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Abstract
Using first-principles density functional calculations, the structural and elastic
properties of fluorite type oxides CeO2, ThO2 and PoO2 were studied by
means of the full-potential linear muffin-tin orbital method. Calculations were
performed within the local density approximation (LDA) as well as generalized
gradient approximation (GGA) to the exchange correlation potential. The
calculated equilibrium lattice constants and bulk moduli are in good agreement
with the experimental results, as are the computed elastic constants for CeO2

and ThO2. For PoO2 this is the first quantitative theoretical prediction of the
ground state properties, and it still awaits experimental confirmation. The
calculations find PoO2 to be a semiconductor with an indirect band gap and
elastic constants similar in magnitude to those of CeO2 and ThO2.

1. Introduction

Fluorite-type dioxides have attracted a great deal of interest from experimentalists as well
as theoreticians for the past two decades. The chemistry of these oxides is rather complex,
with the complications arising from the non-stoichiometry and often from the self-damage
resulting from the decay of the radioactive isotopes [1]. Nevertheless, numerous experimental
and theoretical studies have been carried out on these compounds. CeO2 is one of the most
studied of the fluorite oxides [2–6]. Cerium dioxide is a technologically important material with
remarkable properties used in a number of applications. For instance, it is widely applied in
automobile exhaust catalysts as an oxygen storage material, due to its ability to take and release
oxygen under oxidizing and reducing conditions. Properties of ceria-based materials, such as
electrical conductivity and diffusivity, have been reviewed for its use as an electrolyte in solid
oxide fuel cells [7, 8]. ThO2 is an example of an actinide oxide which crystallizes in the fluorite
structure. Both CeO2 and ThO2 are hard cubic oxides which have potential interests as optical
component materials and laser hosts [9], and numerous literature references are available for
these compounds investigating their electronic, bonding, optical, surface and ground state
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properties [2–4, 10–14]. The valency of Ce in CeO2 is still under debate. Two conflicting
points of view, both based on the interpretation of core-level spectroscopy studies, describe
the ground state as either tetravalent [15–17] or intermediate valent [18, 19]. However, recent
self-interaction corrected local spin density total energy calculations on CeO2 strongly suggest
a tetravalent ground state [14]. Advancements in the field of high-pressure studies were also
made for these compounds, revealing a pressure-induced structural phase transformation from
the cubic fluorite structure to an orthorhombic structure of α-PbCl2 type [20, 21]. In addition,
Raman spectra at high pressure are also available for CeO2 and ThO2 which again confirm the
high-pressure α-PbCl2-type structure [22, 23]. Recently, the high-pressure behaviour of ThO2

was reevaluated experimentally, and the value of the bulk modulus of ThO2 at ambient pressure,
which underwent a long debate, was finally settled [24, 25] and corroborated by theory [25].

From the perspective of materials science, the elastic constants Ci j contain some of the
more important information which can be obtained from ground state total energy calculations.
A given crystal structure cannot exist in a stable or a metastable phase unless its elastic constants
obey certain relationships. The Ci j also determine the response of the crystal to external
forces, as characterized by the bulk modulus, shear modulus, Young’s modulus and Poisson’s
ratio, and so play an important role in determining the strength of the material. The elastic
constants of CeO2 and ThO2 have been measured [26, 27], but theoretical calculations have
been reported only for CeO2 [28], which is one of the main objectives of the present work. For
CeO2 the experimental elastic constants were derived from the sound velocity for each acoustic
phonon mode estimated from the frequency shift of Brillouin scattering lines [26]. For ThO2

single-crystal elastic constants were determined by Macedo et al [27] by means of pulse echo
technique.

A second objective of the present work is to study the compound PoO2, which also
crystallizes in the fluorite structure. Apart from the lattice constant, experimental information
on this compound is scarce. Neither experimental nor theoretical details regarding the ground
state properties, electronic structure, and elastic constants are available. Here, we present our
theoretical results for PoO2, including the electronic structure and the elastic constants, as
obtained with the full-potential linear muffin-tin orbital method. We discuss the trends of the
CeO2, ThO2 and PoO2 fluorite oxides and compare with the available experimental results.
The paper is organized as follows. Section 1 gives a brief introduction to the fluorite-type
oxides and discusses the available literature on CeO2, ThO2 and PoO2. Section 2 deals with
the computational details, including the details regarding the calculation of elastic constants
and Debye temperatures. Section 3 presents the results obtained, including discussion. Finally,
section 4 contains the conclusions of the present work.

2. Computational details

2.1. The electronic structure method

In this work we have used the all-electron full-potential linear muffin-tin orbital (FP-LMTO)
method [29] to calculate the total energies as well as the basic ground state properties. Here
the crystal is divided into two regions: the non-overlapping muffin-tin spheres surrounding
each atom and the interstitial region between the spheres. We used a double κ spdf LMTO
basis (each radial function within the spheres is matched to a Hankel function in the interstitial
region) for describing the valence bands. For Th and Po, the 6p states were included in the basis,
and similarly, for Ce, the 5p states were used. Within the spheres, the potential is expanded in
terms of spherical harmonics, while in the interstitial region, it is expanded in terms of plane
waves. The exchange correlation potential was calculated both by the LDA [30] and the GGA
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schemes [31]. The charge density and potential inside the muffin-tin spheres are represented
by spherical harmonics up to lmax = 6, while in the interstitial region, 12 050 plane waves with
energies up to 193.316 Ryd were included in the calculation. Total energies were calculated
as a function of volume, with 413 k-points in the irreducible wedge of the Brillouin zone and
fitted to the Birch equation of state [32] to obtain the ground state properties.

We have not included the spin–orbit coupling in our total energy calculations. This might
seem a strange choice, considering that the spin–orbit coupling is significant in Ce, Th and Po.
Our rationale for this is as follows. In a calculational method which uses a scalar relativistic ls
basis, the relativistic p1/2 states cannot be well described since they are nonzero at the origin,
i.e., the Hilbert space spanned by the nonrelativistic basis set needs to be expanded in order
to accommodate relativistic wavefunctions. One of the consequences of this fundamental
shortcoming is that the equilibrium volume [33] is underestimated when the spin–orbit coupling
is included. The correct way of dealing with this problem would of course be to develop a full-
potential method based on a Dirac relativistic ( j, κ) basis. With the lack of such a method,
however, the problem can in fact to a large extent be avoided by simply ignoring the spin–orbit
interaction altogether. This simple remedy results in larger theoretical equilibrium volume for
light actinides and, consequently, better agreement with experiment [33]. The argument also
holds for lanthanides with a shallow 5p shell, such as Ce.

2.2. The elastic constants

A cubic system has three independent elastic constants C11, C12 and C44. The bulk modulus
B of this system can be expressed as a linear combination of C11 and C12. The condition for
elastic stability is that B , C11 − C12, and C44 are positive [34]. The elastic constants can be
obtained by calculating the total energy as a function of volume-conserving strains that break
the cubic symmetry. For calculating C11 and C12, we apply the tetragonal strain [35, 36] that
transforms the lattice vectors as

R′ = εR, (1)

where R and R′ are the old and new lattice vectors, respectively, and ε is the strain tensor
expressed in terms of the tetragonal deformation parameter δ as

εtet =
( 1 + δ 0 0

0 1 + δ 0
0 0 1/(1 + δ)2

)
. (2)

Furthermore, the connection between the increase in total energy per unit cell volume, U , and
the distortion, δ, is given by

U(δ) = 6C ′δ2 + O(δ3), (3)

where C ′ is the tetragonal shear constant, which is also given by

C ′ = 1
2 (C11 − C12). (4)

By calculating C ′ and the bulk modulus

B = 1
3 (C11 + 2C12) (5)

from the Birch equation of state, the C11 and C12 parameters can be extracted.
Similarly, the following volume-conserving monoclinic strain [37] is applied to calculate

C44:

εmon =
( 1 δ/2 0

δ/2 1 0
0 0 4/(4 − δ2)

)
. (6)
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In this case, the strain energy density is even in the strain parameter and is given by

U(δ) = 1
2 C44δ

2 + O(δ4). (7)

The strain energy density is the increase of the energy density of a distorted system,
which is proportional to the corresponding change in total energy. The accuracy of the total-
energy differences needed for calculating the elastic constants is of the order of a microrydberg,
and one needs a highly accurate computational method, like the FP-LMTO, to obtain a good
agreement with experimental data.

C11, C12, and C44 comprise the complete set of elastic constants for a cubic system, and
the shear modulus G, Young’s modulus E , and the Poisson’s ratio ν can be derived using the
following relations:

G = 1
5 (3C44 + C11 − C12), (8)

E = 9BG

3B + G
, (9)

ν = 1
2 (1 − E/3B). (10)

2.3. The Debye temperature

Having calculated the Young’s modulus E , bulk modulus B , and shear modulus G, one can
calculate the Debye temperature, which is an important fundamental parameter closely related
to many physical properties such as elastic constants, specific heat and melting temperature.

At low temperatures the vibrational excitations arise solely from acoustic modes. Hence,
at low temperatures the Debye temperature calculated from elastic constants is the same as that
determined from specific heat measurements. One of the standard methods to calculate the
Debye temperature (�D) is from elastic constants data, since �D may be estimated from the
average sound velocity, vm by the following equation [38]:

�D = h

k

[
3

4π

(
NAρ

M

)] 1
3

vm, (11)

where h is Planck’s constant, k is Boltzmann’s constant, NA is Avagadro’s number, M is the
molecular weight, and ρ is the density. Here we assume three acoustic branches contributing
to the low-temperature specific heat. The average wave velocity is approximately calculated
from [38]

vm =
[

1

3

(
2

v3
s

+ 1

v3
l

)]− 1
3

(12)

where vl and vs are the compressional and shear wave velocity respectively, which are obtained
from Navier’s equation [39]

vl =
√(

B + 4

3
G

)
/ρ, vs = √

G/ρ. (13)

3. Results

3.1. Ground state properties

The calculated ground state properties, i.e., the equilibrium lattice constant and elastic
constants, of fluorite-type oxides CeO2, ThO2 and PoO2 are given in tables 1 and 2. The
lattice constants agree well with the experimental values. The deviation is less than 1.5%,
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Table 1. Calculated lattice constants expressed in angstroms, bulk moduli in gigapascals and B ′
0

for CeO2, ThO2 and PoO2, compared with experiment and other theoretical calculations. The bulk
moduli have been calculated both at the experimental and theoretical equilibrium volume (B0(V exp

0 )

and B0(V th
0 ), respectively).

Compound Method Lattice constant B0(V th
0 ) B0(V exp

0 ) B ′
0

CeO2 LDA 5.33 218 181 4.2
GGA 5.43 184 195 4.2
Exp 5.41a 220(9)a, 204h 5.4(2)a

Others 5.38a, 5.39b, 5.48c, 5.36j 214.7b, 187.7c, 176.9a, 210j 4.4j

ThO2 LDA 5.52 225 189 4.4
GGA 5.61 198 204 4.5
Exp 5.60d 195(2)d, 198(2)e, 193i 4.4(4)d

Others 5.53f 221f

PoO2 LDA 5.46 188 135 4.3
GGA 5.56 171 159 3.7
Exp 5.64g

a Reference [40], b Reference [2], c Reference [13], d Reference [25], e Reference [24], f Reference [41],
g Reference [42], h From elastic constants of reference [26], i From elastic constants of reference [27], j Reference [28].

Table 2. Calculated elastic constants, shear modulus G , Young’s modulus E , all expressed in
gigapascals, and Poisson’s ratio ν for CeO2, ThO2 and PoO2. For C44 the values without oxygen
relaxation are quoted in parentheses (see text for discussion). The theoretical lattice constant is
used.

Compound Method C11 C12 C44 G E ν

CeO2 LDA 399.5 127.5 63.5 (115.1) 92.5 243.1 0.314
GGA 353.8 99.1 51.0 (96.5) 81.5 213.1 0.307
Expa 403 105 60 96 249 0.297
Othersb 386 124 73

ThO2 LDA 405.2 134.4 83.7 (148.9) 104.4 271.1 0.299
GGA 376.0 109.8 68.1 (109.1) 94.1 243.8 0.295
Expc 367 106 79 100 256 0.279

PoO2 LDA 342.0 110.8 55.7 (124.7) 79.7 209.4 0.314
GGA 318.5 97.0 47.0 (103.8) 72.5 190.5 0.314

a Reference [26], b Reference [28], c Reference [27].

with the GGA values slightly better than the LDA values, which are consistently lower than
the experimental lattice constants. The calculated bulk modulus for CeO2 matches well with
the results reported in previous theory works [2, 13]. Despite the fact that the LDA usually
overestimates the bulk modulus compared to experiment, here in the case of CeO2 it is in
excellent agreement with the experimental value.

In the case of ThO2 the long debate which existed for nearly two decades regarding the
zero-pressure bulk modulus was recently settled by Staun Olsen et al [25], and Iridi et al [24],
and our GGA value is in excellent agreement with the experimental value. As far as PoO2 is
concerned no experimental value for the bulk modulus is available and the present work is the
first theoretical prediction for this quantity, B = 171 GPa (GGA), which is slightly smaller
than found for CeO2 and ThO2.

The bulk modulus scales with the volume, and if we use the Murnaghan equation,
the expression for the interdependence between the bulk modulus and the volume becomes
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particularly simple [43]:

B(V ) = B(V0)

(
V0

V

)B ′

, (14)

where B ′ is the pressure derivative of the bulk modulus. Since the calculated equilibrium
volumes are overestimated with GGA and underestimated with LDA, an error, solely depending
on the error in the volume, is introduced in the result for the bulk modulus. Therefore, we
calculated the bulk modulus also at the experimental volume using the equation above; see
the rightmost column in table 1. We find that this diminishes the spread between the LDA
and GGA results, as expected. In addition, it also causes LDA to give smaller bulk modulus
than GGA for the systems studied. In the case of CeO2, we see that the very good agreement
with experiment for the LDA bulk modulus evaluated at the theoretical volume actually is due
to the underestimation of the equilibrium volume. For ThO2, our calculated bulk moduli at
the experimental volume converge around the experimental values, with a deviation from the
experimental value of about 5%.

The elastic constants of CeO2, ThO2 and PoO2 calculated in the present work are given
in table 2 and compared to experimental values (for CeO2 and ThO2). One observes that
C11 and C12 agree quite well with the experimental values. In the present calculation, we
moreover find that the elastic constants calculated with the GGA are in better agreement with
the experimental value than those derived on the basis of LDA. One point of caution is the fact
that the calculated values pertain to 0 K temperature, while experiments are performed at room
temperature. Finite temperature generally tends to reduce the elastic constants. Consequently,
we expect the experimental values at low temperature to be somewhat larger than the values
quoted in table 2.

The calculation of C44 is particularly delicate. In the fluorite-type structure the anion
occupies the tetrahedral position, which when subjected to the monoclinic strain, equation (6),
allows for additional relaxation given by an internal parameter, which must be optimized by
energy minimization. This leads to a smaller C44 compared to the unrelaxed case, and the
reduction can be quite substantial [45]. In table 2 we compare the relaxed and unrelaxed values
for CeO2, ThO2 and PoO2. Indeed, a large effect is also found in the present cases, with C44

reducing approximately by a factor of two compared to the unrelaxed case. Among the actinide
dioxides theoretical calculations of elastic constants are available only for UO2 [44], and this
work also found a theoretical C44 value more than twice as large as the experimental value,
presumably because oxygen relaxation was not included.

Using the calculated elastic constants in table 2, we have derived the average sound
velocities and Debye temperatures for CeO2, ThO2 and PoO2; see table 3. The Debye
temperature is calculated from the average elastic wave velocity, cf equation (11), the density
and the molecular weight of the above compounds are taken from [46, 47]. The calculated
values seem to overestimate the experimental Debye temperatures of references [48, 49] by
∼30 %; however, when the experimental elastic constants are used in equations (11)–(13), the
agreement is considerably better.

3.2. Electronic structure

The electronic structures of CeO2 and ThO2 have already been discussed earlier in many other
works; see, e.g. [2, 41]. Hence, we concentrate on the compound PoO2 about which nothing has
been reported so far. The band structure of PoO2 is shown in figures 1 and 2 with and without
spin–orbit interaction included, respectively, while figure 3 shows the density of states in the
case of spin–orbit interaction being included. PoO2 is a peculiar oxide, as both Po and O belong
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Figure 1. Band structure of PoO2 including spin–orbit interaction. The energy is set to zero at the
valence band top.

Table 3. Calculated longitudinal, shear, and average wave velocity (vl, vs, and vm, respectively) in
m s−1 and the Debye temperature θD in kelvins from the average elastic wave velocity for CeO2,
ThO2 and PoO2. The theoretical lattice constant is used.

Compound Method vl vs vm θD

CeO2 LDA 6876 3579 4005 349.8
GGA 6366 3360 3756 328.1
Exp 480a, 355b

ThO2 LDA 6035 3232 3610 304.7
GGA 5695 3069 3426 289.1
Exp 370c, 297d

PoO2 LDA 5740 2987 3343 280.1
GGA 5474 2850 3189 267.2

a Reference [48], b Calculated using equations (11)–(13) with elastic constants from reference [26],
c Reference [49], d Calculated using equations (11)–(13) with elastic constants from reference [27].

to the sixth group of the periodic table. However, due to the electronegativity of O, Po is rather
to be considered a tetravalent cation, which donates its four 6p electrons to the O anions. This is
reflected in the band structure in figure 1 and the concordant density of states in figure 3, which
together reveal that PoO2 is a semiconductor, with an indirect band gap. The valence band
maximum (VBM) occurs at the zone boundary L point, while the conduction band minimum
occurs at the zone centre. The Po 6s band appears as a single isolated band about 12 eV below
the VBM, while the O 2p valence bands appear in the region from −6 to 0 eV below the VBM.
The O 2p bands are separated from the Po 6p bands by a band gap of 0.60 eV. The partial
densities of states also included in figure 3 reveal a significant Po admixture into the O 2p
bands; hence a considerable degree of covalency is present. In particular, the lowest part of the
O 2p valence band has a significant bonding contribution from Po 6p, with the corresponding
antibonding component in the Po 6p bands above the VBM, which in fact has close to equal
weight on Po and O. The effect of spin–orbit interaction is elucidated by comparison of figures 1
and 2. In essence, only the Po 6p states feel the spin–orbit interaction leading to a downshift of
both the lowest valence band and the lowest conduction band. Without spin–orbit interaction
the PoO2 gap is 1.56 eV. Spin–orbit interaction increases the width of the valence bands by
0.2 to 6.4 eV. The O 2s states are not shown in figures 1 and 2, but appear at −16 to −19 eV,
cf figure 3.
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Figure 2. Band structure of PoO2 without spin–orbit interaction. The energy is set to zero at the
valence band top.

Figure 3. Density of states (DOS) of PoO2 including spin–orbit interaction. Units are: states per
eV and per formula unit. The DOS projected onto the Po site is shown by a dashed line, and the
DOS projected onto the O sites with a dotted line. The energy is set to zero at the valence band
maximum.

4. Conclusions

In this paper, we have studied the ground state and elastic properties of CeO2, ThO2 and PoO2

using the full-potential linear muffin-tin orbital method within the local density approximation
as well as generalized gradient approximation to the exchange correlation potential. For CeO2

and ThO2, the calculated ground state properties, such as the lattice constant, bulk modulus,
elastic constants, and Debye temperatures, agree well with the experimental values. For PoO2

the present work is the first quantitative prediction of its elastic properties, which we hope will
stimulate experimental investigations. PoO2 is predicted to be a semiconductor with an indirect
band gap.
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