgraphs via equations. SIAM J. Discrete Math., 27(2):892–909, 2013. URL: https:1072

//doi.org/10.1137/110859798, doi:10.1137/110859798.1073

14 Jaroslav Nešetřil and Svatopluk Poljak. On the complexity of the subgraph problem.1074

Commentationes Mathematicae Universitatis Carolinae, 026(2):415–419, 1985. URL: http:1075

//eudml.org/doc/17394.1076

15 Virginia Vassilevska. Efficient Algorithms for Path Problems in Weighted Graphs. PhD1077

thesis, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, 81078

2008.1079

16 Ryan Williams. Finding paths of length k in o*(2k) time. Inf. Process. Lett., 109(6):315–1080

318, 2009. URL: https://doi.org/10.1016/j.ipl.2008.11.004, doi:10.1016/j.ipl.1081

2008.11.004.1082

17 Virginia Vassilevska Williams, Joshua R. Wang, Richard Ryan Williams, and Huacheng1083

Yu. Finding four-node subgraphs in triangle time. In Piotr Indyk, editor, Proceedings1084

of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015,1085

San Diego, CA, USA, January 4-6, 2015, pages 1671–1680. SIAM, 2015. URL: https:1086

//doi.org/10.1137/1.9781611973730.111, doi:10.1137/1.9781611973730.111.1087

A Omitted Proofs1088

Proof. (Of Theorem ??) We will describe how to construct an arithmetic circuit of size1089

O(nt+1) for HomH where t = tw(H). The construction mirrors the algorithm in Theorem 3.11090

in [4]. We start with a nice tree decomposition D of H. Each gate in the circuit will be1091

labelled by some node (say p) in D and a partial homomorphism φ : V (H) 7→ [n]. The label1092

is Ip(φ).1093

Let p be a node in the tree decomposition D. Construct the circuit in a bottom-up1094

fashion as follows:1095

p is a start node with Xp = {a} Add n input gates labelled Ip({(a, v)}) with the constant1096

1 as value for each v ∈ [n].1097

p is an introduce node Let q be the child of p and Xp − Xq = {a}. Add gates labelled1098

Ip(φ ∪ {(a, v)}) = Iq(φ) for each v ∈ [n]. Since there are at most O(nt+1) choices for1099

φ ∪ {(a, v)}, there are at most O(nt+1) gates.1100

p is a join node Let q1 and q2 be the children of p. Add gates labelled Ip(φ) = Iq1(φ).Iq2(φ).1101

Since there are at most O(nt+1) choices for φ, there are at most O(nt+1) gates.1102

p is a forget node Let q be the child of p such that Xq − Xp = {a}. Add gates Ip(φ) =1103 ∑
v∈[n] za,vyvx{v,u1} · · ·x{v,uk}Iq(φ ∪ {(a, v)}) where {v, ui}, 1 ≤ i ≤ k are the images of1104

the edges incident on a in partial homomorphism φ ∪ {(a, v)}. Note that there are O(n)1105

https://doi.org/10.1016/j.jcss.2011.10.001
http://dx.doi.org/10.1016/j.jcss.2011.10.001
http://dx.doi.org/10.1016/j.jcss.2011.10.001
http://dx.doi.org/10.1016/j.jcss.2011.10.001
https://doi.org/10.1137/0207033
http://arxiv.org/abs/https://doi.org/10.1137/0207033
http://arxiv.org/abs/https://doi.org/10.1137/0207033
http://arxiv.org/abs/https://doi.org/10.1137/0207033
http://dx.doi.org/10.1137/0207033
https://doi.org/10.1016/S0020-0190(00)00047-8
https://doi.org/10.1016/S0020-0190(00)00047-8
https://doi.org/10.1016/S0020-0190(00)00047-8
http://dx.doi.org/10.1016/S0020-0190(00)00047-8
https://doi.org/10.1137/110859798
https://doi.org/10.1137/110859798
https://doi.org/10.1137/110859798
http://dx.doi.org/10.1137/110859798
http://eudml.org/doc/17394
http://eudml.org/doc/17394
http://eudml.org/doc/17394
https://doi.org/10.1016/j.ipl.2008.11.004
http://dx.doi.org/10.1016/j.ipl.2008.11.004
http://dx.doi.org/10.1016/j.ipl.2008.11.004
http://dx.doi.org/10.1016/j.ipl.2008.11.004
https://doi.org/10.1137/1.9781611973730.111
https://doi.org/10.1137/1.9781611973730.111
https://doi.org/10.1137/1.9781611973730.111
http://dx.doi.org/10.1137/1.9781611973730.111

M. Bläser, B. Komarath, K. Sreenivasaiah XX:29

gates corresponding to the tuple (p, φ). Since p is a forget node, there are at most O(nt)1106

such tuples and therefore at most O(nt+1) gates.1107

J1108

	Introduction
	Preliminaries
	A Motivating Example: Induced-P4 Isomorphism
	Graph pattern polynomial families
	Pattern graphs easier than cliques
	Algorithms for induced paths and cycles
	Algorithms for almost all induced patterns
	Reductions between patterns
	Discussion
	Omitted Proofs

