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A proof system for a language L is a function f such that Range( f ) is exactly L. In this article, we look
at proof systems from a circuit complexity point of view and study proof systems that are computationally
very restricted. The restriction we study is proof systems that can be computed by bounded fanin circuits
of constant depth (NC0) or of O(log log n) depth but with O(1) alternations (poly log AC0). Each output bit
depends on very few input bits; thus such proof systems correspond to a kind of local error correction on a
theorem-proof pair.

We identify exactly how much power we need for proof systems to capture all regular languages. We show
that all regular languages have poly log AC0 proof systems, and from a previous result (Beyersdorff et al.
[2011a], where NC0 proof systems were first introduced), this is tight. Our technique also shows that MAJ

has poly log AC0 proof system.
We explore the question of whether TAUT has NC0 proof systems. Addressing this question about 2TAUT,

and since 2TAUT is closely related to reachability in graphs, we ask the same question about Reachability.
We show that if Directed reachability has NC0 proof systems, then so does 2TAUT. We then show that both
Undirected Reachability and Directed UnReachability have NC0 proof systems, but Directed Reachability is
still open.

In the context of how much power is needed for proof systems for languages in NP, we observe that proof
systems for a good fraction of languages in NP do not need the full power of AC0; they have SAC0 or coSAC0

proof systems.
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1. INTRODUCTION

Let f be any computable function mapping strings to strings. Then f can be thought
of as a proof system for the language L = range( f ) in the following sense: To prove
that a word x belongs to L, provide a word y that f maps to x. That is, view y as a
proof of the statement “x ∈ L,” and computing f (y) is then tantamount to verifying the
proof. From the perspective of computational complexity, interesting proof systems are
those functions that are efficiently computable and have succinct proofs for all words
in their range. If we use polynomial-time computable as the notion of efficiency, and
polynomial-size as the notion of succinctness, then NP is exactly the class of languages
that have efficient proof systems with succinct proofs. For instance, the coNP-complete
language TAUT has such proof systems if and only if NP equals coNP [Cook and Reckhow
1979].

Since we do not yet know whether NP equals co-NP, a reasonable question to ask
is how much more computational power and/or non-succinctness is needed before we
can show that TAUT has a proof system. For instance, allowing the verifier the power
of randomized polynomial-time computation on polynomial-sized proofs characterizes
the class MA; allowing quantum power characterizes the class QCMA. One could also
allow the verifier access to some advice, yielding non-uniform classes; see, for instance,
Cook and Krajı́ček [2007], Pudlák [2009], Hirsch [2010], Hirsch and Itsykson [2010],
and Beyersdorff et al. [2011b].

An even more interesting, and equally reasonable, approach is to ask the following:
How much do we need to reduce the computational power of the verifier before we can
formally establish that TAUT does not have a proof system within those bounds? This
approach has seen a rich body of results, starting from the pathbreaking work of Cook
and Reckhow [1979]. The common theme in limiting the verifier’s power is to limit the
nature of proof verification or, equivalently, the syntax of the proof, for example, proof
systems based on resolution, Frege systems, and so on. See Beame and Pitassi [2001]
and Segerlind [2007] for excellent surveys on the topic.

Instead of restricting the proof syntax, if we only restrict the computational power
of the verifier, it is not immediately obvious that we get anywhere. This is because it
is already known that NP is characterised by succinct proof systems with extremely
weak verifiers, namely AC0 verifiers. Recall that in AC0 we cannot even check if a
binary string has an odd number of 1s [Furst et al. 1984; Håstad 1986]. But an AC0

computation can verify that a given assignment satisfies a Boolean formula. Nonethe-
less, one can look for verifiers even weaker than AC0; this kind of study was initiated
in Beyersdorff et al. [2013] where NC0 proof systems were investigated. In an NC0

proof system, each output bit depends on just O(1) bits of the input, so to enumerate
L as the range of an NC0 function f , f must be able to do highly local corrections to
the alleged proof while maintaining the global property that the output word belongs
to L. Unlike with locally decodable error-correcting codes, the correction here must
be deterministic and always correct. This becomes so restrictive that even some very
simple languages, that are regular and in AC0, do not have such proof systems, even
allowing non-uniformity. And yet there is an NP-complete language that has a uniform
NC0 proof system (see Cryan and Miltersen [2001]). (This should not really be that
surprising, because it is known that in NC0 we can compute various cryptographic
primitives.) So the class of languages with NC0 proof systems slices vertically across
complexity classes. It is still not known whether TAUT has a (possibly non-uniform) NC0

proof system. Figure 1 shows the relationships between classes of languages with proof
systems of the specified kind. (Solid arrows denote proper inclusion, and dotted lines
denote incomparability.)
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Fig. 1. Some constant-depth proof systems.

The work in Beyersdorff et al. [2013] shows that languages of varying complex-
ity (complete for NC1, P, NP) have uniform NC0 proof systems, while the languages
EXACT-OR and MAJ, among others, do not have even non-uniform NC0 proof systems. It
then focuses on regular languages and shows that a large subclass of regular languages
has uniform NC0 proof systems. This work takes off from that point.

Our Results

We address the question of exactly how much computational power is required to
capture all regular languages via proof systems and answer this question exactly.
One of our main results (Theorem 3.6) is that every regular language has a proof
system computable by a circuit with bounded fanin gates, depth O(log log n), and O(1)
alternations. Equivalently, the proof system is computable by an AC0 circuit where each
gate has fanin (log n)O(1); we refer to the class of such circuits as poly log AC0 circuits.
By the result of Beyersdorff et al. [2013], EXACT-OR requires depth �(log log n), so (up
to constant multiplicative factors) this is tight. Our proof technique also generalises to
show that MAJ has poly log AC0 proof systems (Theorem 3.9).

The most intriguing question here, posed in Beyersdorff et al. [2013], is to charac-
terize the regular languages that have NC0 proof systems. We state a conjecture for
this characterization; the conjecture throws up more questions regarding decidability
of some properties of regular languages.

We believe that TAUT does not have AC0 proof systems because otherwise NP = coNP
(see Cook [1971]). As a weaker step, can we at least prove that it does not have NC0

proof systems? Although it seems that this should be easy to show, we have not yet
succeeded. So we ask the same question about 2TAUT, which is in NL and hence
may well have an NC0 proof system. The standard NL algorithm for 2TAUT is via
a reduction to STCONN. So it is interesting to ask the following: Does STCONN have
an NC0 proof system? We do not know yet. However, we show in Theorem 4.2 that if
STCONN has an NC0 proof system, then so does 2TAUT.

Intuition suggests that reachability between two vertices in a graph is, in some
sense, a global property and hence STCONN should not have NC0 proof systems. How-
ever, in our other main result, we show that the undirected analogue of STCONN, a
language complete for L, has an NC0 proof system (Theorem 4.11). Our construction
relies on a careful decomposition of even-degrees-only graphs (established in the proof
of Theorem 4.12) that may be of independent interest. We also show that directed un-
reachability, which is also complete for NL, has an NC0 proof system (Proposition 4.17).

Finally, we observe that Graph Isomorphism does not have NC0 proof systems. We
also note that for every language L in NP, the language ({1} · L · {0}) ∪ 0∗ ∪ 1∗ has both
SAC0 and coSAC0 proof systems (Theorem 5.2).
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2. PRELIMINARIES

Unless otherwise stated, we consider only bounded fanin circuits over ∨,∧,¬.

Definition 2.1 (Beyersdorff et al. [2013]). A circuit family {Cn}n>0 is a proof system
for a language L if there is a function m : N −→ N such that for each n where L=n �= ∅,

(1) Cn has m(n) inputs and n outputs,
(2) for each y ∈ L=n, there is an x ∈ {0, 1}m(n) such that Cn(x) = y (completeness),
(3) for each x ∈ {0, 1}m(n), Cn(x) ∈ L=n (soundness).

Note that the parameter n for Cn is the number of output bits, not input bits. NC0 proof
systems are proof systems as above where the circuit has O(1) depth. The definition
implies that the circuits are of linear size. AC0 proof systems are proof systems as
above where the circuit Cn has O(log n) depth but O(1) alternations between gate
types. Equivalently, they are proof systems as above of nO(1) size with unbounded fanin
gates and depth O(1).

PROPOSITION 2.2 (BEYERSDORFF ET AL. [2013]). A regular language L satisfying any of
the following has an NC0 proof system:

(1) L has a strict star-free expression (built from ε, a, and �∗, using concatenation and
union).

(2) L is accepted by an automaton with a universally reachable absorbing final state.
(3) L is accepted by a strongly connected automaton.

PROPOSITION 2.3 (BEYERSDORFF ET AL. [2013]).

(1) Proof systems for MAJ need ω(1) depth.
(2) Proof systems for EXACT-COUNT

n
k and ¬TH

n
k+1 need �(log(log n − log k)) depth. In

particular, proof systems for EXACT-OR and for EXACT-OR ∪0∗ need �(log log n) depth.

3. PROOF SYSTEMS FOR REGULAR LANGUAGES

We first explore the extent to which the structure of regular languages can be used
to construct NC0 proof systems. At the base level, we know that all finite languages
have NC0 proof systems. Building regular expressions involves unions, concatenation,
and Kleene closure. And the resulting class of regular languages is also closed under
many more operations; see, for instance, Hopcroft and Ullman [1979]. We examine
these operations one by one.

THEOREM 3.1. Let C denote the class of languages with NC0 proof systems. Then C is
closed under

(1) finite union [Beyersdorff et al. 2013],
(2) concatenation with finite sets [Beyersdorff et al. 2013],
(3) reversal,
(4) fixed-length morphisms,
(5) inverses of fixed-length morphisms,
(6) fixed-length regular transductions computed by strongly connected (nondeterminis-

tic) finite-state automata.

PROOF. Closure under reversal is trivial.
Let h be a fixed-length morphism h : {0, 1} −→ {0, 1}k for some fixed k. Given a proof

system (Cn) for L, a proof system (Dn) for h(L) consists of n parallel applications of h
to the each bit of the output of the circuit Cn. Given a proof system D′

n for L, a proof
system C ′

n for h−1(L) consists of n parallel applications of h−1 applied to disjoint k-length
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blocks of the output of the circuit D′
kn. C ′

n needs additional input for each block to choose
between possibly multiple pre-images.

If L has an NC0 proof system (Cn) and h is a regular transduction computed by a
strongly connected automaton M, then the construction from Beyersdorff et al. [2013]
(Proposition 2.2 (3)) with the output w of Cn as input will produce a word x ∈ L(M).
A small modification allows us output the transduction h(x) instead of x. This works
provided there are constants k, � such that each edge in M is labeled by a pair (a, b)
with a ∈ {0, 1}k and b ∈ {0, 1}�.

THEOREM 3.2. Let C denote the class of languages with NC0 proof systems. C is not
closed under

(1) complementation [Beyersdorff et al. 2013],
(2) concatenation,
(3) symmetric difference,
(4) cyclic shifts,
(5) permutations and shuffles,
(6) intersection,
(7) quotients.

PROOF. As noted in Beyersdorff et al. [2013], TH
n
2 has an NC0 proof system but its

complement EXACT-OR ∪ 0∗ does not. The languages denoted by the regular expres-
sions 1, 0∗, 10∗, and the languages TH1, TH2 all have NC0 proof systems. The language
EXACT-OR does not, but it can be written as 0∗ · 10∗ (concatenation), as TH2�TH1 (sym-
metric difference), as the result of cyclic shifts or permutations on 10∗, and as the
shuffle of 1 and 0∗.

To see the last two non-closures, it is easier to use non-binary alphabets; the coding
back to {0, 1} is straightforward. Over the alphabet {0, 1, a, b}, the languages (0∗10∗ ∪
(0 + 1 + a)∗a(0 + 1 + a)∗) and (0∗10∗ ∪ (0 + 1 + b)∗b(0 + 1 + b)∗) both have NC0 proof
systems (this follows from Proposition 2.2 (2)), but their intersection is EXACT-OR. Also,
consider the languages A = a0∗, B1 = {xay | |x| = |y|, x ∈ EXACT-OR, y ∈ 0∗}, B2 = {xay |
|x| = |y|, x ∈ (0 + 1)∗, y ∈ TH1}. Then A and B = B1 ∪ B2 have NC0 proof systems but
EXACT-OR = B | A.

(A proof system for B is as follows: The input proof at length 2n+1 consists of a word
w ∈ (0 + 1)n and the sequence of n states q1, . . . , qn allegedly seen by an automaton M
for EXACT-OR on reading w. The circuit copies w into x. If qi−1, wi, qi is consistent with
M, then it sets yi to 0, otherwise it sets yi to 1. It can be verified that the range of this
circuit is exactly B=2n+1.)

A natural idea is to somehow use the structure of the syntactic monoid (equivalently,
the unique minimal deterministic automaton) to decide whether a regular language has
an NC0 proof system and, if so, to build one. Unfortunately, this idea collapses at once:
the languages EXACT-OR and TH2 have the same syntactic monoid; by Proposition 2.3,
EXACT-OR has no NC0 proof system; and by Proposition 2.2 TH2 has such a proof system.

The next idea is to use the structure of a well-chosen (non-deterministic) automaton
for the language to build a proof system; Proposition 2.2 does exactly this. It describes
two possible structures that can be used. However, one is subsumed in the other; see
Observation 3.3 below.

OBSERVATION 3.3. Let L be accepted by an automaton with a universally reachable
absorbing final state. Then L is accepted by a strongly connected automaton.
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PROOF. Let M be the non-deterministic automaton with universally reachable and
absorbing final state q. That is, q is an accepting state such that (1) q is reachable from
every other state of M, and (2) there is a transition from q to q on every letter in �. Add
moves from q to every state of M on any arbitrary letter (or even ε) to get automaton
M′. Then M′ is strongly connected, and L(M′) = L(M).

A small generalisation beyond strongly connected automata is automata with exactly
two strongly connected components. However, the automaton for EXACT-OR is like this,
so even with this small extension, we can no longer construct NC0 proof systems. (In
fact, we need as much as �(log log n) depth.)

Finite languages do not have strongly connected automata. But they are strict star-
free and hence have NC0 proof systems. Strict star-free expressions lack non-trivial
Kleene closure. What can we say about their Kleene closure? It turns out that for any
regular language, not just a strict-star-free one, the Kleene closure has an NC0 proof
system.

THEOREM 3.4. If L is regular, then L∗ has an NC0 proof system.

PROOF. Let M be an automaton accepting L, with no useless states. Adding ε moves
from every final state to the start state q0, and adding q0 to the set of final states gives
an automaton M′ for L∗. Now M′ is strongly connected, so Proposition 2.2 gives the
NC0 proof system.

Based on the above discussion and known (counter-) examples, we conjecture the
following characterization. The structure implies the proof system, but the converse
seems hard to prove.

CONJECTURE 3.5. Let L be a regular language. The following are equivalent:

(1) L has an NC0 proof system.
(2) For some finite k, L = ⋃k

i=1 ui · Li · vi , where each ui, vi is a finite word, and each Li
is a regular language accepted by some strongly connected automaton.

An interesting question arising from this is whether the following languages are
decidable:

REG-SCC =
{

M
∣∣∣∣ M is a finite-state automaton; L(M) is accepted by

some strongly connected finite automaton

}

REG-NC0-PS =
{

M
∣∣∣∣ M is a finite-state automaton; L(M) has an NC0

proof system

}

(Instead of a finite-state automaton, the input language could be described in any form
that guarantees that it is a regular language.)

It can be shown that REG-SCC is indeed decidable by using the result of Grunsky
et al. [2006]. The main result from Grunsky et al. [2006] shows that for every regular
language L, there exists a constant cL such that every NFA with more than cL states
that recognizes L contains at least two mergeable states. Moreover, cL can be computed
from a representation of L. The key observation is that merging two states in a strongly
connected NFA results in a strongly connected NFA. So if there is a strongly connected
NFA for L, then there is one with at most cL states. Hence the problem of checking if a
regular language L has a strongly connected NFA can be decided by first computing cL
and then checking if any NFA with at most cL states accepts L.

We do not yet know whether the second question is decidable.
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We now establish one of our main results. NC0 is the restriction of AC0 where the
fanin of each gate is bounded by a constant. By putting a fanin bound that is ω(1)
but o(nc) for every constant c (“sub-polynomial”), we obtain intermediate classes. In
particular, restricting the fanin of each gate to be at most poly log n gives the class
that we call poly log AC0 lying between NC0 and AC0. We show that it is large enough
to have proof systems for all regular languages. As mentioned earlier, Proposition 2.3
implies that this upper bound is tight.

THEOREM 3.6. Every regular language has a poly log AC0 proof system.

PROOF. Let A = (Q, �, δ, q0, F) be an automaton for L. We assume that � = {0, 1},
and larger finite alphabets can be suitably coded. We unroll the computation of A on
inputs of length n to get a layered branching program B with n + 1 layers numbered
0 to n. The initial layer of B has just the start node s, which behaves like q0 in the
automaton, while every other layer of the branching program has as many vertices as
|Q|. Since A may have multiple accepting states, we add an extra layer at the end with
a single sink node t and connect all copies of accepting states at layer n to t by edges
labeled 1. Note that B has the following properties:

—Length l = n + 2.
—Every layer except the first and last layer has width (number of vertices in that layer)

w = |Q|.
—Edges are only between consecutive layers. These edges and their labelling are ac-

cording to δ.
—All edges from layer i − 1 to layer i are labelled either xi or xi.
—A word a = a1 . . . an is accepted by A if and only if B has a path from s to t (with n+ 1

edges) with all edge labels consistent with a.

Any vertex u ∈ B can be indexed by a two tuple (�, p) where � stands for the layer
where u appears and p is the position where u appears within layer �.

Represent the interval (0, n + 1] as a binary tree T where

(1) the root corresponds to the interval (0, n + 1] = {1, 2, . . . , n + 1},
(2) a node corresponding to interval (i, j] has children corresponding to intervals

(i, � i+ j
2 �] (left child) and (� i+ j

2 �, j] (right child), and
(3) a node corresponding to interval (k − 1, k] for k ∈ [n + 1] is a leaf.

We call this the interval tree. For each interval (i, j] in T , we provide a pair of states
〈u, v〉; these are intended to be the states qi and qj in the alleged accepting run ρ. (Note
that the state sequence on ρ itself is now supposed to be specified at the leaves of T .)

Consider the interval tree T for (0, n + 1] described above. The input to the proof
system consists of a string a ∈ {0, 1}n and a pair of labels 〈u, v〉 for each node in the
interval tree. The labels u, v point to nodes of B. For interval (i, j], the labels are of the
form u = (i, p), v = ( j, q). Since i, j are determined by the node in T , the input only
specifies the pair 〈p, q〉 rather than 〈u, v〉. That is, it specifies a pair of states from A.
At the root node, the labeling is hardwired to be 〈s, t〉.

Given a word a = a1 . . . an and a labeling as above of the interval tree, we define
feasibility and consistency as follows:

(1) A leaf node (k − 1, k] with k ∈ [n], labeled 〈p, q〉, is
(a) feasible if there exists an edge from (k − 1, p) to (k, q) in B. (That is, there

exists b ∈ � such that q ∈ δ(p, b).)
(b) consistent if there exists an edge from (k − 1, p) to (k, q) in B labeled xk if

ak = 1, labeled xk if ak = 0. (That is, q ∈ δ(p, ak).)
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(The case k = n + 1 is simpler: feasible and consistent if p is a final state of A.)
(2) An internal node (i, j] labeled 〈p, q〉 is

(a) feasible if there exists a path from (i, p) to ( j, q) in B. (That is, there exists a
word b ∈ � j−i such that q ∈ δ̃(p, b).)

(b) consistent if it is feasible, both its children are feasible, and the labels 〈p′, q′〉
and 〈p′′, q′′〉 of its left and right children respectively satisfy: p = p′, q = q′′,
q′ = p′′.

(3) A node is fully consistent if all its ancestors (including itself) are consistent.

Since the label at the root of T is hardwired, the root node is always feasible. But it
may not be consistent.

For each node (i, j] in the interval tree, and each potential labeling 〈p, q〉 for this
node, let u = (i, p) and v = ( j, q). Define the predicate R(u, v) to be 1 if and only if
there is a path from u to v in B (i.e., this potential labeling is feasible.) Whenever
R(u, v) = 1, fix a partial assignment wu,v that assigns 1 to all literals that occur as
labels along an arbitrarily chosen path from u to v. Note that wu,v assigns exactly j − i
bits, to the variables xi+1, . . . , xj . We call wu,v the feasibility witness for the pair
(u, v).

Let y be the output string of the proof system we construct. A bit yk of the output
y is computed as follows: Find the lowest ancestor of the node (k − 1, k] that is fully
consistent.

—If the leaf node (k − 1, k] is fully consistent, then output ak.
—If there is no such node, then the root node is inconsistent. Since it is feasible, the

word ws,t is defined. Output the kth bit of ws,t.
—If such a node is found, and it is not the leaf node itself but some (i, j] labeled 〈p, q〉,

then let u = (i, p) and v = ( j, q). The word wu,v is defined and assigns a value to xk.
Output this value.

It follows from this construction that every word a ∈ L can be produced as output: Give
in the proof the word a and label the interval tree fully consistent with an s − t path of
B consistent with a (equivalently, an accepting run of A on a).

It also follows that every word y output by this construction belongs to L. On any
proof, moving down from the root of the interval tree, locate the frontier of lowest fully
consistent nodes. These nodes are feasible and correspond to a partition of the input
positions, and the procedure described above outputs a word constructed by patching
together the feasibility-witnesses for each part.

To see that the above construction can be implemented in depth O(log log n) with O(1)
alternations, observe that each of the conditions, feasibility, consistency, and equality,
of two labels depend on O(log w) bits. Hence depth of O(log log n) and O(1) alternations
suffices for their implementation.

More formally, define the following set of predicates:

—EQUAL : [w]2 −→ {0, 1} the Equality predicate on log w bits.
—For each 0 ≤ i < j ≤ n + 1, FEASIBLEi, j : [w]2 −→ {0, 1} is the Feasibility predicate

with arguments the labels (p, q) at interval (i, j].
—For each 0 ≤ i < j + 1 ≤ n + 1, CONSISTENTi, j : [w]6 −→ {0, 1} is the Consistency

predicate at an internal node, with arguments the labels at interval (i, j] and at its
children.

—For each 0 < k ≤ n + 1, CONSISTENTLEAFk : [w]2 × � −→ {0, 1} is the Consistency
predicate at leaf (k − 1, k] with arguments the label 〈p, q〉 and the bit ak at the
leaf.
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All the predicates depend on O(log w) bits. So a naive truth-table implementation
suffices to compute them in depth O(log w) with O(1) alternations.

For any 0 < k ≤ n + 1, let the nodes on the path from (k − 1, k] to the root of the
interval tree be the intervals (k − 1, k] = (i0, j0), (i1, j1], . . . , (ir, jr] = (0, n + 1]. Note:
r ∈ O(log n).

Given a labeling of the tree, the output at position k is given by the expression below
(it looks ugly, but it is just implementing the scheme described above; we write it in
this detail to make the poly log AC0 computation explicit),

yk =
[

ak ∧ CONSISTENTLEAFk ∧
r∧

h=1

CONSISTENTih, jh

]

∨
[
(ws,t)k ∧ CONSISTENT0,n+1

]

∨
⎡
⎣ r∨

h=1

(
w(ih,ph),( jh,qh)

)
k ∧ CONSISTENTih−1, jh−1 ∧

r∧
g=h

CONSISTENTig, jg

⎤
⎦ ,

where the arguments to the predicates are taken from the tree labeling. This computa-
tion adds O(1) alternations and O(log log n) depth to the computation of the predicates,
so it is in poly log AC0.

While proving Theorem 3.6, we unrolled the computation of a w-state automaton on
inputs of length n into a layered branching program BP of width w with � = n + 2
layers. The BP so obtained is nondeterministic whenever the automaton is. The BP has
a very restricted structure that we exploited to construct the poly log AC0 proof system.

We observe that some restrictions on the BP structure can be relaxed and still we
can construct a poly log AC0 proof system.

Definition 3.7. A branching program for length-n inputs is structured if it satisfies
the following:

(1) It is layered: vertices are partitioned into n + 1 layers V0, . . . , Vn and all edges are
between adjacent layers E ⊆ ∪i(Vi−1 × Vi).

(2) Each layer has the same size w = |Vi|, the width of the BP. (This is not critical; we
can let w = max |Vi|.)

(3) There is a permutation σ ∈ Sn such that for i ∈ [n], all edges in Vi−1 × Vi read xσ (i)
or xσ (i).

Non-uniform automata [Barrington 1989; Barrington and Thérien 1988] give rise to
branching programs that are structured with w the number of states in the automaton.
For instance, the language {xx | x ∈ {0, 1}∗} is not regular. But if the input bits are
provided in the order 1, m + 1, 2, m + 2, . . . , m, 2m then it can be decided by a finite-
state automaton. This gives rise to a structured BP where σ is the inverse of the above
order (e.g., r2 = m+ 1, r3 = 2, σ (m + 1) = 2, σ (2) = 3).

The idea behind the construction in Theorem 3.6 works for such structured BPs.
It yields a proof system with depth O(log log n + log w). This means that for w ∈
O(poly log n), we still get poly log AC0 proof systems. Potentially, this is much bigger
than the class of languages accepted by non-uniform finite-state automata. Formally,

THEOREM 3.8. Languages accepted by structured branching programs of width w ∈
(log n)O(1) have poly log AC0 proof systems.
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2:10 A. Krebs et al.

For the language MAJ of strings with more 1s than 0s, and in general for threshold
languages TH

n
k of strings with at least k 1s, we know that there are constant-width

branching programs, but these are not structured in the sense above. It can be shown
that a structured BP for MAJ must have width �(n) (a family of growing automata Mn
for MAJ, where Mn is guaranteed to be correct only on {0, 1}n, must have 1 + n/2 states
in Mn). This is much much more than the poly log width bound used in the construction
in Theorem 3.6. Nevertheless, we show below how we can modify that construction to
get a poly log AC0 proof system, even for threshold languages.

THEOREM 3.9. For every n and t ≤ n, the language TH
n
t has a poly log AC0 proof system.

PROOF. We follow the approach in Theorem 3.6: The input to the proof system is
a word a = a1, . . . , an and auxiliary information in the interval tree allowing us to
correct the word if necessary. The labeling of the tree differs for this language and is
as follows. Each interval (i, j] in the tree gets a label that is an integer in the range
{0, 1, . . . , j−i}. The intention is that for an input a = a1, . . . , an, this label is the number
of 1s in the subword ai+1 . . . aj . For thresholds, we relax the constraint: We expect the
label of interval (i, j] to be no more than the number of 1s in the subword. At a leaf
node (k − 1, k], we do not give explicit labels; ak serves as the label. At the root also,
we do not give an explicit label; the label t is hard wired. (We restrict the label of any
interval (i, j] to the range [0, j − i], and interpret larger numbers as j − i.)

For any node u of T , let l(u) denote the label of u. A node u with children v,w is
consistent if l(u) ≤ l(v) + l(w).

Let the output of our proof system be y1, . . . , yn. The construction is as follows:

—If all nodes on the path from (k − 1, k] to the root in T are consistent, then yk = ak.
—Otherwise, yk = 1.

In analogy with Theorem 3.6, we use here for each interval (i, j] the feasibility witness
1 j−i, independent of the actual labels. Thus the construction forces this property: At
a node u corresponding to interval (i, j] labelled �(u), the subword yi+1, . . . , yj has at
least min{�(u), j − i} 1s. Thus, the output word is always in TH

n
t . Every word in TH

n
t is

produced by the system at least once, on the proof that gives, for each interval other
than (0, n], the number of 1s in the corresponding subword.

As before, the CONSISTENTi, j predicate at a node depends on three labels, each of which
is O(log n) bits long. A truth-table implementation is not good enough; it will give an
AC0 circuit. But the actual consistency check only involves adding and comparing
m = log n bit numbers. Since addition and comparison are in AC0, this can be done in
depth O(log m) with O(1) alternations. Thus the overall depth is O(log log n).

COROLLARY 3.10. For every n and t ≤ n, EXACT-COUNT
n
t has a poly log AC0 proof system.

PROOF. We follow the same approach as Theorem 3.9. We redefine consistent as
follows: For any node u of T , let l(u) denote the label of u. A node u with children v,w
is consistent if l(u) = l(v) + l(w). Let the output of our proof system be y1, . . . , yn. The
construction is as follows:

—If all nodes on the path from (k − 1, k] to the root in T are consistent, then yk = ak.
—Otherwise, let u = (p, q] be the topmost node along the path from (k−1, k] to the root

that is not consistent. We output yk = 1 if k − p ≤ l(u), 0 otherwise.

That is, for u = (i, j] labeled �(u), if L = min{�(u), j − i}, use feasibility witness
1L0 j−i−L.
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4. 2TAUT AND NC0 PROOF SYSTEMS

In this section, we try to understand NC0 proof systems better in the context of
2TAUT—the language of all 2DNFs that are tautologies. The main goal is to under-
stand the relationship between TAUT and NC0 proof systems. However, the language
2TAUT has more structure because of the connection with implication graphs. Hence,
we want to examine 2TAUT and the associated language of graph reachability.

First, we show a general construction for monotone properties. Recall that a function
f is monotone if whenever f (x) = 1 and y dominates x (that is, ∀i ∈ [n], xi = 1 ⇒ yi = 1),
then it also holds that f (y) = 1. For such a function, a string x is a minterm if f (x) = 1
but x does not dominate any z with f (z) = 1. Minterms( f ) denotes the set of all
minterms of f . Clearly, Minterms( f ) ⊆ f −1(1). The following lemma states that for
any monotone function f , constructing a proof system for a language that sits in
between Minterms( f ) and f −1(1) suffices to get a proof system for f −1(1).

LEMMA 4.1. Let f : {0, 1}∗ −→ {0, 1} be a monotone Boolean function and let
L = f −1(1). Let Ln = L ∩ {0, 1}n. Let L′ be a language such that for each length n,
(Minterms(L) ∩ {0, 1}n) ⊆ (L′ ∩ {0, 1}n) ⊆ Ln. If L′ has a proof system of depth d, size s,
and a alternations, then L has a proof system of depth d+1, size s+n, and at most a+1
alternations.

PROOF. Let C be a proof circuit for L′ that takes input string x. We construct a proof
system for L using C and asking another input string y ∈ {0, 1}n. The ith output bit of
our proof system is C(x)i ∨ yi.

In the following section, we will show that 2TAUT and directed graph reachability
share a similar relationship with each other in terms of proof systems as their decision
versions do in computational complexity.

4.1. Directed Reachability and 2TAUT

Let UNSAT denote the language of all unsatisfiable formulas. Recall that deciding if a
2CNF formula F belongs to UNSAT can be done in polynomial time. This is because one
can build the following “implication graph” G from F: G is a directed graph with twice
as many vertices as the number of variables in F—one vertex for each possible literal.
Each clause (�i ∨ � j) of F can be written as two implications: �i ⇒ � j and � j ⇒ �i.
An edge (�i, � j) is present in G if the implication �i ⇒ � j is in the formula F, that is,
for every term (�i ∨ � j) in the formula F, G will have two edges, namely (�i, � j) and
(� j, �i). Let vertices ui be associated with literals xi and vertices vi be associated with
the literal xi. Now F is unsatisfiable if and only if there exists an i such that there is a
path from ui to vi and a path from vi to ui. Checking the existence of such paths can be
done in non-deterministic logspace and hence in polynomial time; thus deciding if F is
unsatisfiable is in NL and hence in P. Let 2UNSAT denote all 2CNF formulas that are
unsatisfiable. Note that since 2TAUT = {F| F ∈ 2UNSAT}, deciding if a 2DNF formula
F is in 2TAUT is also in non-deterministic logspace and hence in P.

The encoding used by Cryan and Miltersen [2001] in their construction of an NC0

proof system for the NP-Complete problem E3SAT has exactly 23
(n

3

)
bits—one bit for

each possible clause. Using a similar idea, we can encode 2CNF formulas on n vari-
ables by a bit string of 2n(2n − 1) bits—one bit for each possible clause. (Each clause
has two literals. For the first literal, we have 2n possible choices and for the second
we have 2n − 1 possible choices.) Note that here we are allowing for trivial clauses
like (xi ∨ xi). We will also assume that if the bit corresponding to a clause li ∨ lj is 1,
then the bit corresponding to the clause lj ∨ li is also 1 and vice versa. This encod-
ing would correspond to the adjacency matrix of the implication graph on 2n vertices
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2:12 A. Krebs et al.

described previously but without the diagonal entries. However, for convenience, we
will generate adjacency matrices of the implication graphs along with the diagonal
entries included. In other words, we allow for self-loops in the graph. This is equiv-
alent to allowing clauses such as (xi ∨ xi) in the formula. Hence we work with this
encoding of 4n2 bits for the remainder of this section. It is easy to go from the 4n2 bit
encoding to the 2n(2n − 1) bit encoding: merely hide the diagonal entries from being
output.

Let STCONN be the language of all n vertex graphs with a path from vertex 1 to vertex
n. In the following, we will show a reduction between proof systems generating 2TAUT
and STCONN. More precisely, we show that if STCONN has an NC0 proof system, then
so does 2TAUT.

Define the following languages:

STCONNn =
{

A ∈ {0, 1}n×n
∣∣∣∣ A is the adjacency matrix of a directed graph G with

a path from vertex s = 0 to vertex t = n − 1.

}

STCONN =
⋃
n>0

STCONNn.

When handling graphs, throughout this section, we write u � v to denote “∃ a path
from u to v” where u and v are vertices of the graph being used.

We will show that a proof system for the set STCONN can be used to construct a proof
system for 2UNSAT with only a constant blowup to the depth of the proof system.1

THEOREM 4.2. If STCONN has an NC0 proof system, then 2UNSAT has an NC0 proof
system.

PROOF. Let Q be a proof system computable in NC0 for STCONN.
We first show that, using output of circuits from Q, we can generate the language

GOODCONN defined as follows:

GOODCONN =
⋃

i

GOODi,

where GOODi is defined as:

GOODi = {G ⊆ STCONN2n+2|∃i ∈ [n], ∃ simple path 0 → i � i → 2n + 1},
where i is short for n + i.

LEMMA 4.3. If STCONN has an NC0 proof system, then so does GOODCONN.

PROOF. We construct proof system GC computable in NC0 for GOODCONN by using
proof system Q of STCONN. Let Q ∈ Q be the proof circuit that outputs adjacency
matrices of graphs in STCONN2n+2. We number the vertices of the graph output by Q as
0, 1, 2, . . . , (2n + 1). Let s = 0 and t = 2n + 1 as shown in Figure 2. Let the adjacency
matrix output by Q be H.

Construction: We will construct proof circuit P ∈ GC that outputs every graph in
GOODCONN on 2n+ 2 vertices. P takes the following as input: H and another adjacency
matrix B. P outputs every edge in H, every edge in B, and also some additional edges
determined by the following rules:

1The authors thank Vladimir Podolskii for suggesting this approach and for useful discussions on the proof
of this theorem.
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Fig. 2. Vertex numbering.

(1) If H[s, t] = 1, then include path s → 1 → n + 1 → t.
(2) For each i ∈ [n], if H[s, i] = 1, then include path s → i → i → t.
(3) For each i ∈ [n], if H[i, t] = 1, then include path s → i → i → t.
(4) For each i ∈ [n], if H[s, i] = 1, then add edge (i → t).
(5) For each i, j ∈ [n] such that i �= j, if H[s, i] = H[ j, t] = 1, then add edge ( j, i).

Intuitively, the vertices from 1 to n represent the literals x1, . . . , xn and the vertices
from n+ 1 to 2n represent the literals x1, . . . , xn. The idea behind the construction is to
force a simple path s → i � i → t for some i ∈ [n]. However, if the graph H output by
P was such that it had a simple path s → i � i → t and no other edges, then none of
the rules apply. The extra input B is simply for upward closure (like in Lemma 4.1) to
guarantee completeness.

Soundness: Let G be a graph output by P. We need to show that G is in GOODCONN.
It suffices to show the following:

CLAIM 4.4. ∃i ∈ [n] such that G ∈ GOODi

PROOF. Let G = P(H, B). Since G has all edges from H and H ∈ STCONN2n+2, there
is a simple path ρ from s to t in H (and in G). Consider the last edge (u, t) in ρ. We have
the following cases:

—Case u = s: Rule 1 implies G ∈ GOOD1.
—Case u = i for some i ∈ [n]: Rule 3 implies G ∈ GOODi.
—Case u = i for some i ∈ [n]: Consider the first edge (s, v) in ρ. We have three cases:

—Case v = j for some j ∈ [n]: Rule 2 implies G ∈ GOODj .
—Case v = i: Straightforward to see G ∈ GOODi.
—Case v = j for some j ∈ [n] and j �= i: Rule 4 and Rule 5 together imply G ∈ GOODj .

An example of this case is shown in Figure 3.

Completeness: We need to show that any graph G ∈ GOODCONN can be produced by
P. We observe the following:

OBSERVATION 4.5. Let J ∈ STCONN2n+2 be a graph that has a simple path s → i � i → t
for some i ∈ [n] and no other edges. If B is all 0s, then P(J, B) is exactly J.

From definition of GOODCONN, G ∈ GOODCONN implies G ∈ GOODi for some i ∈ [n].
Hence there exists a simple path ρ that proceeds as s → i � i → t in G. Consider

ACM Transactions on Computation Theory, Vol. 9, No. 1, Article 2, Publication date: October 2016.



2:14 A. Krebs et al.

Fig. 3. Example of Rules 4 and 5.

a graph J with path ρ and no other edges. Then J is an output of Q. Let B be the
(2n + 2) × (2n + 2) adjacency matrix of G. Then P(J, B) = G.
GC is Computable in NC0:

LEMMA 4.6. If Q is computable in NC0, then GC is computable in NC0.

PROOF. Assume Q is computable in NC0. It suffices to show that each output in a
proof circuit P ∈ GC is a function of only O(1) of its input bits. P uses the output H of
a proof circuit Q ∈ Q. Let A be the output adjacency matrix of P. To see that the rules
determining the edges can be implemented in NC0, we explicitly write down the circuit
for each type of edge:

—(Rules 2 and 3)
—For all i ∈ [n]\{1}, A[s, i] = H[s, i] ∨ H[i, t] ∨ H[s, i] ∨ B[s, i].
—For all i ∈ [n]\{1}, A[i, i] = H[s, i] ∨ H[i, t] ∨ H[i, i] ∨ B[i, i]

—(Rules 1,2,3)
—A[s, 1] = H[s, t] ∨ H[s, n + 1] ∨ H[1, t] ∨ H[s, 1] ∨ B[s, 1].
—A[1, n + 1] = H[s, t] ∨ H[s, n + 1] ∨ H[1, t] ∨ H[1, n + 1] ∨ B[1, n + 1].
—A[n + 1, t] = H[s, t] ∨ H[s, n + 1] ∨ H[1, t] ∨ H[n + 1, t] ∨ B[n + 1, t].

—(Rules 2,3 and 4) For all i ∈ [n], A[i, t] = H[s, i] ∨ H[s, i] ∨ H[i, t] ∨ H[i, t] ∨ B[i, t].
—(Rule 5) For all i, j ∈ [n], i �= j, A[ j, i] = (H[s, i] ∧ H[ j, t]) ∨ H[ j, i] ∨ B[ j, i].

For all edges e = (u, v) that do not fall under any of the above types, A[e] = H[e] ∨ B[e].
Thus each output bit is a function of at most 4 bits from H and 1 bit from B. H is the

output of the proof circuit Q. Hence if proof system Q is an NC0 circuit family, then so
is P.

This completes the proof of Lemma 4.3.

We define the following languages that have paths in the reverse direction as
GOODCONN:

GOOD
R
i = {G ⊆ STCONN2n+2|∃i ∈ [n], ∃ simple path 2n + 1 → i � i → 0}

GOODCONN
R =

⋃
i

GOOD
R
i ,

where the R in the superscript means “reversed.”
Note that GOODCONN

R can be generated using proof circuits from GC and either
numbering the vertices of the output graph in reverse or by reversing the direction of
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each edge in the output graph. Let GCR be such a proof system. The following is an
easy observation:

OBSERVATION 4.7. GCR is computable in NC0 if and only if GC is computable in NC0.

We now show how to use the proof system for GOODCONN to obtain a proof system for
2TAUT.

LEMMA 4.8. If GOODCONN has an NC0 proof system, then so does 2TAUT.

PROOF. We will construct proof system P that generates all 2CNF formulas that are
unsatisfiable and hence for 2TAUT. The idea is to take two graphs, G1 with a path
from some i ∈ [n] to i and G2 with a path from j to j for some j ∈ [n], and combine
them together to get a graph with path i � i � i. When the vertices from 1 to n
are interpreted as positive literals and vertices from n + 1 to 2n + 1 are interpreted as
negated literals, we get an implication graph of a formula that is not satisfiable. We will
describe the construction of a proof circuit P ∈ P that generates every such formula on
n variables. As mentioned before, the encoding we use has 4n2 bits and represents the
adjacency matrix of the implication graph. Equivalently, each bit represents a clause
in the formula.

Construction. P takes the following as input:

—Adjacency matrix A1 of a graph G1 ∈ GOODCONN on 2n + 2 vertices.
—Adjacency matrix A2 of a graph G2 ∈ GOODCONN

R on 2n + 2 vertices.
—(2n + 2) × (2n + 2) Adjacency matrix B.

The guarantee that the first two input adjacency matrices come from GOODCONN and
GOODCONN

R, respectively, is achieved by using the outputs of the appropriate proof
circuits P1 ∈ GC and P2 ∈ GCR as constructed before.

For convenience, we will make P compute a graph on 2n + 2 vertices. For the final
output graph, we do not output the vertices s and t or any edges that involve s or t.

P outputs a graph that has all edges in G1, all edges in G2, all edges indicated by B,
and some additional edges determined by the following “Stitch” rule:

—Stitch rule: If (i, t) ∈ G1 and (t, j) ∈ G2, then add edges (i, j) and ( j, i).

Soundness. We need to show that any graph G output by P is an implication graph
for a formula in 2UNSAT. It suffices to show that there exists an i such that there is a
path i � i and i � i. Putting together these two paths results in a walk starting at i
and ending at i via i. For convenience, we will refer to this as a path (although strictly
a walk) and write i � i � i.

CLAIM 4.9. For any graph G output by a circuit P ∈ P, ∃i ∈ [n] such that there is a
path i � i � i.

PROOF. Let G = P(G1, G2, B). Since G1 ∈ GOODCONN, there exists an i ∈ [n] such that
a path ρ1: s → i � i → t is in G1. Similarly, for some j ∈ [n], a path ρ2: t → j � j → s
exists in G2. We now have two cases:

(1) If i = j, then since G contains all edges in G1 and G2, G has a path ρ: i � i � i.
(2) If i �= j, then the Stitch rule forces the edges (i, j) and ( j, i). Together with ρ1 and

ρ2, we get a path ρ:i
ρ1� i → j

ρ2� j → i. An example of this case is shown in
Figure 4.

Completeness. Take any formula F ∈ 2UNSAT on n variables. Let the implication
graph of F be G. We will show that G is produced by P. We know that in G, ∃i ∈ [n]
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Fig. 4. Effect of Stitch rule.

such that there are simple paths ρ1 : i � i and ρ2 : i � i. Define graph G1 on 2n vertices
to contain the path ρ1 and no other edges. Similarly, let G2 be a graph on 2n vertices
with the path ρ2 and no other edges. Construct graph G′

1 on 2n+2 vertices as follows: G′
1

is exactly G1 with two additional vertices s = 0 and t = 2n+ 2 and edges (s, i) and (i, t).
Clearly, G′

1 ∈ GOODCONN. Similarly, construct G′
2 from G2 such that G′

2 ∈ GOODCONN
R.

Adjacency matrix A1 of G′
1 is produced as output by proof system P1 on some input and

adjacency matrix A2 of G′
2 is produced as output by proof system P2 on some input. Let

B be the adjacency matrix of G. It is easy to see that P(A1, A2, B) = G.
P is Computable in NC0.

CLAIM 4.10. If GC is computable in NC0, then P is computable in NC0.

PROOF. We need to show that every output bit of a proof circuit P ∈ P is a function of
at most O(1) many input bits. P uses outputs A1 and A2 of proof circuits P1 ∈ GC and
P2 ∈ GCR. Let output adjacency matrix of P be A. P incorporates only one rule and this
can be expressed formally as follows:
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—For all i, j ∈ [n], A[i, j] = (A1[i, t] ∧ A2[t, j]) ∨ A1[i, j] ∨ A2[i, j] ∨ B[i, j]
—For all i, j ∈ [n], A[ j, i] = (A1[i, t] ∧ A2[t, j]) ∨ A1[ j, i] ∨ A2[ j, i] ∨ B[ j, i]

For all edges e = (i, j) that do not look like (i, j) or ( j, i), A[i, j] = A1[i, j]∨A2[i, j]∨B[i, j].
Hence each output bit is a function of at most two bits from A1, two bits from A2, and
one bit from B.

Combining Observation 4.7 and the fact that A1 and A2 are outputs of proof circuits
P1 ∈ GC and P2 ∈ GCR, we have the claim.

This completes proof of Lemma 4.8.

Combining Lemma 4.3 and Lemma 4.8 completes the proof of Theorem 4.2.

Intuitively, reachability, and connectedness are global properties. Hence intuition
suggests that STCONN should not have NC0 proof systems. However, we have not been
able to show this. In the following subsection, we study USTCONN—the undirected
analogue of STCONN. We show that, contrary to the intuition that reachability is a
global property, USTCONN indeed has a proof system computable in NC0.

4.2. Undirected Reachability

In this section, we show that the set USTCONN of all undirected graphs with a path
between two fixed vertices s and t has a proof system computable in NC0.

Correcting an input that has no s-t path can be done locally by just adding the edge
(s, t) to the output. However, detecting that the input does not have an s-t path with
only local checks seems difficult. Always adding the (s, t) edge without checking for the
absence of an s − t path does not give us completeness. For this reason, we interpret
the input differently.

The idea is as follows: We will first construct an NC0 proof system C for the language
CYCLES of all undirected graphs that are a union of edge disjoint cycles. Consider a
circuit C ∈ C that outputs graphs on n vertices. The proof system we construct for
USTCONN takes the adjacency matrix of the graph G output by C and does an EXOR
with the edge (s, t) to obtain a graph G′ (i.e., if the edge (s, t) was present, we remove it
and if the edge (s, t) was not present, we add it). Note that if G contained a cycle with
the (s, t) edge, then removing this edge leaves an s-t path in the resultant graph. If G
did not contain an (s, t) edge, then the EXOR with (s, t) results in a graph with an s-t
path of length 1. To get completeness, we take the upward closure of the graph G′ by
computing a bitwise OR with another input adjacency matrix (just like Lemma 4.1).

Now we formally define the language USTCONN, which is known to be in (and complete
for) L ([Reingold 2008]). Our proof system will output adjacency matrices of all graphs
that have a path between s and t and of no other graphs.

Define the following languages:

USTCONN =
{

A ∈ {0, 1}n×n|
A is the adjacency matrix of an undirected graph G
where vertices s = 1, t = n are in the same connected
component.

}

CYCLES =
{

A ∈ {0, 1}n×n|
A is the adjacency matrix of an undirected graph
G = (V, E) where E is the union of edge-disjoint
simple cycles.

}

(For simplicity, we will say G ∈ USTCONN or G ∈ CYCLES instead of referring to the
adjacency matrices.)

THEOREM 4.11. The language USTCONN has an NC0 proof system.
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PROOF. We will need an addition operation on graphs: G1 ⊕ G2 denotes the graph
obtained by adding the corresponding adjacency matrices modulo 2. If Ais a collection of
graphs and B = UpClose(A), then B is the collection of super-graphs obtained by adding
edges. Note that (undirected) reachability is monotone and hence UpClose(USTCONN) =
USTCONN.

Let L1 = {G = G1 ⊕ (s, t)|G1 ∈ CYCLES} and L2 = UpClose(L1). We show:

(1) L2 = USTCONN.
(2) If L1 has an NC0 proof system, then L2 has an NC0 proof system.
(3) If CYCLES has an NC0 proof system, then L1 has an NC0 proof system.
(4) CYCLES has an NC0 proof system.

Proof of 1: We show that L1 ⊆ USTCONN ⊆ L2. Then applying upward closure,
L2 = UpClose(L1) ⊆ UpClose(USTCONN) = USTCONN ⊆ UpClose(L2) = L2.

L1 ⊆ USTCONN: Any graph G ∈ L1 looks like G = H ⊕ (s, t), where H ∈ CYCLES. If
(s, t) /∈ H, then (s, t) ∈ G and we are done. If (s, t) ∈ H, then s and t lie on a cycle C, and
hence removing the (s, t) edge will still leave s and t connected by a path C \ {(s, t)}.

USTCONN ⊆ L2: Let G ∈ USTCONN. Let ρ be an s-t path in G. Let H = (V, E) be a
graph such that E = edges in ρ. Then, G ∈ UpClose({H}). We can write H as H′ ⊕ (s, t)
where H′ = H ⊕ (s, t). If ρ = (s, t), then E(H′) is empty and hence H′ ∈ CYCLES. Else
ρ �= (s, t), and then H′ = H ⊕ (s, t) = ρ ∪ (s, t) since ρ is a simple path, and hence
H′ ∈ CYCLES. Either way, H′ ∈ CYCLES and so H ∈ L1. Hence G ∈ L2.

Proof of 2: Note that Minterms(USTCONN) is exactly the set of graphs where the
edge set is a simple s-t path. We have seen that L1 ⊆ USTCONN. As above, we can see
that H ∈ Minterms(USTCONN) ⇒ H ⊕ (s, t) ∈ CYCLES ⇒ H ∈ L1. Statement 2 now
follows from Lemma 4.1.

Proof of 3: Let Abe the adjacency matrix output by the NC0 proof system for CYCLES.
The proof system for L1 outputs A′ such that A′[s, t] = A[s, t], and the rest of A′ is same
as A.

Proof of 4: This is of independent interest and is proved in Theorem 4.12 below.
This completes the proof of Theorem 4.11.

We now construct NC0 proof systems for the language CYCLES.

THEOREM 4.12. The language CYCLES has an NC0 proof system.

PROOF. Let T be a family of graphs. We say that an edge e is generated by a sub-family
S ⊆ T if the number of graphs in S which contain e is odd. We say that the family T
generates a graph G if there is some sub-family S ⊆ T such that every edge in G is
generated by S and no other edge is generated. We first observe that to generate every
graph in the set CYCLES, we can set T to be the set of all triangles. Given any cycle, it
is easy to come up with a set of triangles that generates the cycle; namely, take any
triangulation of the cycle. Therefore, if we let T be the set of all triangles on n vertices,
it will generate every graph in CYCLES. Also, no other graph will be generated because
any set S ⊆ CYCLES generates a set contained in CYCLES (see Lemma 4.14 below). This
immediately gives a proof system for CYCLES: Given a vector x ∈ (n

3

)
, we will interpret

it as a subset S of triangles. We will output an edge e if it is a part of odd number of
triangles in S. Finally, because of the properties observed above, any graph generated
in this way will be a graph from the set CYCLES.

Unfortunately, this is not an NC0 proof system because to decide if an edge is gener-
ated, we need to look at �(n) triangles. For designing an NC0 proof system, we need to
come up with a set of triangles such that, for any graph G ∈ CYCLES, every edge in G is
a part of O(1) triangles.
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So, on the one hand, we want the set of triangles to generate every graph in CYCLES,
and, on the other hand, we need that for any graph G ∈ CYCLES, every edge in G is a
part of O(1) triangles. We show that such a set of triangles indeed exists.

Thus our task now is to find a set of triangles T ⊆ CYCLES such that:

(1) Every graph in CYCLES can be generated using triangles from T , that is,

CYCLES ⊆ Span(T ) �

⎧⎨
⎩

|T |∑
i=1

aiti | ∀i, ai ∈ {0, 1}, ti ∈ T

⎫⎬
⎭ .

(2) Every graph generated from triangles in T is in CYCLES; Span(T ) ⊆ CYCLES.
(3) ∀u, v ∈ [n], the edge (u, v) is contained in at most six triangles in T .

Once we find such a set T , then our proof system asks as input the coefficients ai that
indicate the linear combination needed to generate a graph in CYCLES. An edge e is
present in the output if, among the triangles that contain e, an odd number of them
have coefficient set to 1 in the input. By property 3, each output edge needs to see only
O(1) input bits and hence the circuit we build is NC0. We will now find and describe T
in detail.

Let the vertices of the graph be numbered from 1 to n. Define the length of an edge
(i, j) as |i − j|. A triple 〈i, j, k〉 denotes the set of all graphs on n vertices that have
exactly one triangle on vertices (u, v, w) where |u − v| = i, |v − w| = j, and |u − w| = k
and no other edges. So each graph in 〈i, j, k〉 is on n vertices but has exactly three edges
that form a triangle with lengths i, j, and k. We now define the set

T =
n/2⋃
i=1

〈i, i, 2i〉 ∪ 〈i, i + 1, 2i + 1〉.

Although the graphs in T have all n vertices, we sometimes refer to them as triangles
when it is convenient.

OBSERVATION 4.13. It can be seen that |T | ≤ 3
2 n2. This is linear in the length of the

output, which has
(n

2

)
independent bits.

We now show that T satisfies all properties listed earlier in reverse order.
T satisfies property 3: Take any edge e = (u, v). Let its length be l = |u − v|. e can

either be the longest edge in a triangle or one of the two shorter ones. If l is even, then
e can be the longest edgeone1 triangle in T and can be a shorter edge in at most four
triangles in T . If l is odd, then e can be the longest edge for at most two triangles in T
and can be a shorter edge in at most four triangles. Hence, any edge is contained in at
most six triangles.

T satisfies property 2: To see this, note first that T ⊆ CYCLES. Next, observe the
following closure property of cycles:

LEMMA 4.14. For any G1, G2 ∈ CYCLES, the graph G1 ⊕ G2 ∈ CYCLES.

PROOF. A well-known fact about connected graphs is that they are Eulerian if and
only if every vertex has even degree. The analogue for general (not necessarily con-
nected) graphs is Veblen’s theorem [Veblen 1912], which states that G ∈ CYCLES if and
only if every vertex in G has even degree.

Using this, we see that if for i ∈ [2], Gi ∈ CYCLES and if we add the adjacency matrices
modulo 2, then degrees of vertices remain even and so the resulting graph is also in
CYCLES.

It follows that Span(T ) ⊆ CYCLES.
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T satisfies property 1: We will show that any graph G ∈ CYCLES can be written as
a linear combination of graphs in T . Define, for a graph G, the parameter d(G) = (l, m)
where l is the length of the longest edge in G and m is the number of edges in G that
have length l. For graphs G1, G2 ∈ CYCLES, with d(G1) = (l1, m1) and d(G2) = (l2, m2), we
say d(G1) < d(G2) if and only if either l1 < l2 holds or l1 = l2 and m1 < m2. Note that for
any graph G ∈ CYCLES with d(G) = (l, m), l ≥ 2 (unless G is the graph with no edges).

CLAIM 4.15. Let G ∈ CYCLES. If d(G) = (2, 1), then G ∈ T .

PROOF. It is easy to see that G has to be a graph that has a triangle with edge
lengths 1, 1, and 2 and no other edges. All such graphs are contained in T by defini-
tion.

LEMMA 4.16. For every G ∈ CYCLES with d(G) = (l, m), either G ∈ T or there is a t ∈ T ,
and H ∈ CYCLES such that G = H ⊕ t and d(H) < d(G).

PROOF. If G ∈ T , then we are done. So now consider the case when G /∈ T :
Let e be a longest edge in G. Let C be a cycle that contains e. Pick t ∈ T such that e is

the longest edge in t. G can be written as H ⊕ t, where H = G ⊕ t. From Lemma 4.14
and since T ⊆ CYCLES, we know that H ∈ CYCLES. Let t have the edges e, e1, e2. Any edge
present in both G and t will not be present in H. Since e ∈ G ∩ t, e /∈ H. Lengths of e1
and e2 are both less than l since e was the longest edge in t. Hence the number of times
an edge of length l appears in H is reduced by 1 and the new edges added (if any) to H
(namely e1 and e2) have length less then l. Hence if m > 1, then d(H) = (l, m−1) < d(G).
If m = 1, then d(H) = (l′, m′) for some m′ and l′ < l, and hence d(H) < d(G).

By repeatedly applying Lemma 4.16, we can obtain the exact combination of triangles
from T that can be used to give any G ∈ CYCLES.

Figure 5 illustrates such a repeated application of Lemma 4.16 on an example graph
G shown at the top. The numbers in black next to vertices indicate vertex numbers and
the numbers on the edges indicate the edge lengths. The final decomposition S has all
graphs belonging to T . In Figure 6, the graphs in S are superimposed on each other.
Any edge that appears twice in the graph formed by the superimposition does not exist
in G since G is a sum modulo 2 of the graphs from S.

A more formal proof will proceed by induction on the parameter d(G) and each
application of Lemma 4.16 gives a graph H with a d(H) < d(G) and hence allows
for the induction hypothesis to be applied. The base case of the induction is given by
Lemma 4.15. Hence T satisfies property 1.

Since T satisfies all three properties, we obtain an NC0 proof system for CYCLES,
proving the theorem.

We have not been able to show an NC0 proof system for the directed analogue of
USTCONN. However, in the following proposition, we will define the language UNREACH

that is known to be NL-complete ([Immerman 1988; Szelepcsényi 1988]) and show that
it has an NC0 proof system.

PROPOSITION 4.17. The language UNREACH defined below has an NC0 proof system
under the standard adjacency matrix encoding.

UNREACH =
{

A ∈ {0, 1}n×n| A is the adjacency matrix of a directed graph G with
no path f rom s = 1 to t = n.

}
.

PROOF. As proof, we take as input an adjacency matrix A and an n-bit vector X
with X(s) = 1 and X(t) = 0 hardwired. Intuitively, X is like a characteristic vector that
represents all vertices that can be reached by s.
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Fig. 5. Decomposition of G into graphs from T .
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Fig. 6. Decomposition of G into graphs from T (superimposed).

The adjacency matrix B output by our proof system is as follows:

B[i, j] =
{

1 if A[i, j] = 1 and it is not the case that X(i) = 1 and X( j) = 0,
0 otherwise.

Soundness. No matter what A is, X describes an s, t cut since X(s) = 1 and X(t) = 0
and ∀i, j, X(i) = 1 ∧ X( j) = 0 ⇒ B[i, j] = 0. So any graph output by the proof system
will not have a path from s to t.

Completeness. For any G ∈ UNREACH, use the adjacency matrix of G as A and give
input X such that X(v) = 1 for a vertex v if and only if v is reachable from s.

In the following section, we study the question of whether the power of AC0 is
necessary to compute proof systems for languages in NP.

5. PUSHING THE BOUNDS

We know that any language in NP has AC0 proof systems. In the bounded fanin model,
this corresponds to O(log n) depth. A natural question to ask is if depth �(log n) is
necessary. The class obtained by restricting AC0 by not allowing ∧ gates (∨ gates) to
have unbounded fanin and forcing all negations to be applied to leaves is called SAC0

(coSAC0). The class SACi was defined in Borodin et al. [1989]. It has been known
that SAC0 is not closed under complement (see Venkateswaran [1991]) and hence
SAC0 � AC0.

The following theorem implies that there is a language in NP for which any proof
system generating it requires power at least that of SAC0 or coSAC0.

THEOREM 5.1 (SRIKANTH SRINIVASAN (PRIVATE COMMUNICATION)). There is a language A in
NP such that any bounded-fanin proof system for A needs �(log n) depth.

PROOF. Let A ⊆ {0, 1}∗ be an error correcting code of constant rate (for each n, A has
2�(n) strings of length n) and linear distance (the Hamming distance between two words
of length n is �(n)) that can be efficiently computed. Such codes are known to exist. See,
for example, Justesen [1972]. Suppose there is a proof system Cn : {0, 1}m −→ {0, 1}n of
depth d that outputs exactly the strings in A. Assume that C is non-degenerate. that
is, for every input position i, ∃x ∈ {0, 1}m such that C(x) �= C(x ⊕ ei). Note that m ∈ �(n)
since A has constant rate (|A ∩ {0, 1}n| = 2�(n)). Note that since each output bit is a
function of at most 2d input bits, it must be the case that there exists an input position
i such that xi is connected to at most O(2d) output positions. For this i, let x be an
input such that C(x) �= C(x ⊕ ei). But since C(x) and C(x ⊕ ei) are both codewords in A,
they must differ in at least �(n) positions since A is has linear distance. This implies
that xi is connected to at least �(n) output positions and this is true for all i. Hence,
d = �(log n).
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However, we note that proof systems for a big fragment of NP do not require the full
power of AC0. In particular, for every language in NP, an extremely simple padding
yields another language with simpler proof systems.

THEOREM 5.2. Let L be any language in NP.

(1) If L contains 0∗, then L has a proof system where negations appear only at leaf level,
∧ gates have unbounded fanin, ∨ gates have O(1) fanin, and the depth is O(1). That
is, L has a coSAC0 proof system.

(2) If L contains 1∗, then L has a proof system where negations appear only at leaf level,
∨ gates have unbounded fanin, ∧ gates have O(1) fanin, and the depth is O(1). That
is, L has an SAC0 proof system.

(3) The language ({1} · L · {0}) ∪ 0∗ ∪ 1∗ has both SAC0 and coSAC0 proof systems.

PROOF. Let L be a language in NP. Then there is a family of uniform polynomial-
sized circuits (Cn), where each Cn has q(n) gates, n standard inputs x, and p(n) auxiliary
inputs y, such that for each x ∈ {0, 1}n, x ∈ L ⇐⇒ ∃y : Cn(x, y) = 1. We use this circuit to
construct the proof system. The input to the proof system consists of words x = x1 . . . xn,
y = y1 . . . yp(n), z = z1 . . . zq(n). The intention is that y represents the witness such that
Cn(x, y) = 1, and z represents the vector of values computed at each gate of Cn on input
x, y. There are two ways of doing self-correction with this information:

—Check for consistency: Check that every gate gi = gj ◦ gk satisfies zi = zj ◦ zk. Output
the string w where 〈w〉 = 〈x〉 ∧ (

∧q(n)
i=1[zi = zj ◦ zk]). If even one gate is inconsistent,

w equals 0∗, otherwise w is the input x that has been certified by y, z; hence w is in
L ∪ 0∗. Every string in L can be produced by giving witness y and consistent z. The
expression shows that this is a coSAC0 circuit.

—Look for an inconsistency: Find a gate gi = gj ◦ gk where zi �= zj ◦ zk. Output the
string w where 〈w〉 = 〈x〉 ∨ (

∨q(n)
i=1[zi �= zj ◦ zk]). If even one gate is inconsistent, then

w equals 1∗, otherwise w equals the input x that has been certified by y, z; hence, w
is in L∪ 1∗. Every string in L can be produced by giving suitable y, z. The expression
shows that this is an SAC0 circuit.

All three parts of the theorem follow directly from the above.

Ideally, we would like to have a notion of a reduction ≤ such that if A ≤ B and if A
needs �(d) depth in proof systems, then so does B. Such a notion was implicitly used
in proving Theorem 4.11; we showed that a lower bound for CYCLES translated to a
lower bound for USTCONN. However, part 3 of Theorem 5.2 suggests that for NC0 proof
systems in general, such “reductions” are necessarily rather fragile, and we do not
yet see what is a reasonable and robust definition to adopt. Using some reduction-like
techniques, we can give depth lower bounds for proof systems for some more languages.
We collect some such results in Lemma 5.3 below; all start from the hardness of MAJ.

Using Lemma 4.1 and the known lower bound for MAJ from Beyersdorff et al. [2013],
we can show that the following languages have no NC0 proof systems:

LEMMA 5.3. The following languages do not have NC0 proof systems.

(1) EXMAJ, consisting of strings x with exactly �|x|/2� 1s.
(2) EQUALONES = {xy | x, y ∈ {0, 1}∗, |x| = |y|, |x|1 = |y|1}.
(3) GI = {G1, G2 | Graph G1 is isomorphic to graph G2}.

Here we assume that G1 and G2 are specified via their 0-1 adjacency matrices and
that 1s on the diagonal are allowed (the graphs may have self-loops).

ACM Transactions on Computation Theory, Vol. 9, No. 1, Article 2, Publication date: October 2016.



2:24 A. Krebs et al.

PROOF.

(1) To show that EXMAJ does not have NC0 proof systems, note that:
—The language MAJ does not have NC0 proof systems (see Beyersdorff et al. [2013]).
—Minterms(MAJ) = EXMAJ; MAJ = UpClose(EXMAJ).
—Lemma 4.1 now implies EXMAJ does not have an NC0 proof system.
By the same argument, EXMAJ restricted to even-length strings, call it EXMAJEVEN,
has no NC0 proof systems.

(2) We will show that if EQUALONES has an NC0 proof system, then so does the language
EXMAJEVEN. Consider the slice

EQUALONES
=2n = {xy | |x| = |y| = n; x and y have an equal number of 1s}.

If x, y are length-n strings, then xy ∈ EQUALONES
=2n if and only if xy′ ∈ EXMAJEVEN,

where y′ is the bitwise complement of y. Thus a depth d proof system for EQUALONES

implies a depth d + 1 proof system for EXMAJEVEN.
(3) Let G1, G2 be n-node isomorphic graphs with adjacency matrices A1, A2. Then

(A1, A2) is in GI=2n2
. Let yb be the string appearing on the diagonal of Ab. Then

y1y2 ∈ EQUALONES
=2n.

Conversely, for each xy ∈ EQUALONES
=2n where |x| = |y| = n, the pair

(Diag(x), Diag(y)) is in GI=2n2
. (For an n-bit vector w, Diag(w) is the n × n matrix

with w on the diagonal and zeroes elsewhere.)
Thus a depth d proof system for GI implies a depth d proof system for

EQUALONES.

6. DISCUSSION

For MAJ, we have given a proof system with O(log log n) depth (and O(1) alternations),
and it is known from Beyersdorff et al. [2013] that ω(1) depth is needed. Can this gap
between the upper and lower bounds be closed?

Can we generalize the idea we use in Theorem 4.11 and apply it to other languages?
In particular, can we obtain good upper bounds using this technique for the language
STCONN?

Our construction from Theorem 3.6 can be generalized to work for languages accepted
by growing-monoids or growing-non-uniform-automata with poly-log growth rate (see,
e.g., Bedard et al. [1993]). Can we obtain good upper bounds for linearly growing
automata?

In Krebs and Limaye [2013], proof systems computable in DLOGTIME are investi-
gated. The techniques used there seem to differ considerably from those that work for
small-depth circuits, especially poly log AC0. Though in both cases each output bit can
depend on at most poly log n input bits, the circuit can pick an arbitrary set of poly log n
bits whereas a DLOGTIME proof system needs to write the index of each bit on the
index tape using up log n time.

From the results of Beyersdorff et al. [2013] and this article, we now know languages
complete for NC1, L, NL, P, and NP with NC0 proof systems. This gives further evidence
that the complexity of the membership problem for a language L and the amount of
resources needed to generate exactly L do not go hand in hand.
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