
TOCT0501-02 ACM-TRANSACTION May 4, 2013 17:16

2

Verifying Proofs in Constant Depth

OLAF BEYERSDORFF, Institute for Theoretical Computer Science, Leibniz University
SAMIR DATTA, Chennai Mathematical Institute, India
ANDREAS KREBS, University of Tübingen
MEENA MAHAJAN, Institute of Mathematical Sciences, India
GIDO SCHARFENBERGER-FABIAN, Hochschule für Technik und Wirtschaft
KARTEEK SREENIVASAIAH, Institute of Mathematical Sciences, India
MICHAEL THOMAS and HERIBERT VOLLMER, Institute for Theoretical Computer Science,
Leibniz University

In this paper we initiate the study of proof systems where verification of proofs proceeds by NC0 circuits.
We investigate the question which languages admit proof systems in this very restricted model. Formulated
alternatively, we ask which languages can be enumerated by NC0 functions. Our results show that the
answer to this problem is not determined by the complexity of the language. On the one hand, we construct
NC0 proof systems for a variety of languages ranging from regular to NP complete. On the other hand,
we show by combinatorial methods that even easy regular languages such as Exact-OR do not admit NC0

proof systems. We also show that Majority does not admit NC0 proof systems. Finally, we present a general
construction of NC0 proof systems for regular languages with strongly connected NFA’s.

Categories and Subject Descriptors: F.1.3 [Computation by Abstract Devices]: Complexity Measures and
Classes—Relations among complexity classes; F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—Complexity of proof procedures; F.4.1 [Mathematical Logic
and Formal Languages]: Mathematical Logic—Computational logic; F.1.2 [Computation by Abstract
Devices]: Modes of Computation

General Terms: Theory

Additional Key Words and Phrases: Proof complexity, Proof circuits, small depth proofs, circuit complexity

ACM Reference Format:
Olaf Beyersdorff, Samir Datta, Andreas Krebs, Meena Mahajan, Gido Scharfenberger-Fabian, Karteek
Sreenivasaiah, Michael Thomas, and Heribert Vollmer, 2013. Verifying proofs in constant depth. ACM Trans.
Comput. Theory 5, 1, Article 2 (May 2013), 23 pages.
DOI: http://dx.doi.org/10.1145/2462896.2462898

This research was supported by a DAAD/DST grant, DFG grant VO 630/6-2, and by a grant from the John
Templeton Foundation. A preliminary version containing some of the results of this paper appeared in the
proceedings of the MFCS’11 [Beyersdorff et al. 2011a].
Authors’ addresses: O. Beyersdorff, Institute for Theoretical Computer Science, Leibniz University,
Appelstraße 430167, Hannover. Current address: E C Stoner building 7.13, School of Computing, Uni-
versity of Leeds, UK; S. Datta, Chennai Mathematical Institute, Siruseri, Chennai, 603103; A. Krebs,
Wilhelm-Schickard-Institut für Informatik Arbeitsbereich Theoretische Informatik/Formale Sprachen Sand
13 D-72076 Tübingen; M. Mahajan, Institute of Mathematical Sciences, C.I.T Campus, Taramani, Chennai
600113; G. Scharfenberger-Fabian, Hochschule für Technik undWirtschaft Berlin, Germany. Current
address: Mathematical Institute, University of Potsdam, Germany; K. Sreenivasaiah, Institute of Mathe-
matical Sciences, C.I.T Campus, Taramani, Chennai 600113; M. Thomas, Institute for Theoretical Computer
Science, Leibniz University, Appelstraße 430167, Hannover. Current address: TWT GmbH, Neuhausen a.d.F.,
Germany; H. Vollmer, Institute for Theoretical Computer Science, Leibniz University, Appelstraße 430167,
Hannover.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2013 ACM 1942-3454/2013/05-ART2 $15.00

DOI: http://dx.doi.org/10.1145/2462896.2462898

ACM Transactions on Computation Theory, Vol. 5, No. 1, Article 2, Publication date: May 2013.

TOCT0501-02 ACM-TRANSACTION May 4, 2013 17:16

2:2 O. Beyersdorff et al.

1. INTRODUCTION

The notion of a proof system for a language L was introduced by Cook and Reckhow
in their seminal paper [Cook and Reckhow 1979] as a function f that has as its range
exactly all strings of L. Preimages of f are considered as proofs for elements x ∈ L.
In addition, we need to guarantee that proofs can be verified efficiently. In the model
of Cook and Reckhow [1979] this is captured by requiring that f is polynomial-time
computable, leading to the notion of polynomial-time computable proof systems. In this
setting, finding a proof might be difficult, but verifying the validity of a proof can be
done efficiently. In the last decades, polynomial-time computatble proof systems were
in depth studied, in the field of proof complexity and a rich body of results is known
regarding the complexity of proofs for concrete proof systems (cf., Segerlind [2007] for
a survey).

Recently, there has been great interest in understanding the power of proof systems
that use stronger computational resources to verify proofs. In this direction, Pudlák
[2009] studied quantum proof systems, Cook and Krajı́ček [2007] introduced a proof
systems that may use a limited amount of nonuniformity (see also Beyersdorff and
Müller [2010]; and Beyersdorff et al. [2011b]), and Hirsch and Itsykson [2010]; and
Hirsch [2010] consider proof systems that verify proofs with the help of randomness.
In this research, the original Cook-Reckhow framework is generalized and exciting
results are obtained about the strength and the limitations of theorem-proving with
respect to these powerful models.

In this work we take the opposite approach and ask for minimal resources that
suffice to verify proofs. Our starting point is the observation that every polynomial-
time computable proof system in the Cook–Reckhow model is efficiently simulated
(i.e., p-simulated1) by a proof system where verification of proofs proceeds in AC0. This
immediately leads to the question whether even less powerful computational resources
are sufficient. Our investigation focuses on NC0 circuits—Boolean circuits of constant
depth over NOT gates and bounded fan-in AND and OR gates—which constitute one of
the weakest computational models in computational complexity. In a related approach,
Goldwasser et al. [2007] recently studied proof verification by NC0 circuits in the context
of interactive proof systems.

The restrictions imposed by the NC0 model are so severe that a similar result, as the
one mentioned for AC0 fails drastically. NC0-computable proof systems are functions
which shrink the input by at most a constant factor. Thus every language with an NC0

proof system is computable in nonuniform nondeterministic linear time. We therefore
concentrate on the question which languages admit NC0 proof systems, i.e., which
languages can be enumerated by families of NC0 circuits.

A related line of research studies NC0-computable functions in a cryptographic con-
text [Håstad 1987; Applebaum et al. 2006, 2008; Cryan and Miltersen 2001; Mossel
et al. 2006]. One of the main problems in this area is to construct pseudorandom gen-
erators that are computed by NC0 circuits [Applebaum et al. 2006, 2008; Cryan and
Miltersen 2001; Mossel et al. 2006]. This question asks for NC0-computable functions
for which the range is hard to distinguish from a uniform distribution. In another
thread [Viola 2011, 2012], for a function f , we are interested in the uniform distri-
bution over 〈x, f (x)〉. Sampling exactly from this distribution may be possible even if
computing f (x) is hard. However, it is shown that for some functions (such as detecting
exact-Hamming-weight αn), getting even close to the uniform distribution via specific

1If f and g are proof systems for L, then f p-simulates g if every g-proof w can be transformed in polynomial
time into an f -proof w′ with g(w) = f (w′) [Cook and Reckhow 1979].

ACM Transactions on Computation Theory, Vol. 5, No. 1, Article 2, Publication date: May 2013.

TOCT0501-02 ACM-TRANSACTION May 4, 2013 17:16

Verifying Proofs in Constant Depth 2:3

types of NC0 circuits (d-local circuits) is not possible. In contrast, we are looking here at
the related, but possibly easier problem to understand where sets can appear at all as
the range of NC0-computable functions, irrespective of the distribution on the support.
While our lower bounds indicate that sampling the distribution exactly is not possible
for some functions, it does not say anything about how close to the uniform distribution
we can get.

We note that Cryan and Miltersen [2001] exhibit an NC0-computable function whose
range is NP complete. Thus, there are NP-complete languages that admit an NC0 proof
system. Our results, however, indicate that the answer to the question of the existence
of such a proof system does not correlate with the computational complexity of the
target language. In our first contribution, we construct NC0 proof systems for a variety
of natural problems, including regular, NC1-complete, and P-complete languages. In
addition, we exhibit a general construction for NC0 proof systems which works for all
regular languages that are accepted by a strongly connected NFA. Our construction
directly transforms this NFA into an NC0 proof system.

Secondly, we demonstrate that there even exist regular languages which do not admit
NC0 proof systems. We also show that the canonical threshold language MAJ does not
admit NC0 proof systems. The proof techniques we use are combinatorial arguments
tailored towards our specific problems.

Taken together, both lines of the results presented here show how different the
study of NC0-enumerability is from complexity considerations of decision problems. In
particular, it is not clear if lower bound techniques which are used against restricted
circuit classes (cf., Wegener [1987]; Vollmer [1999]) are applicable to show lower bounds
for NC0 proof systems.

This article is organized as follows. We start in Section 2 by defining the concept
of NC0 proof systems and make some initial observations. In Section 3 we construct
NC0 proof systems for several languages of different type. This is followed by Section 4
where we develop a lower bound technique for the depths of NC circuit enumerations of
several easy languages, including Exact-OR and some threshold functions. In Section 5
we show by an independent technique that the language MAJ does not admit NC0 proof
systems. In Section 6 we generalize some of the ideas for NC0 proof systems from
Section 3 to obtain proof systems for large classes of regular languages. Finally, we
conclude in Section 7 with some discussion and future perspectives.

2. DEFINITIONS

A family of Boolean circuits (see, e.g., Vollmer [1999]) (Cn)n≥1 is said to be a proof system
for a function f : {0, 1}∗ −→ {0, 1} if it satisfies the following conditions.

(1) Output length: For some function m : N −→ N, and for all n ≥ 1,
—If f −1(1) ∩ {0, 1}n
= ∅, then Cn : {0, 1}m(n) → {0, 1}n.
—Otherwise Cn is empty.

(2) Soundness: For all n where Cn is nonempty, and for all words x ∈ {0, 1}m(n), Cn(x) ∈
f −1(1). (That is, f (Cn(x)) = 1.)

(3) Completeness: For all y ∈ f −1(1) ∩ {0, 1}n, there is a word x ∈ {0, 1}m(n) such that
Cn(x) = y; we say that x is a proof of the word y in the preimage of 1 under f .

(4) For some functions s, d : N −→ N, each Cn has size s(n), depth d(n), and is built
using AND, OR, and NOT gates.

That is, the circuit family has as its range exactly the set f −1(1).

ACM Transactions on Computation Theory, Vol. 5, No. 1, Article 2, Publication date: May 2013.

TOCT0501-02 ACM-TRANSACTION May 4, 2013 17:16

2:4 O. Beyersdorff et al.

The circuit family is said to be a constant-depth proof system if the AND and OR
gates have unbounded fan-in, and for some constant d and for all n, d(n) ≤ d. A constant-
depth proof system of polynomial size (for some constant c and for all n, s(n) ≤ nc) is
said to be an AC0 proof system. Note that the size bound is nonstandard: it is measured
in terms of the output length, not input length.

The circuit family is said to be an NC0 proof system if the AND and OR gates have
bounded fan-in, and for some constant d and for all n, d(n) ≤ d. This, along with the
fan-in bound, implies s(n) ≤ cn for some constant c.

If a function f : {0, 1}∗ −→ {0, 1} has a proof system of a particular type (constant-
depth, AC0, NC0), then we say that f admits a proof system of that type.

If the circuit family is uniform, then we say that the proof system is uniform. Here, a
uniform circuit family is a family whose direct connection language, that is, a language
describing the structure (nodes, wires, gates, types) of the circuits in the family is
decidable. If the direct connection language is decidable in polynomial time, then the
family is said to be P-uniform. If the language is decidable in logarithmic time, then
the family is said to be DLOGTIME-uniform. (For more formal definitions, we refer the
reader to Vollmer [1999].)

We remark that all lower bounds we will present in the sequel of this article hold even
for nonuniform proof systems, while all upper bounds will yield DLOGTIME-uniform
proof systems, unless explicitly stated otherwise.

For a language L ⊆ {0, 1}∗, we say that L admits an NC0 proof system, or that L
is enumerable in NC0, if its characteristic function χL admits such a proof system. In
other words, there is an NC0 circuit family which produces as output all the strings in
L and no other strings. As before, if C(x) = y, then we view x as a proof that y ∈ L.

We observe that uniform AC0 proof systems do exist for every NP set. In fact, a more
general statement is true. (Here uniformity only refers to computable direct connection
languages.)

PROPOSITION 2.1 (FOLKLORE).

(1) Every language in NP admits a uniform AC0 proof system.
(2) More generally, every computable language admits a uniform constant depth proof

system.
(3) Even more generally, every language admits a constant-depth proof system.

PROOF. (Sketch.) For an arbitrary language L with characteristic function χL = f ,
let n be a length where L is nonempty. Pick an arbitrary w ∈ L=n. Restricted to length
n, f is computed by a constant-depth Boolean circuit (possibly of size exponential in n)
D. The circuit Cn extends D: If on input x, D(x) = 1, then output x, otherwise output
w. Clearly Cn is also constant-depth, and its range is exactly L=n, proving (3).

Now let the computable language L be decided by the deterministic Turing machine
M. The run-time of M with respect to the length of the input can be assumed to be
computable. Also, a default word w ∈ L=n can be found effectively if it exists. A proof of
a word y ∈ L is an encoding of an accepting sequence of configurations of M on input y.
The correctness of such a sequence of configurations can be checked locally, essentially
in two consecutive configurations, only three letters (around the head position on the
tape) can be different. If our circuit reads an input that is not such an encoding, then
it outputs some default value w ∈ L of the appropriate length as above. All of this can
be done by a constant depth uniform circuit, proving (2).

Let finally L be accepted in polynomial time by the nondeterministic Turing machine
M. Proceeding as above, the checking circuit is of size polynomial in the output word,
proving (1).

ACM Transactions on Computation Theory, Vol. 5, No. 1, Article 2, Publication date: May 2013.

TOCT0501-02 ACM-TRANSACTION May 4, 2013 17:16

Verifying Proofs in Constant Depth 2:5

As mentioned already in the introduction, Cryan and Miltersen [2001] exhibit an
NP-complete language that admits even a uniform NC0 proof system. But it is quite
easy to see that this is not the case for every NP language. Indeed, as a consequence of
the last condition of the definition above, we see that m(n) ≤ 2dn ∈ O(n) and the circuits
Cn are also of size O(n); each bit of the output depends on O(1) bits of the input proof.
Thus if L has NC0 proof systems, then strings in L have linear-sized proofs that are
locally verifiable. This leads to the following observation, which will be considerably
strengthened in Section 4.

PROPOSITION 2.2. There are nontrivial languages in NP that do not admit any
DLOGTIME-uniform NC0 proof system.

PROOF. If a language L has a DLOGTIME-uniform NC0 proof system, then it can
be recognised in NTIME(n): given an input y, guess the linear-sized proof x, evaluate
the circuit C|y|(x), and verify that its output is y. But by the nondeterministic time
hierarchy, we know that NP is not contained in NTIME(n).

3. LANGUAGES WITH NC0 PROOF SYSTEMS

In this section we construct NC0 proof systems for a variety of languages.
We start with an NC1-complete language that admits an NC0 proof system. The

word problem for a finite monoid M with identity e is (membership in) the language:
{〈m1, m2, . . . , mn〉 ∈ M∗ :

∏n
i=1 mi = e}. We assume here that for some constant c depend-

ing only on M, each element of M is described by a bit string of exactly c bits.

PROPOSITION 3.1. The word problem for finite groups admits an NC0 proof system.

PROOF. We describe the circuit Cn : {0, 1}cn−c → {0, 1}cn. (Since the word problem
contains only words of lengths divisible by c, we produce circuits only for such lengths.)
Given the encoding of a sequence g1, . . . , gn−1, and assuming that g0 = gn = e, Cn

produces the sequence 〈h1, . . . , hn〉 where hi = g−1
i−1gi. Thus

∏
hi = e and the word is

indeed in the language. Conversely, every word 〈h1, . . . , hn〉 in the language is produced
by this circuit on input g1, . . . , gn−1 where gi = ∏

j≤i hj .

COROLLARY 3.2. The parity function admits an NC0 proof system.

In proving Proposition 3.1, we used all the three group axioms: associativity, existence
of an identity, and existence of inverses. We can relax some of these and still get an
NC0 proof system. For example, the OR operation is associative and has an identity,
but not all elements do have an inverse. Yet we show that the language LOR = {w =
w1 . . . wn ∈ {0, 1}∗ :

∨n
i=1 wi = 1} has an NC0 proof system.

PROPOSITION 3.3. The language LOR admits an NC0 proof system.

PROOF. The circuit Cn : {0, 1}2n−1 → {0, 1}n takes as input bit strings a = a1 . . . an and
b = b1 . . . bn−1, and outputs a sequence w = w1 . . . wn where

(for 1 ≤ i ≤ n) wi =
{

ai if (bi−1 ∨ ai) = bi
1 otherwise.

Here, for notational convenience we assume that b0 = 0, bn = 1. Notice that if each bi
correctly encodes the OR of the prefix a1 . . . ai, then bn = 1 ensures that at least one
wi = ai is 1. Otherwise, if there is ever a discrepancy between the bi ’s and the prefix
ORs of ajs, we introduce a 1 at wi; thus w is indeed in LOR. Since for each string a ∈ LOR

there is a correct string b with b0 = 0, bi = bi−1 ∨ ai and bn = 1, every string in LOR

is produced by Cn. Thus Cn is an onto map from {0, 1}2n−1 → LOR ∩ {0, 1}n, completing
the proof.

ACM Transactions on Computation Theory, Vol. 5, No. 1, Article 2, Publication date: May 2013.

TOCT0501-02 ACM-TRANSACTION May 4, 2013 17:16

2:6 O. Beyersdorff et al.

We next consider another NC1-complete problem, viz., reachability in bounded width
directed acyclic graphs. This example illustrates a proof system, which, for the lack of
a better description, we refer to as “input altering proofs”.

A layered graph with vertices arranged in layers from 0, 1, . . . , L with exactly W
vertices per layer (numbered from 0, . . . , W − 1) and edges between vertices in layer i
to i + 1 for i ∈ {0, . . . , L − 1} is a positive instance of reachability if and only if there
is a directed path from vertex 0 at layer 0 to vertex 0 at layer L. A description of
the graph consists of a layer-by-layer encoding of the edges as a bit vector. In other
words, it consists of a string x = x0x1 . . . xL−1 ∈ ({0, 1}W2

)L where the xi is indexed by
j, k ∈ {0, . . . , W − 1} and xi[j, k] = 1 if and only if the j-th vertex on the i-th layer and
the k-th vertex on the (i + 1)-th layer share an edge. The language LBWDR consists of
those strings x ∈ ({0, 1}W2

)L which describe a positive instance of reachability for some
W ∈ O(1). Then we have the following.

PROPOSITION 3.4. The language LBWDR admits an NC0 proof system.

PROOF. The proof consists of a string x ∈ ({0, 1}W2
)L which describes the graph and

a string v = v1 . . . vL−1 ∈ ({0, 1}V)L−1 representing a path. Here V = �log W� is the
number of bits required to describe a vertex at a given layer in binary.

Given x, v we first replace each vi that occurs in v and that represents a number
greater than W − 1 by the bit string consisting of V zeroes. This requires a circuit of
depth O(log(V)) = O(log log W). For ease of notation, we refer to the modified v as v
also.

Next, for each i ∈ {0, . . . , L − 1}, we add the edge represented by (vi, vi+1) to the
graph represented by x by setting xi[vi, vi+1] = 1. This ensures that the graph contains
the path represented by v, that is, it is a positive instance. Clearly, to address the
appropriate bits of xi, we need a circuit of depth O(log V) = O(log log W). Finally, we
output this modified x. It is easy to see that all positive instances will be output by this
circuit for some inputs. Since W is a constant, we will obtain an NC0 proof system.

The same idea can be used for addition and comparison. Consider the function f+ :
{0, 1}n×{0, 1}n×{0, 1}n+1 → {0, 1} such that f+(a, b, s) = 1 if and only if A+ B = S where
a, b are the n-bit binary representations of the numbers A, B, and s is the (n + 1)-bit
binary representation of S. Also consider the function f≤ : {0, 1}n × {0, 1}n → {0, 1}
where f≤(a, b) = 1 ⇐⇒ A ≤ B, where again a, b are the n-bit binary representations of
numbers A, B.

PROPOSITION 3.5. The function f+ admits an NC0 proof system.

PROOF. The circuit Cn : {0, 1}3n → {0, 1}3n maps three strings α = αn−1 . . . α0, β =
βn−1 . . . β0, and γ = γn . . . γ1 (for notational convenience assume that γ0 = 0) to strings
a, b, s with the intent that γ will serve as the carry sequence in the grade-school
addition of the two numbers α, β. Also, if we ever discover a discrepancy between the
assumed carry sequence and the two numbers α, β, we correct the error by altering α, β
appropriately to yield a, b. So this is an “input-altering proof”. Formally, for 0 ≤ i ≤ n−1,
if Th3

2(αi, βi, γi) = γi+1 then ai = αi, bi = βi, otherwise, set ai, bi arbitrarily under the
constraint that Th3

2(ai, bi, γi) = γi+1. Also, set si = ai ⊕ bi ⊕ γi. Set sn = γn. The input-
alteration ensures that the output is always in the language, and for each word 〈a, b, s〉
in the language, the proof that gives the correct carry sequence ensures that the word
is produced as output.

PROPOSITION 3.6. The function f≤ admits an NC0 proof system.

ACM Transactions on Computation Theory, Vol. 5, No. 1, Article 2, Publication date: May 2013.

TOCT0501-02 ACM-TRANSACTION May 4, 2013 17:16

Verifying Proofs in Constant Depth 2:7

PROOF. The proof consists of four n-bit strings α, α′, γ, β, with the intent that γ is the
carry sequence for the sum of α, α′ which yields β. Again, in the proof, we ensure that
if the carry bits γi, γi−1 are compatible with α, α′ summing to β, then copy αi, βi to ai, bi
respectively. Otherwise, set ai = 0, bi = 1 (which ensures that for j > i if aj = bj , then
a < b). As before, the input alteration guarantees soundness, and the proof with the
correct carry bits guarantees completeness.

We now consider a P-complete language, Grid Circuit Value. An instance consists of
a planar circuit with vertices embedded in a square grid so that the circuit wires lie
only along the grid edges and are directed to go only due east or due north. All possible
wires are present. The gates can be arbitrary functions of the two inputs and two
outputs. All inputs are present on the outer face of the circuit (i.e., on the southern and
western boundaries). It is easy to see that this problem is contained in P. To see that it
is P hard, we reduce the Circuit Value Problem to it under, say, DLogspace reductions.
First make the circuit planar by using the usual cross-over gadget [Goldschlager 1977]
to remove all crossings. Now embed the circuit in the grid by using a method similar
to the one used in Allender et al. [2009]; and Chakraborty and Datta [2006] to obtain
the required embedding. Finally, we replace all missing wires by altering the gates to
ignore the value from any missing input and output an arbitrary value, say zero along
all missing outputs.

Using the strategy of locally correcting the input if the proof shows an inconsistency,
we can show the following.

PROPOSITION 3.7. The Grid Circuit Value Problem admits an NC0 proof system.

PROOF. The proof consists of a string describing the circuit, that is, the truth tables
of (both outputs) of a gate for each gate position and a value for each of the wires in the
circuit. Since each truth table is for a 2-input and 2-output gate, it is represented by a
truth table of 8 bits. Thus for a grid consisting of n vertices on each side, with m input
variables, the input string is (g, v) ∈ {0, 1}8n2 ×{0, 1}2(n−1)n. The output of the circuit is a
pair (g′, x, b) ∈ {0, 1}8n2 × {0, 1}2n−1 × {0, 1} with g′ describing new truth tables obtained
by copying those from g already consistent with v, and modifying the others to make
them consistent with the values in v (this is always possible by setting one entry of
each inconsistent truth table). The string x describes the values (from v) corresponding
to inputs and b the value of the output gate.

Remark 3.8. As mentioned earlier, Cryan and Miltersen [2001]; (and in fact Agrawal
et al. [1998]) had shows that a certain NP-complete language admits an NC0 proof
system. The language they consider is just an encoding of 3-SAT: for each n, instances
with n variables are encoded by an M = 23

(n
3

)
bit string, where each bit indicates

whether the corresponding potential clause is present in the instance. A proof consists
of an assignment to the propositional variables and a suggestion for a 3-CNF, which
is modified by the proof system in order to be satisfied by the given assignment. The
clause bit is flipped if (and only if) (1) it is on, and (2) the clause is not satisfied by
the assignment. Since each potential clause has its reserved “indicator bit,” checking
whether the clause is satisfied by the assignment requires looking at exactly three
fixed bits of the assignment. It is easy to see that this system generates exactly the
satisfiable 3-SAT instances.

Next, we describe some generic constructions and closures. They are easy to see, but
we state them explicitly for later use.

LEMMA 3.9. Let w be any fixed string and let L be any language. Then L admits an
NC0 system if and only if L · {w} does.

ACM Transactions on Computation Theory, Vol. 5, No. 1, Article 2, Publication date: May 2013.

TOCT0501-02 ACM-TRANSACTION May 4, 2013 17:16

2:8 O. Beyersdorff et al.

LEMMA 3.10. If A, B ⊆ {0, 1}∗ admit NC0 proof systems, then so does A∪ B.

PROOF. Let the proof systems for A and B be witnessed by circuit families C ′ and C ′′,
with proof lengths m′(n), and m′′(n), respectively. We construct the circuit family C for
A∪ B, with proof length m′(n) + m′′(n) + 1, as follows: Cn consists of a copy of C ′

n and a
copy of C ′′

n, and has an input x for C ′, and input y for C ′′, and an extra input bit b. It
outputs the string (C ′

n(x) ∧ b) ∨ (C ′′
n(y) ∧ b̄) where the combination with b and b̄ is done

for each bit position.

Note that in the above proof the depth of the circuit for A∪ B is two more than the
maximum depth of the circuits for A and B. Since union is associative, a union of k
sets can be expressed as a binary tree of unions of depth �log k�. Thus the union of k
languages, each with an NC0 proof system of depth d, has an NC0 proof system of depth
d + 2�log2 k�. In particular, we get the following nonuniform upper bounds.

LEMMA 3.11. Let L ⊆ {0, 1}∗ have the property that there is a constant k such that
for each n, |L∩ {0, 1}n| ≤ k. That is, at each length at most k strings of that length are in
L. Then L admits a nonuniform NC0 proof system.

In certain cases, the complement of a language with an NC0 proof system also has
an NC0 proof system. For example the following lemma.

LEMMA 3.12. Let L ⊆ {0, 1}∗ have the property that there is a constant k such that
for each n, |L ∩ {0, 1}n| ≥ 2n − k. That is, at each length at most k strings of that length
are not in L. Then L admits a nonuniform NC0 proof system.

PROOF. The circuit C for OR−1(1) outputs all strings except the string of all 0s. We
first generalize this to exclude any fixed string y from the output. This is done as
follows: Let y ∈ {0, 1}n be the string that is to be excluded from the output of our proof
circuit. Take the output bits w1, . . . , wn of C and feed them to a layer of XOR gates that
does a bit-by-bit XOR of w and y. The output of the XOR layer is our output string.
Since C never outputs all 0s, the output after XOR-ing with y can never be y.

Now we push this further to exclude k strings.
Let L=n = {0, 1}n\U , where U = {u1, u2, . . . , uk} and u1, . . . , uk ∈ {0, 1}n are the strings

excluded from L.
The proof is by induction on |U |. The base case of |U | = 1 has already been shown.
Assume we have a proof circuit for L \ U for all U with |U | < k. Induction step:

|U | = k. Let l be the first position where there is at least one string in U which has 0
at l and at least one string in U that has a 1 at l. Since |U | > 1, there exists such an
l. Now partition U into U 0 and U 1 based on whether a string has a 0 or a 1 at the lth
position. Now by the choice of l, |U 0| < k and |U 1| < k. From the induction hypothesis
we have a proof circuit C0 for L \ U 0 and a proof circuit C1 for L \ U 1. We construct
proof circuit C for L that takes k bits as input and outputs n bits as follows: Let s ∈ L
be an arbitrary fixed string. Define C(bx) where b is a bit as follows:

—C(bx) = C0(x) if b = 0 and C0(x)l = 0;
—C(bx) = C1(x) if b = 1 and C1(x)l = 1;
—C(bx) = s otherwise.

PROPOSITION 3.13. Every language decidable in nonuniform NC0 has a nonuniform
NC0 proof system.

PROOF. If the circuit C accepts a word w, then let D be the circuit extending C, which
outputs the input if C accepts and otherwise outputs w. Then D enumerates the words
accepted by C.

ACM Transactions on Computation Theory, Vol. 5, No. 1, Article 2, Publication date: May 2013.

TOCT0501-02 ACM-TRANSACTION May 4, 2013 17:16

Verifying Proofs in Constant Depth 2:9

4. LOWER BOUNDS

We now consider languages that do not admit NC0 proof systems, some of them even
regular. At first we focus on nonconstant lower bounds for the depth required in order
to enumerate these languages by circuits with binary gates. Later on we take the
opposite perspective and ask: Given a constant depth bound d, how large a fraction of
a language can be enumerated by an NC0 proof system of depth d? This fraction can
turn out to be exponentially small. All our examples in this section are characterized
by some counting feature.

4.1. Lower Bounds on Depth

We begin with our main concrete example of a non-NC0-enumerable language.

THEOREM 4.1. The function Exact-ORn on n bits, which evaluates to 1 if and only if
exactly one of the input bits is 1, does not admit NC0 proof systems.

PROOF. Suppose there is such a proof system, namely an NC0-computable function
f : {0, 1}m −→ {0, 1}n. Let Ri ⊆ [m] be the proof bit positions that have a path to the ith
output bit. For each i, there is at least one setting of the Ri bits that places a 1 in the
ith bit of the output (producing the output string ei). All extensions of this setting must
produce ei. Therefore | f −1(ei)| ≥ 2m−|Ri |. Let c = maxn

i=1 |Ri|; by assumption, c ∈ O(1).
Then for each i ∈ [n], | f −1(ei)| ≥ 2m−c. But the f −1(ei) partition {0, 1}m. Hence

2m =
n∑

i=1

| f −1(ei)| ≥
n∑

i=1

2m−c = n2m−c.

Therefore c ≥ log n, so ∃i ∈ [n] : |Ri| ≥ log n, a contradiction.

Generalizing this proof technique, we derive a criterion below which implies non-
constant lower bounds for the depth of an enumerating circuit family.

THEOREM 4.2. Let L be a language and �, t : N → N functions. Suppose for each length
nwhere L=n is nonempty, there is a set W of t(n) distinct strings W = {w1, . . . , wt(n)} ⊆ L=n

satisfying the following: For each w ∈ W, there exists a set S = {i1, . . . , i�(n)} ⊆ [n] of �(n)
positions such that if x is in L=n , and if x agrees with w on S, then x equals w. That is,
the bits of w in positions indexed by S fix all the remaining bits. Then the depth of any
bounded fan-in circuit family that enumerates L is at least log log t(n) − log �(n).

PROOF. Let f : {0, 1}m(n) −→ {0, 1}n be a depth-d(n)-circuit enumerating the length n
members of L and let �(n) and t(n) be as in the statement of the theorem. Denote the
resulting words w1, . . . , wt(n).

For each of the w j the following holds: The �(n) crucial bits have paths to at most
r(n) = �(n)2d(n) bits of the proof. Thus there is a setting to r(n) bits of the proof, all
extensions of which generate the same output w j . Hence | f −1(w j)| ≥ 2m(n)−r(n).

Now we just count the number of proofs. As there are m(n) proof bits,

2m(n) = number of proofs ≥
t(n)∑
j=1

number of proofs for w j ≥ t(n)2m(n)−r(n)

and hence

2r(n) ≥ t(n); �(n)2d(n) = r(n) ≥ log t(n); d(n) ≥ log log t(n) − log �(n).

Using this theorem, we can show that several functions are not enumerable in con-
stant depth.

ACM Transactions on Computation Theory, Vol. 5, No. 1, Article 2, Publication date: May 2013.

TOCT0501-02 ACM-TRANSACTION May 4, 2013 17:16

2:10 O. Beyersdorff et al.

Exact Counting. Consider the function Exact-Countn
k on n bits: it evaluates to 1 if

and only if exactly k of the input bits are 1. (Exact-ORn is precisely Exact-Countn
1.)

For each length n there are exactly
(n

k

)
words in Exact-Countn

k. And whenever k bits of
a word are set to value 1, then all remaining bits are bound to take the value 0. So
for Exact-Countn

k the parameters t(n) and �(n), defined in the theorem above, take the
values

(n
k

)
and k, respectively, which yields a lower bound of

d(n) = log log
(

n
k

)
− log k ≥ log log

(
nk

kk

)
− log k = log(log n − log k)

on the depth of an enumerating circuit family. For k(n) sublinear in n this gives an
unbounded function; thus for every sublinear k(n), Exact-Countn

k does not admit an
NC0 proof system. Note that for a constant k, this language is even regular.

The threshold functions ¬Thn
k+1 and dually Thn

n−k for sublinear k. Let Thn
a be the

function that evaluates to 1, if and only if at least a of the n inputs are set to 1 The
lower bounds for these languages are derived precisely by the same argument given
above for Exact-Countn

k. So they also yield the same set of parameters.
In more detail, Strings in Thn

n−k (or ¬Thn
k+1) can have at most k 0s (at most k 1s,

respectively). There are t(n) = (n
k

)
ways of choosing l(n) = k positions from [n]; for each

such choice, setting the bits in the chosen positions to 0 (1, resp.) forces all other bits
to be 1 (0, resp.).

The language 0∗1∗ and iterations. First consider 0∗1∗, whose members consist of a
(possibly empty) block of 0s followed by a (possibly empty) block of 1s. The n+1 length-
n members of 0∗1∗ are in 1-1 correspondence to the members of Exact-Countn+1

1 via
the NC0 mapping w1 . . . wn �−→ x1 . . . xn+1, where xi := wi−1 ⊕ wi, with the convention
that w0 := 0 and wn+1 := 1. Thus an NC0 proof system of 0∗1∗ would directly yield
one for Exact-Countn+1

1 , which we have shown to be impossible. The parameters from
the theorem are �(n) = 2 (two consecutive bits with different values or simply w1 = 1
or wn = 0) and t(n) = n + 1. By the same argument, for sublinear k, the languages
consisting of either exactly or up to k alternating blocks of 0s and 1s do not admit NC0

proof systems.

Majority. The majority language consists of those words that have at least as many
1s as 0s. Majority also does not admit an NC0 proof system. But this does not follow
from an extension of the techniques described so far, and requires a completely different
and significantly more nontrivial approach. Instead of presenting it here, we devote
the entire next section (Section 5) to this proof.

4.2. List Enumerations

Consider a circuit C : {0, 1}m −→ {0, 1}tn. On input x, C can be thought of as producing
a list L(x) of t strings of length n. (An alternative view is that we allow t circuits, here
merged into one, to enumerate words of length n.) We say that C t-enumerates L or is
a t-list proof system for L if

⋃
x L(x) = L. What we have been considering all along is

t = 1.
For instance, every sparse language admits a nonuniform NC0 polynomial-list proof

system, as every word can be generated by a subcircuit with constant output. So in
particular, the regular languages Exact-Countn

k for constant k are of this kind, though
they do not have NC0 proof systems.

We observe below that any sublanguage of Exact-Countn
1 enumerated by a sin-

gle circuit is small, and hence Exact-Countn
1 requires �(n)-lists. We will use this in

ACM Transactions on Computation Theory, Vol. 5, No. 1, Article 2, Publication date: May 2013.

TOCT0501-02 ACM-TRANSACTION May 4, 2013 17:16

Verifying Proofs in Constant Depth 2:11

Theorem 4.7 to prove a lower bound for the list length of the language of all permuta-
tion matrices.

LEMMA 4.3. Let L be a subset of Exact-Countn
k that has an NC0 proof system which

is computed by a depth d circuit family. Then, for each length n, the set L=n, of length n
members of L has at most 2k2d

elements.

PROOF. This follows directly from Theorem 4.2, replacing t(n) by |L=n|.
The Sunflower Lemma of Erdős-Rado gives rise to an alternative proof of a variant

of the last lemma, albeit with a considerably weaker upper bound on the size of the
enumerated fraction, for example, for k = 1 the upper bound is 2d!222d

. Here, a sunflower
is formed out of sets of input bit positions that influence the relevant subsets of output
bits. For completeness, we describe this proof technique below for k = 1. Unfortunately,
even this technique does not yield a lower bound for Majority.

PROPOSITION 4.4 (ERDŐS-RADO). Let F = {S1, S2, . . . , Sk} be a family of subsets of some
universe. If

(1) |Si| ≤ � for all i, and
(2) k > (p − 1)l · l!,

then F contains a sunflower with p petals. That is, there is a subfamily F ′ = {T1, . . . , Tp}
with each Ti ∈ F such that for some set T , for any two i
= j, Ti ∩ Tj = T . T is called
the core of the sunflower.

LEMMA 4.5. Let C : {0, 1}m −→ {0, 1}n be a depth d circuit whose outputs are a subset
of Exact-Countn

1. Then C produces at most N = (2d)!222d
distinct outputs.

PROOF. We prove this by contradiction. Assume that C enumerates more than N
distinct outputs.

Let Ri denote the bits of the input that reach the ith bit of the output. Each Ri is
of size at most 2d. Set F = {Ri | C can produce a 1 in position i}. By our assumption,
|F | > N.

Set � = 2d, p = 22d + 1. Then |F | > (p − 1)� · �!, so there is a sunflower with p petals.
Let the indices of the sets forming the petals be I ⊆ [n], |I| = p. Let R be the core;
clearly |R| ≤ 2d. For distinct i, j ∈ I, Ri ∩ Rj = R.

Now consider any setting α to the proof bits in R. If there is an extension that
produces a 1 in a position i indexed by I, then all extensions of α must produce zeroes
in positions j ∈ I \ {i}. So no core setting can have two extensions with 1s in two
different positions. However, there are (distinct) core settings that can produce a 1 in
each of the petals. Thus

#petals ≤ #number of core settings ≤ 2|R|,

that is, 22d + 1 ≤ 22d
, a contradiction.

Remark 4.6. A simple modification allows the proof to go through for ¬Thn
2 as well.

That is, a depth-d circuit can produce at most N outputs from Exact-OR, in addition to
possibly the all-zeroes string. (The argument above only uses the fact that two 1s are
disallowed, not that one 1 is required.)

A permutation matrix of order n is an n× n 0-1-matrix in which every row and every
column contains exactly one 1. Lemma 4.3 or Lemma 4.5 give the following.

THEOREM 4.7. If C is a depth d circuit that t-enumerates the set of all permutation
matrices of order n, then t grows exponentially with n.

ACM Transactions on Computation Theory, Vol. 5, No. 1, Article 2, Publication date: May 2013.

TOCT0501-02 ACM-TRANSACTION May 4, 2013 17:16

2:12 O. Beyersdorff et al.

PROOF. The circuit C can be thought of as t distinct circuits C1, . . . , Ct with the same
proof. Each row of each matrix output by each Ci belongs to Exact-OR. By Lemma 4.3,
each Ci can construct at most (22d

)n matrices (it has at most 22d
choices for each row).

But the total number of choices must be at least the number of permutation matrices.
Thus n! ≤ t(22d

)n. Hence if d ∈ O(1), t must be exponentially large.

The same idea also works for proving lower bounds on the list of enumerations of
matrices which encode all Hamiltonian cycles in a complete graph or all paths from
1 to n in Kn.

4.3. Constant Influence

Motivated by their investigation into NC0 cryptography [Applebaum et al. 2006, 2008],
Applebaum et al. [2009] investigated cryptography with constant input locality. As
a related question, we ask which languages can be proven by circuits that have the
property that every input bit influences only constantly many output bits.

In the remainder of this section we look at proof circuits that were NC0 like before,
but with the added restriction that each input bit can only influence constantly many
output bits. We show that Exact-Countn

k and Thn
k do not have proof circuits with this

added restriction for suitable values of n and k.
The proof is based on the following observation for any proof circuit for Exact-Countn

k:
Let C be a proof circuit for Exact-Countn

k. For an output gate i of C we denote by sup(i)
the set of all input gates of C that have a path to i. For a set S of output gates of C
we let sup(S) = ⋃

i∈S sup(i). Now, for any set of output positions S ⊆ [n], |S| = k and
i ∈ [n], i /∈ S, we have sup(S)∩ sup(i)
= ∅. If this were not true, then we could obtain
(k + 1) 1s in the output by setting the bits in sup(S) to get k 1s corresponding to the
positions in S, and by setting the sup(i) to get a 1 in the ith output position.

The preceding can be generalized to the following.

LEMMA 4.8. The language Exact-Countn
k does not have a proof circuit of depth d with

each input bit influencing at most c output bits if n ≥ c2d + k.

PROOF. Suppose such a circuit exists, take any output position i ∈ [n]. We know
that | sup(i)| ≤ 2d. Let T be the set of all output bits j for which sup(i) ∩ sup(j)
= ∅.
|T | ≤ c2d. Now if n ≥ c2d + k, then we can find a set S ⊆ [n] of output positions such
that |S| = k and S ∩ T = ∅. This implies that sup(S) ∩ sup(i) = ∅, contradicting the
observation made previously.

COROLLARY 4.9. The language Exact-Countn
n/2 does not have a proof system of constant

depth and constant influence.

A similar observation as above holds for threshold functions as well: Let C be a proof
circuit for Thn

k. Then, for any subset of output positions S ⊆ [n], |S| = n − k and any
i /∈ [n], we have sup(S) ∩ sup(i)
= ∅. If this were not true, then we could force C to
output n− k+ 1 0s by setting the support of S and the support of i such that we get 0s
in all the S positions and position i.

LEMMA 4.10. The function Thn
k does not have a proof circuit of depth d with each

input bit influencing at most c output bits if n > k ≥ c2d.

PROOF. Suppose such a circuit exists, call it C. Take any output position i ∈ [n]. We
know that | sup(i)| ≤ 2d. Let T be the set of all output bits that have a support bit in
sup(i). |T | ≤ c2d. Now since k ≥ c2d, we can find a set of output positions S ⊆ [n] with
|S| = n − k such that S ∩ T = ∅. Since T was all the bits that are influenced by sup(i),

ACM Transactions on Computation Theory, Vol. 5, No. 1, Article 2, Publication date: May 2013.

TOCT0501-02 ACM-TRANSACTION May 4, 2013 17:16

Verifying Proofs in Constant Depth 2:13

we have sup(S) ∩ sup(i) = ∅. The above observation can be used to conclude that C can
be forced to output a string that has more than n − k 0s.

The following is an easy corollary; it is, however, subsumed by the much stronger (and
much more difficult to prove) Theorem 5.1 proved in the next section.

COROLLARY 4.11. Majority does not have a proof circuit family with constant depth
and constant influence.

5. MAJORITY DOES NOT ADMIT NC0 PROOF SYSTEMS

The language MAJ consists of all 0-1-words that contain more 1s than 0s. The language
EXMAJ consists of all 0-1-words w that contain exactly 1 + �|w|/2� 1s. Clearly, EXMAJ ⊆
MAJ. If w is in EXMAJ, and if a single bit in w is flipped from 1 to 0, then the resulting
string w′ is not in MAJ. We will exploit this to show that MAJ does not admit an NC0

proof system.

Intuitive Idea. Assume that there is an NC0 proof system for MAJ. The idea of the
proof is that there are two types of inputs: inputs that influence a linear number
of outputs—call these the high-fanout inputs—and inputs that influence a sublinear
number of outputs—these are the low-fanout inputs. (Note our nonstandard use of the
term fanout, which refers to the number of output bits an input is connected to instead
of the number of wires leaving the gate.) Since every output is connected to a constant
number of inputs, there can only be a constant number of high-fanout inputs. So nearly
all inputs are of low-fanout.

We will try to find an output xi whose value can only be changed by manipulating
the set S of low-fanout inputs connected to xi. Also, since low-fanout inputs are only
connected to a sublinear number of outputs, we can assume that S is connected to less
than n/2 of the outputs. So we can find a word w in MAJ that has a 1 at every position
that depends on the input bits of S and assign the remaining outputs in such a way
that we even get a word w in EXMAJ. Since this is a valid word in MAJ, the proof system
needs to generate it, hence there is an assignment of the inputs that outputs w.

But now we can modify the input bits in S and toggle xi to the value 0. Toggling the
input bits in S only affects output bits that were assigned to 1, hence this might flip
additional bits from value 1 to value 0. But the word generated in this way by the proof
system has fewer 1s than w, and hence is not in MAJ. It follows there is no NC0 proof
system for MAJ.

Formalizing this idea is a bit more complicated. It turns out that we need a finer
gradation of what we consider high-fanout. We will define a decreasing function g :
N −→ N, and at stage e, we consider an input connected to more than g(e) output
bits as high-fanout. Say that Xe is the set of high-fanout inputs at stage e. If we can
find an output xi as above, we will have obtained a contradiction. But we may not
immediately succeed in finding such an xi, since it may be the case that settings to the
high-fanout bits Xe fix each output xi. We then carefully fix a small set Re of output bits
and an assignment we to these bits in a way such that each output outside of Re can be
toggled without changing the input setting to Xe. At this point, we look for a string in
EXMAJ agreeing with we, and try to obtain a contradiction by toggling a carefully chosen
output. If we still cannot obtain a contradiction, we move on to the next stage. Finally,
we show that if we complete stage c for some suitably chosen constant c, then we get
a different kind of contradiction: a few high-fanout input bits completely determine
many output bits. A simple counting argument shows that this cannot happen for MAJ.

To make this argument rigorous, we define a certain assertion �e concerning stage
e. This assertion states that there is a setting we to a set Re of output bits satisfying
four properties: (1) Re is small; (2) assignments to Xe compatible with we do not fix

ACM Transactions on Computation Theory, Vol. 5, No. 1, Article 2, Publication date: May 2013.

TOCT0501-02 ACM-TRANSACTION May 4, 2013 17:16

2:14 O. Beyersdorff et al.

any output bit outside Re; (3) the forbidden set Fe+1, consisting of output bits sharing
a low-fanout input with some bit in Re; is small, and (4) every nonforbidden-output is
connected to at least one input that will enter the high-fanout set at stage e + 1. Then
the above argument can be rephrased as: �0 is true, �e ⇒ �e+1, but at least one of
�0, . . . ,�c−1 is not true. This is obviously a contradiction.

With this idea in mind, we now state and prove our theorem.

THEOREM 5.1. The language MAJ of all 0-1-words that contain more 1s than 0s does
not admit an NC0 proof system.

PROOF. Assume that (Cn) is an NC0 family of circuits enumerating MAJ. Let d be the
maximal depth of the circuits Cn and let c ≤ 2d be the maximum number of input bits
connected to the same output bit. It is easy to see that no projection can be a proof
system for MAJ. Hence c ≥ 2.

Let In and Out denote the sets of input and output bits of Cn, respectively. For a set
A of nodes of the circuit, define the sets

Out(A) := {y ∈ Out | y is connected to some x ∈ A}
In(A) := {x ∈ In | x is connected to some y ∈ A}

For a singleton {x} whose only element is an input/output bit, we simply write Out(x)
or In(x).

Define functions f, g as follows:

f (e) :=
{

1 for e = 0
c5 f (e−1)+1 for e > 0

g(e) := cn
f (e)

.

Clearly, f is an increasing function and g is a decreasing function. Note that f does not
depend on the value of n. All arguments in the proof will work for a choice of n ≥ 4 · f (c).
We use g to define the high-fanout set at each stage;

Xe :=
{

x ∈ In
⏐⏐⏐⏐ | Out(x)| > g(e)

}
.

Note that for each e, Xe−1 ⊆ Xe. Also, since there are at most cn input-output-
connections in circuit Cn, and since each input bit in Xe contributes more than g(e)
input-output connections, we obtain

|Xe| · g(e) < (number of input-output connections in Cn) ≤ cn = f (e) · g(e).

Thus the function f (e) yields an upper bound for the size of Xe.
We now state an assertion concerning the circuit Cn for a parameter e; call this

assertion �e.

Assertion 1 (�e). There exists a set Re ⊆ Out, and a setting we to Re, satisfying the
following properties.

(1) |Re| ≤ 2 f (e)+1.
(2) for each y ∈ Out \Re, for each assignment q : Xe → {0, 1} compatible with we, and

for each value b ∈ {0, 1}, there is a legal configuration of the circuit extending we ∪ q
and setting y to b.

(3) Let Fe+1 := Re ∪ Out(In(Re) \ Xe+1). (Fe+1 denotes the set of forbidden outputs.)
Then |Fe+1| ≤ n

c3 .
(4) ∀y ∈ Out \Fe+1, In(y) ∩ (Xe+1 \ Xe)
= ∅.

ACM Transactions on Computation Theory, Vol. 5, No. 1, Article 2, Publication date: May 2013.

TOCT0501-02 ACM-TRANSACTION May 4, 2013 17:16

Verifying Proofs in Constant Depth 2:15

We prove the theorem by contradiction. Assuming that (Cn) enumerates MAJ, we will
show that for all sufficiently large n, the following statements hold:

(A).. �0 is true.
(B).. �0,�1, . . . ,�c−1 are not simultaneously true.
(C).. For all 1 ≤ e < c, �e−1 =⇒ �e.

With these statements established in Lemmas 5.2, 5.3, and 5.4, we reach a contra-
diction, and the proof of the main theorem is complete.

Proof of the Statements (A)–(C).

LEMMA 5.2 (STATEMENT (A)). �0 is true.

PROOF. Note that X0 = ∅. Define R0 = ∅, w0 = ε. Then F1 = ∅. Properties 1,3 are
trivial. Property 2 holds because no bit in MAJ is fixed; each y can take values 0 and 1.

It remains to show Property 4. Suppose Property 4 fails; that is, there is an output bit
y with no connections to X1. Then the neighborhood of y, defined as N(y) = Out(In(y)),
has size at most c × g(1) = n/c4 < n/2. So there exists a string z in EXMAJ with only
1s at members of N(y), and hence a configuration β of the circuit compatible with z.
By changing the input settings in β only in In(y), we can set output y to 0. Since In(y)
reached only positions set to 1 in β, the change strictly decreases the number of 1s
in the output. Thus Cn outputs a string not in MAJ, a contradiction. Hence Property 4
must hold.

LEMMA 5.3 (STATEMENT (B)). �0,�1, . . . ,�c−1 are not simultaneously true.

PROOF. Assume to the contrary that for each e ∈ {0, 1, . . . , c − 1}, �e is true. Define
F = ∪c

e=1 Fe, and let G := Out \F denote the remaining output bits.
Consider any output bit y ∈ G. For each e ∈ [c], y is not in Fe, so by Property 4 in

�e−1, In(y) has a bit in Xe \ Xe−1. Thus In(y) has at least c bits in Xc. But In(y) has at
most c bits overall, so In(y) is in fact completely contained in Xc.

By Property 3 of each �e, we know that |G| ≥ n − c(n/c3) = n − n/c2 ≥ 3n/4. As
remarked earlier, f (e) is an upper bound on |Xe|, and so |Xc| < f (c). We saw above that
for each y ∈ G, In(y) ⊆ Xc. Thus, in legal configurations of the circuit, the assignment
to G is determined by the assignment to Xc. But there are fewer than 2 f (c) distinct
assignments to Xc, while there are at least

(|G|
n
4

) ≥ 2n/4 distinct assignments to G
corresponding to strings in MAJ. For sufficiently large n, this is impossible.

LEMMA 5.4 (STATEMENT (C)). For all 1 ≤ e < c, �e−1 =⇒ �e.

PROOF. To show that �e holds, we first describe a procedure that extends Re−1 and
we−1 to Re and we, and then show that the extension satisfies Properties 1 to 4 of �e. The
immediate objective of the extension procedure is to satisfy property 2 of �e; control
the input bits in Xe \ Xe−1 by restricting the output to a configuration that does not
allow the Xe part of the input to fix further output bits.

Set R = Re−1 and w = we−1. Define the set Q as follows.

Q :=
{

q ∈ {0, 1}Xe

⏐⏐⏐⏐ q is compatible with w

}
.

Perform the Prune procedure described in the following text.

ACM Transactions on Computation Theory, Vol. 5, No. 1, Article 2, Publication date: May 2013.

TOCT0501-02 ACM-TRANSACTION May 4, 2013 17:16

2:16 O. Beyersdorff et al.

The Prune Procedure. Perform the following step as long as possible.

Find a partial configuration q ∈ Q, a position y in Out \R, and a value
b ∈ {0, 1} such that all configurations of the circuit extending q set y to b.
Add y to R, set y to b in w making w incompatible with q, and remove from
Q all assignments (including q) that are incompatible with w.

After the Prune procedure terminates, set Re to the resulting R, and we to the
resulting w.

The four claims that follow show that this choice of Re and we satisfies �e. First, we
state a simple but important observation: After every step in the Prune procedure, Q
satisfies

Q =
{

q ∈ {0, 1}Xe

⏐⏐⏐⏐ q is compatible with w

}
.

In connection with the first property stated in �e and proven below this implies that
Q is not empty as long as n > 2 f (e)+2.

Claim 5.5 (Property 1 of �e holds). |Re| ≤ 2 f (e)+1.

PROOF. We start with |Q| = 2|Xe| and R = Re−1. Each time we add a position to R, we
discard at least one element from Q. So |Re| ≤ |Re−1| + 2|Xe|.

Using the fact that f (e) is an upper bound for |Xe|, the property 1 of �e−1, and the
definition of f , we get |Re| ≤ |Re−1| + 2|Xe| ≤ 2 f (e−1)+1 + 2 f (e) ≤ 2 f (e)+1.

Claim 5.6 (Property 2 of �e holds). For each y ∈ Out \Re, for each assignment
q : Xe → {0, 1} compatible with we, and for each value b ∈ {0, 1}, there is a legal
configuration of the circuit extending we ∪ q and setting y to b.

PROOF. Recall that the way the Prune procedure is defined, all settings q : Xe −→
{0, 1} compatible with we are in Q, and none of them determine the bit at any position
y ∈ Out \Re. Hence for any such y and any value b, it is possible to extend q ∪ we and
set the bit at position y to b.

Claim 5.7 (Property 3 of �e holds). For sufficiently large n, |Fe+1| ≤ n/c3.

PROOF. Recall that Fe+1 := Re ∪ Out(In(Re) \ Xe+1).

n
c3 − |Fe+1| ≥ n

c3 − (|Re| + c · |Re| · g(e + 1)
)

= n
c3 − |Re|

(
1 + c · nc

f (e + 1)

)

≥ n
c3 − 2 f (e)+1 ·

(
1 + nc2

f (e + 1)

)
using Claim 5.5

= n ·
(

1
c3 − c22 f (e)+1

f (e + 1)

)
− 2 f (e)+1

= δen − 2 f (e)+1.

ACM Transactions on Computation Theory, Vol. 5, No. 1, Article 2, Publication date: May 2013.

TOCT0501-02 ACM-TRANSACTION May 4, 2013 17:16

Verifying Proofs in Constant Depth 2:17

It suffices to show that δe > 0, since then we can choose a sufficiently large n and ensure
that δen exceeds 2 f (e)+1. (Note, for e ≤ c, δe and f (e) are constants independent of n.)

δe > 0 ⇐⇒ δec3 f (e + 1) > 0.

δec3 f (e + 1) = f (e + 1) − c52 f (e)+1

= c5 f (e)+1 − c52 f (e)+1

≥ 2 f (e)+1c4 f (e) − c52 f (e)+1, since c ≥ 2,

= 2 f (e)+1[c4 f (e) − c5]
≥ 0, since e ≥ 1 and c ≥ 2, 4 f (e) ≥ 5.

ALTERNATIVE PROOF. Using Claim 1, the definitions of Xe+1, g and f , and the facts that
c ≥ 2 and 1 ≤ e ≤ c − 1 along with the choice of n ≥ 4 f (c), we get

|Fe+1| ≤ |Re| + | Out(In(Re) \ Xe+1)|
≤ 2 f (e)+1 + g(e + 1) · 2 f (e)+1 · c

= 2 f (e)+1 + cn
f (e + 1)

· 2 f (e)+1 · c

≤ c f (c−1)+1 + c2n2 f (e)+1

c5 f (e)+1

≤ f (c)
c4 + c2n

c6 · 2 f (e)+1

c f (e)+1

≤ n
c4 + n

c4 = n
c3 .

Claim 5.8 (Property 4 of �e holds). For sufficiently large n, ∀y ∈ Out \Fe+1, In(y) ∩
(Xe+1\Xe)
= ∅.

PROOF. Suppose the claim does not hold. That is, suppose there exists a y ∈ Out\Fe+1
such that In(y) ∩ (Xe+1\Xe) = ∅. But note that In(y) ∩ In(Re) ⊆ Xe+1; otherwise y would
have been in Fe+1 by definition. Putting these together, we conclude that In(y) ∩ In(Re) ⊆
Xe. Generalizing the corresponding argument used in establishing statement (A), we
will now show that this is not possible.

Consider the e-neighborhood of y defined as U := Out(In(y)\Xe). Since y
∈ Fe+1, the
sets U and Re are disjoint. We have that |U | ≤ n/c4, since by definition of f , for e > 0,
f (e) ≥ c6, and hence |U | ≤ c · g(e) ≤ c2n/ f (e) ≤ n/c4. Together with Claim 5.5, for
sufficiently large n, |Re ∪ U | < n/2. Hence there exists a string z in EXMAJ with only 1s
at positions in U , and according to we at positions in Re. Hence there is a configuration
β of the circuit compatible with z; let this configuration restricted to Xe be α. (Thus β
extends α ∪ we.) We have already established Property 2 of �e. Applying this to y and
α with b = 0, we conclude that there is another configuration γ , also extending α ∪ we,
such that γ has a 0 at y.

Now change the input settings of β only at positions in In(y)\Xe to match the settings
in γ . This change can affect only the output bits in U . In particular, it changes output
y from 1 to 0. Since U had only 1s in β, the change strictly decreases the number of 1s
in the output. Thus Cn outputs a string not in MAJ, a contradiction.

With Claims 5.5, 5.6, 5.7, 5.8, Lemma 5.4 is established.

ACM Transactions on Computation Theory, Vol. 5, No. 1, Article 2, Publication date: May 2013.

TOCT0501-02 ACM-TRANSACTION May 4, 2013 17:16

2:18 O. Beyersdorff et al.

6. PROOF SYSTEMS FOR REGULAR LANGUAGES

In this section we describe some sufficient conditions under which regular languages
have NC0 proof systems. The regular languages we consider may not necessarily be over
a binary alphabet, but we assume that a binary (letter-by-letter) encoding is output.

Our first sufficient condition abstracts the strategy used to show that OR has an
NC0 proof system. This strategy exploits the fact that there is a DFA for OR, where
every useful state has a path to an “absorbing” final state. (Here, by useful, we mean
that the state q lies on some path from the start state to a final state. This is syntactic
usefulness, and may not correspond to real usefulness if for each such path through q
there is also another accepting path avoiding q.)

THEOREM 6.1. Let L be a regular language accepted by an NFA M = (Q, �, δ, F, q0).
Let F ′ ⊆ F denote the set of absorbing final states; that is, F ′ = { f ∈ F | ∀a ∈ �, δ(f, a) =
f }. Suppose M satisfies the following condition:

For each q ∈ Q, if there is a path from q to some f ∈ F, then there is a path
from q to some f ′ ∈ F ′.

Then L has an NC0 proof system.

PROOF. We assume without loss of generality that all states of M are useful (they
lie on some accepting path); if not, we remove nonuseful states (and the hypothesized
property continues to hold). The hypothesis is that from each state q, we can reach
some absorbing final state via a word of length at most k = |Q| − 1. Pick any such word
arbitrarily, pad it arbitrarily with a suffix so that its length is exactly k, and denote the
resulting word as fin(q) (i.e., fin(q) “finalizes” q). Clearly, δ(q, fin(q)) ∈ F ′.

The proof consists of the word x broken into blocks of size k, with the remainder
bits at the beginning. In addition, the proof provides the state of M after each block
on some accepting run. So the total proof is x0, x1, . . . , xN, q1, . . . , qN where N = �n/k�,
each qi ∈ Q, xi ∈ �k for i ≥ 1, and x0 ∈ �<k are the remainder bits.

The word w output by the proof system on such a proof is also broken into blocks in
the same way, and each block is defined as follows:

w0 = x0

w1 =
{

x1 if q2 ∈ δ(q0, x0x1)
fin(δ(q0, x0)) otherwise.

For 2 ≤ i ≤ N, wi =
{

xi if qi ∈ δ(qi−1, xi)
fin(qi−1) otherwise.

Since |Q| and |�| are constant, the transition function δ can be implemented by a circuit
of constant size. And since k is a constant, checking if qi ∈ δ(qi−1, xi) can be done in
NC0. Thus the above can be implemented in NC0.

Observe that the OR and the Exact-OR are both star-free languages, but the comple-
ments in the expression for OR are applied to the empty set, whereas those in Exact-OR
are applied to nonempty sets. Based on this, we formulate and prove the following suf-
ficient condition for a star-free regular language to have an NC0 proof system.

Definition 6.2. Strict star-free expressions over an alphabet � are exactly the ex-
pressions, obtained as follows:

(1) ε, a for each a ∈ �, �∗ = ∅̄ are strict star-free.
(2) If r and s are strict star-free, so is (r · s).
(3) If r and s are strict star-free, so is (r + s).

ACM Transactions on Computation Theory, Vol. 5, No. 1, Article 2, Publication date: May 2013.

TOCT0501-02 ACM-TRANSACTION May 4, 2013 17:16

Verifying Proofs in Constant Depth 2:19

THEOREM 6.3. Let r be a strict star-free expression describing a language L = L(r).
Then L admits an NC0 proof system.

PROOF. We first note that in a regular expression, · distributes over +. Hence it is
possible to repeatedly apply this rule of distributivity to arrive at an expression that
is of the form s1 + s2 + · · · + sk, where each si is simply a concatenation without any +.
So we assume that we have a strict star-free regular expression in this form.

Now, if we can show that each of the expressions si has an NC0 proof system, then we
can use the fact that NC0 proof systems are closed under finite union (Lemma 3.10).

The following claim shows that this is indeed true.

Claim 6.4. Let L be a language recognized by a strict star-free expression s that
does not have a +. Then L admits NC0 proof systems.

PROOF. The expression s must be of the form w1 ∅̄ w2 ∅̄ . . . wk−1 ∅̄ wk, where wi ∈ �+
for 1 < i < k and w1, wk ∈ �∗. Let s = w1 ∅̄ w2 ∅̄ . . . wk−1 ∅̄ wk. Note that if w1
= ε,
then we can hardwire w1 to be the first |w1| symbols in the output of our proof circuit.
Similarly, wk can be hardwired at the end. Now for the central ∅̄ w2 ∅̄ w3 . . . wk−1 ∅̄
part: Notice that any minimal DFA for this expression will have a self-absorbing final
state to which all states have a path. Hence Theorem 6.1 implies that we have an NC0

proof system for this language. Using this NC0 proof system, and hardwiring w1 and
wk as prefix and suffix respectively, we obtain an NC0 proof system for L.

Theorem 6.1 essentially characterizes functions like OR. On the other hand, the
parity function, that has an NC0 proof system, cannot be recognized by any DFA or
NFA with an absorbing final state. The strategy used in constructing the proof system
for parity exploits the fact that the underlying graph of the DFA for parity is strongly
connected. In the following result, we abstract this property and prove that strong
connectivity in an NFA recognizer is indeed sufficient for the language to admit an NC0

proof system.

THEOREM 6.5. Let L be accepted by NFA M = (Q, �, δ, F, q0). If the directed graph
underlying M is strongly connected, then L admits an NC0 proof system.

PROOF. We use the term “walk” to denote a path that is not necessarily simple, and
“closed walk” to denote a walk that begins and ends at the same vertex. The proof
system circuit construction we describe below is applied only for those lengths where
L is nonempty.

The idea behind the NC0 proof system we will construct here is as follows: We take
as input a sequence of blocks of symbols x1, x2, . . . , xk, each of length l, and as proof, we
take the sequence of states q1, q2, . . . , qk that M reaches after each of these blocks on
some accepting run. Now we make the circuit verify at the end of each block whether
that part of the proof is valid. If it is valid, then we output the block as is. Otherwise,
if some xi does not take M from qi−1 to qi, then we want to make our circuit output
a string of length l that indeed makes M go from qi−1 to qi. So we make our circuit
output a string of symbols which will first take M from qi−1 to q0, then from q0 to qi.
To ensure that this length is indeed l, we sandwich in between a string of symbols that
takes M on a closed walk from q0 to q0. We now proceed to formally prove that closed
walks of the required length always exist, and that this can be done in NC0.

Define the following set of non-negative integers:

T = { � | there is a closed walk through q0 of length exactly � }.

ACM Transactions on Computation Theory, Vol. 5, No. 1, Article 2, Publication date: May 2013.

TOCT0501-02 ACM-TRANSACTION May 4, 2013 17:16

2:20 O. Beyersdorff et al.

Since M is strongly connected, we know that T is nonempty. Let g be the greatest
common divisor of all the numbers in T . Note that though T is infinite, it has a finite
subset T ′ whose gcd is g.

Choose a subset S of states as follows:

S = { q ∈ Q | there is a walk from q0 to q whose length is 0 mod g } .

Claim 6.6. For every p ∈ Q, ∃�p, rp ∈ {0, 1, . . . , g − 1} such that

(1) the length of every path from q0 to p is ≡ �p (mod g);
(2) the length of every path from p to q0 is ≡ rp (mod g).

PROOF. Let �, �′ be the lengths of two q0-to-p paths, and let r, r′ be the lengths of two
p-to-q0 paths. Then there are closed walks through q0 of length �+r, �+r′, �′ +r, �′ +r′,
and so g must divide all these lengths. So � = −r (mod g) = −r′ (mod g), and r = −�
(mod g) = −�′ (mod g). It follows that � ≡ �′ (mod g) and r ≡ r′ (mod g).

From here onwards, for each p ∈ Q, by �p and rp we mean the numbers as defined in
the preceding claim.

Claim 6.7. For every p ∈ S, �p = rp = 0.

PROOF. By the definition of S, we have �p = 0. Suppose rp
= 0. Let w be a word
taking M from p to q0. Appending this to any word w′ that takes M from q0 to p gives
a closed walk through q0 whose length is 0 + rp
= 0 (mod g). This contradicts the fact
that g is the gcd of numbers in T .

Claim 6.8. There is a constant c0 such that for every K ≥ c0, there is a closed walk
through q0 of length exactly Kg.

PROOF. This follows from Lemma 6.9 below.

Note that if g = 1, then every state is in S, and for every state p, lp = rp = 0.
Claim 6.8 then asserts that there are closed walks through q0 of every possible length
exceeding c0.

Let K = |Q|. Now set t = � K−1
g � and � = t · g. Then, for every p ∈ S, there is a path

from q0 to p of length t′g on word α(p), and a path from p to q0 of length t′′g on word
β(p), where 0 ≤ t′, t′′ ≤ t. α(p) and β(p) are not necessarily unique. We can arbitrarily
pick any such string.

If for all accepting states f ∈ F, � f
≡ n (mod g), then L=n = ∅, and the circuit Cn is
empty.

Otherwise, let r = n (mod g). There is at least one final state f such that � f ≡ r
(mod g). Thus there is at least one string of length t′g + r, with 0 ≤ t′ ≤ t, that takes M
from q0 to f .

We now construct a proof circuit C : �n × Qn −→ �n. We consider the inputs of
the proof circuit to be divided into blocks. We choose the block size to be a multiple
of g, with the possible exception of the last block. In particular, we choose block size
cg = (2t + c0)g. The last block is of size c′g + r for some 0 ≤ c′ < c.

Let k = �n/cg�. Now the total proof is x1, . . . , xk, xk+1, q1, . . . , qk, qk+1 where each
qi ∈ Q, xi ∈ �cg for i ≤ k, and xk+1 ∈ �c′g+r for some 0 ≤ c′ < c.

The word w output by the proof system on such a proof is also broken into blocks in
the same way, and each block is obtained as follows.

(1) For 1 ≤ i < k, if qi ∈ δ(qi−1, xi), then wi = xi. Otherwise, wi is obtained by concate-
nating β(qi−1), a word u such that q0 ∈ δ(q0, u), and α(qi). We need |u| = (c− t′ − t′′)g,
and we know that (c − t′ − t′′) ≥ c0g, and hence Claim 6.8 guarantees that such a
word u exists.

ACM Transactions on Computation Theory, Vol. 5, No. 1, Article 2, Publication date: May 2013.

TOCT0501-02 ACM-TRANSACTION May 4, 2013 17:16

Verifying Proofs in Constant Depth 2:21

Fig. 1. The strongly connected NFA from Example 6.10.

(2) If qk+1 ∈ δ(qk−1, xkxk+1) and qk+1 ∈ F, then let wkwk+1 = xkxk+1.
Otherwise, let wkwk+1 have as suffix a string of length t′g + r in L, where 0 ≤ t′ ≤ t.
By the choice of t we know that such a string exists. This leaves a prefix of length
(cg + c′g + r) − (t′g + r) = (c + c′ − t)g with (c + c′ − t) ≥ c0g. We insert here a word
u such that u takes q0 to q0; by Claim 6.8, such a word exists.

LEMMA 6.9 (FOLKLORE). Let T be a set of positive integers with gcd g. There is a
constant c0 such that for every K ≥ c0, Kg can be generated as a non-negative integral
combination of the integers in T .

PROOF. We prove the statement by induction on |T |. Let T = {m1, m2, . . . , mt} be the
given set.

Basis. If t = 1, then g = m1 and Kg = Km1, so set c0 to 1.
Inductive Hypothesis. Assume the statement is true for all sets of size t − 1.
Inductive Step. T is a set of size t.

It suffices to prove the statement when g = 1; for larger g, let T ′ be the set {t/g | t ∈ T }.
Then T ′ has gcd 1, and if we can generate all numbers beyond c0 with T ′, then we can
generate all Kg for K ≥ c0 with T . So now assume T has gcd 1.

Let g′ denote the gcd of the subset R consisting of the first t − 1 numbers. If g′ =
1, then, even without using the last number mt, we are already done by induction.
Otherwise, let m = mt. Then the numbers g′, m are co-prime because gcd for T is 1. By
induction, there is a constant c′ such that using only numbers from R, we can generate
K′g′ for any K′ ≥ c′. Set c = (c′ + m)g. Consider any number n ≥ c.

The numbers 0 < n − (c′ + m − 1)g, n − (c′ + m − 2)g, . . . , n − (c′ + 1)g, n − c′g all
have different residues modulo m. (If not, suppose for some 0 ≤ i < j ≤ m − 1,
n − (c′ + i)g ≡ n − (c′ + j)g (mod m). Then (j − i)g ≡ 0 (mod m), and so m must divide
(j−i)g. Since 0 < j−i < m, mdoes not divide j−i. But mis co-prime to g. Contradiction.)
So for some 0 ≤ i < m, and for some non-negative integer a, n− (c′ + i)g = am. That is,
n = (c′ + i)g+am. By the induction hypothesis, (c′ + i)g can be generated using numbers
in R ⊆ T , and m ∈ T . So n can be generated from T .

Example 6.10. The following shows the construction of the proof circuit as in the
proof of Theorem 6.5 for the regular language L = (19 + 06)∗. Consider the NFA for L
shown in Figure 1. Using the same notation as in Theorem 6.5, we have T = {6, 9}. The
greatest common divisor of the numbers in T is g = 3. Then we have S = {q3, q6, q′

3}.
It is easy to see that, in our example, Claim 6.8 goes through for c0 = 2. We choose the
block length to be

� =
⌊ |Q| − 1

g

⌋
g + c0g +

⌊ |Q| − 1
g

⌋
g = 12 + 6 + 12 = 30.

This is chosen such that in the case of an input block that claims to take state p to
state p′ and does not have the correct proof, our proof system can output a set of at

ACM Transactions on Computation Theory, Vol. 5, No. 1, Article 2, Publication date: May 2013.

TOCT0501-02 ACM-TRANSACTION May 4, 2013 17:16

2:22 O. Beyersdorff et al.

most 12 symbols to go from p to q0, and then cycle around q0 using kg symbols where
k > c0 is chosen appropriately, and finally output at most 12 symbols to go from q0
to p′. Note that in this way, for each pair of states p, p′ ∈ S, we can produce a path
p � q0 � q0 � p′ of length exactly 30. For example, consider the pair q3, q′

3. There is
a path of length 6 from q3 to q0 and a path of length 3 from q0 to q′

3. Since we want the
total length of the path from q3 to q′

3 to be exactly 30, we sandwich a closed walk of
length 21 at q0. It is easy to see that such a closed walk exists in the NFA shown.

COROLLARY 6.11. For every p prime, the language MODp = {x | |x|1 ≡ 1 mod p}
admits an NC0 proof system.

All the proof systems for regular languages in Section 3 are obtained by applying one
of Theorems 6.1, 6.3, 6.5, in conjunction with a generic closure property.

7. CONCLUSION

In this article we initiated a systematic study of the power of NC0 proof systems. We
obtained a number of upper and lower bounds, some for specific languages, some more
generic. The main open question that arises from our investigation is a combinatorial
characterization of all languages that admit NC0 proof systems. Our generic results
from Section 6 can be seen as a first step towards such a characterization for regular
languages. We believe that further progress essentially depends on strengthening our
lower bound techniques.

Agrawal’s results on constant-depth isomorphisms [Agrawal 2010] provide a possible
tool to approach our main question: if we have an NC0 isomorphism between two
languages A and B, and B admits an NC0 proof system, then so does A. The proofs for
A are taken to be the proofs for B, then we simulate the proof system for B, and to the
obtained word in B we apply the inverse of the reduction and enumerate an element
from A.

In fact, our work seems to bear further interesting connections to recent examinations
on isomorphism of complete sets for the class NP. This work was started in the nineties
in a paper by Agrawal et al. [1998], where it was shown that (1) every language
complete for NP under AC0 reductions is in fact already complete under (nonuniform)
NC0 reductions (this is called “gap theorem” in Agrawal et al. [1998]); and (2) that all
languages complete for NP under AC0 reductions are (nonuniformly) AC0 isomorphic
(that is, the reduction is an AC0 bijection). This was later improved to uniform AC0

isomorphisms [Agrawal 2010]. It follows from a result in Agrawal et al. [2001] that
this cannot be improved to P-uniform NC0 isomorphisms. Using our results on proof
systems, we obtain a very simple direct proof.

PROPOSITION 7.1. There are sets A and B that are NP complete under NC0 reductions
but are not NC0 isomorphic.

PROOF. Let A be the NP-complete set from Cryan and Miltersen [2001] that admits
an NC0 proof system, cf. Remark 3.8. A is NP complete under AC0 reductions, hence by
the gap theorem, under NC0 reductions.

Let B be the disjoint union of A and Exact-OR from Section 4. Then B is complete for
NP under NC0 reductions because A reduces to B in NC0.

If now A and B are NC0 isomorphic, then we obtain an NC0 proof system for B and
from this, an NC0 proof system for Exact-OR, a contradiction.

ACKNOWLEDGMENTS

We thank Sebastian Müller (Prague) for interesting and helpful discussions on the topic of this article.

ACM Transactions on Computation Theory, Vol. 5, No. 1, Article 2, Publication date: May 2013.

TOCT0501-02 ACM-TRANSACTION May 4, 2013 17:16

Verifying Proofs in Constant Depth 2:23

REFERENCES

MANINDRA AGRAWAL. 2010. The isomorphism conjecture for constant depth reductions. J. Comput. System Sci.
77, 1, 3–13.

MANINDRA AGRAWAL, ERIC ALLENDER, RUSSELL IMPAGLIAZZO, TONIANN PITASSI, AND STEVEN RUDICH. 2001. Reducing
the complexity of reductions. Comput. Complexity 10, 2, 117–138.

MANINDRA AGRAWAL, ERIC ALLENDER, AND STEVEN RUDICH. 1998. Reductions in circuit complexity: An isomor-
phism theorem and a gap theorem. J. Comput. Syst. Sci. 57, 2, 127–143.

ALLENDER, E., MIX BARRINGTON, D. A., CHAKRABORTY, T., DATTA, S., AND ROY, S. 2009. Planar and grid graph
reachability problems. Theory Comput. Syst. 45, 4, 675–723.

BENNY APPLEBAUM, YUVAL ISHAI, AND EYAL KUSHILEVITZ. 2006. Cryptography in NC0. SIAM J. Comput. 36, 4,
845–888.

BENNY APPLEBAUM, YUVAL ISHAI, AND EYAL KUSHILEVITZ. 2008. On pseudorandom generators with linear stretch
in NC0. Comput. Complexity 17, 1, 38–69.

BENNY APPLEBAUM, YUVAL ISHAI, AND EYAL KUSHILEVITZ. 2009. Cryptography with constant input locality.
J. Cryptology 22, 4, 429–469.

OLAF BEYERSDORFF, SAMIR DATTA, MEENA MAHAJAN, GIDO SCHARFENBERGER-FABIAN, KARTEEK SREENIVASAIAH,
MICHAEL THOMAS, AND HERIBERT VOLLMER. 2011a. Verifying proofs in constant depth. In Proceedings of
the 36th Symposium on Mathematical Foundations of Computer Science. Lecture Notes in Computer
Sciences, vol. 6907, Springer, Berlin, 84–95.

OLAF BEYERSDORFF, JOHANNES KÖBLER, AND SEBASTIAN MÜLLER. 2011b. Proof systems that take advice. Inf.
Comput. 209, 3, 320–332.

OLAF BEYERSDORFF AND SEBASTIAN MÜLLER. 2010. A tight Karp-Lipton collapse result in bounded arithmetic.
ACM Trans. Comput. Logic 11, 4, Article 22 DOI:http://dx.doi.org/10.1145/1805950.1805952.

TANMOY CHAKRABORTY AND SAMIR DATTA. 2006. One-input-face MPCVP is hard for L, but in logDCFL. In
Proceedings of FSTTCS. Lecture Notes in Computer Science, vol. 4337, S. Arun-Kumar and Naveen
Garg, eds., Springer, Berlin, 57–68.

STEPHEN A. COOK AND JAN KRAJÍČEK. 2007. Consequences of the provability of NP ⊆P/poly. J. Symbolic Logic
72, 4,1353–1371.

STEPHEN A. COOK AND ROBERT A. RECKHOW. 1979. The relative efficiency of propositional proof systems.
J. Symbolic Logic 44, 1, 36–50.

MARY CRYAN AND PETER BRO MILTERSEN. 2001. On pseudorandom generators in NC0. In Proceedings of the 26th
Symposium on Mathematical Foundations of Computer Science. Springer, Berlin, 272–284.

GOLDSCHLAGER, L. M. 1977. The monotone and planar circuit value problems are logspace complete for
P. SIGACT News 9, 2, 25–29.

SHAFI GOLDWASSER, DAN GUTFREUND, ALEXANDER HEALY, TALI KAUFMAN, AND GUY N. ROTHBLUM. 2007. Verifying
and decoding in constant depth. In Proceedings of the 39th ACM Symposium on the Theory of Computing.
ACM, New York, 440–449.

JOHAN HÅSTAD. 1987. One-way permutations in NC0. Inf. Process. Lett. 26, 3, 153–155.
EDWARD A. HIRSCH. 2010. Optimal acceptors and optimal proof systems. In Proceedings of TAMC. Lecture

Notes in Computer Science vol. 6108, Jan Kratochvı́l et al., eds., Springer, Berlin, 28–39.
EDWARD A. HIRSCH AND DMITRY ITSYKSON. 2010. On optimal heuristic randomized semidecision procedures,

with application to proof complexity. In Proceedings of the 27th Symposium on Theoretical Aspects of
Computer Science. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 453–464.

ELCHANAN MOSSEL, AMIR SHPILKA, AND LUCA TREVISAN. 2006. On ε-biased generators in NC0. Random Struct.
Alg. 29, 1, 56–81.

PAVEL PUDLÁK. 2009. Quantum deduction rules. Ann. Pure Appl. Logic 157, 1, 16–29.
NATHAN SEGERLIND. 2007. The complexity of propositional proofs. Bull. Symbolic Logic 13, 4, 417–481.
EMANUELE VIOLA. 2011. Extractors for circuit sources. In Proceedings of the FOCS. IEEE, 220–229.
EMANUELE VIOLA. 2012. The complexity of distributions. SIAM J. Comput. 41, 1, 191–218.
HERIBERT VOLLMER. 1999. Introduction to Circuit Complexity – A Uniform Approach. Springer, Berlin.
INGO WEGENER. 1987. The Complexity of Boolean Functions. B. G. Teubner & John Wiley, Stuttgart.

Received June 2012; revised January 2013; accepted January 2013

ACM Transactions on Computation Theory, Vol. 5, No. 1, Article 2, Publication date: May 2013.

