Kinematics - 2

Harish N Dixit

ME5310: Incompressible Fluid Flow
Department of Mechanical \& Aerospace Engineering
Indian Institute of Technology Hyderabad WWW.iith.ac.in/~hdixit

1 Analysis of relative motion near a point

The force exerted by one portion of a fluid on another depends on the way the fluid deformed by the motion.

Let $\mathbf{u}(\mathbf{x}, t)$ be the velocity at position \mathbf{x} and time t. Then the velocity at a neighbouring point $(\mathbf{x}+\mathbf{r})$ is $\mathbf{u}+\delta \mathbf{u}$. Using Taylor series expansion about \mathbf{x}, we get

$$
\begin{equation*}
u_{i}(\mathbf{x}+\mathbf{r})=u_{i}(\mathbf{x})+\frac{\partial u_{i}}{\partial x_{j}} r_{j}+O\left(r^{2}\right) \tag{1}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\delta u_{i} & =u_{i}(\mathbf{x}+\mathbf{r})-u_{i}(\mathbf{x}) \tag{2}\\
& =r_{j} \frac{\partial u_{i}}{\partial x_{j}}, \quad \text { we assume linearity in } \delta u_{i} \text { vs } \mathbf{r} . \tag{3}
\end{align*}
$$

We can decompose the velocity gradient tensor into a symmetric, \mathbf{S}, and antisymmetric, $\boldsymbol{\omega}$, part.

$$
\begin{align*}
\frac{\partial u_{i}}{\partial r_{j}} & =\frac{1}{2}\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right)+\frac{1}{2}\left(\frac{\partial u_{i}}{\partial x_{j}}-\frac{\partial u_{j}}{\partial x_{i}}\right) \tag{4}\\
& =S_{i j}+\Omega_{i j} \tag{5}
\end{align*}
$$

Here $S_{i j}$ is the rate-of-strain tensor and $\Omega_{i j}$ is the vorticity tensor.
Therefore, the relative velocity becomes

$$
\begin{align*}
\delta u_{i} & =r_{j} S_{i j}+r_{j} \Omega_{i j} \tag{6}\\
& =\delta u_{i}^{(s)}+\delta u_{i}^{(a)} \tag{7}
\end{align*}
$$

The two contributions are distinct and we will examine each one of them carefully.

2 Symmetric contribution, $\delta u_{i}^{(s)}$

$S_{i j}$ can be further decomposed into a diagnol tensor (with non-zero trace) and a symmetric traceless tensor. Hence

$$
\begin{equation*}
S_{i j}=\frac{1}{3} S_{k k} \delta_{i j}+\left(S_{i j}-\frac{1}{3} S_{k k} \delta_{i j}\right) \tag{8}
\end{equation*}
$$

Hence we have ${ }^{1}$

$$
\begin{equation*}
r_{j} S_{i j}=\frac{\partial \Phi}{\partial x_{i}} \tag{9}
\end{equation*}
$$

where $\Phi_{1}=\frac{1}{2} r_{k} r_{l} S_{k l}$. Note that $\Phi=$ constant form a family of quadrics (look up conic sections). Now $\frac{\partial \Phi}{\partial x_{i}}$ gives the normal direction to the quadrics. Thus, the existence of such a scalar potential implies that the corresponding velocity is directed normal to the constant Φ surfaces.
The nature of $\delta \mathbf{u}^{(s)}$ contribution to $\delta \mathbf{u}$ becomes clearer if we choose the orthogonal axes of reference in such a way that the off-diagnol elements of $S_{i j}$ become zero. The axes of reference then coincide with the principal axes of $S_{i j}$ and the family of quadrics becomes

$$
\begin{equation*}
\Phi=\frac{1}{2}\left(a{r_{1}^{\prime}}^{2}+b r_{2}^{\prime 2}+c r_{3}^{\prime 2}\right), \tag{15}
\end{equation*}
$$

where $r_{i}^{\prime}, i=1,2,3$ are the components of \mathbf{r} in the principal direction and a, b, c are the diagonal components of the tensor $S_{i j}^{\prime}$ such that

$$
\begin{equation*}
S_{i j}^{\prime}=\frac{\partial r_{k}}{\partial x_{i}^{\prime}} \frac{\partial r_{l}}{\partial x_{j}^{\prime}} S_{k l} . \tag{16}
\end{equation*}
$$

Hence

$$
\mathbf{S}^{\prime}=\left(\begin{array}{lll}
a & 0 & 0 \\
0 & b & 0 \\
0 & 0 & c
\end{array}\right)
$$

Note that $a+b+c=S_{i i}^{\prime}=S_{i i}=\frac{\partial u_{i}}{\partial x_{i}}$.
The contribution $\delta \mathbf{u}^{(s)}$ to the relative velocity therefore has three components, (ar ${ }_{1}^{\prime}, b r_{2}^{\prime}, c r_{3}^{\prime}$) with reference to the new axes.
Take the case of a line element initially parallel to x_{1} axis. We know that $S_{11}^{\prime}=\frac{\partial u_{1}}{\partial x_{1}} \approx \frac{\Delta u_{1}}{\Delta x_{1}}$. Consider two points initially on this line element separated by a distance Δx_{1}. We therefore have

$$
\begin{align*}
&{ }^{1} \text { Check: We assumed } \delta \mathbf{u} \text { to be linear in } \mathbf{r}, \text { i.e., we neglected } O\left(r^{2}\right) \text { terms in } \delta \mathbf{u} \text {. Hence } \\
& \frac{\partial \Phi}{\partial x_{i}}=\frac{1}{2}\left(\frac{\partial r_{k}}{\partial x_{i}} r_{l} S_{k l}+r_{k} \frac{\partial r_{l}}{\partial x_{i}} S_{k l}+r_{k} r_{l} \frac{\partial S_{k l}}{\partial x_{i}}\right), \tag{10}\\
&=\frac{1}{2}\left(r_{l} S_{i l}+r_{k} S_{k i}+O\left(r^{2}\right)\right), \tag{11}\\
&=\frac{1}{2}\left(r_{l} S_{i l}+r_{k} S_{i k}\right), \tag{12}\\
&=\frac{1}{2}\left(2 r_{k} S_{i k}\right), \quad \text { since } l \text { and } k \text { are dummy variables, } \tag{13}\\
&=r_{j} S_{i j} . \tag{14}
\end{align*}
$$

$$
\begin{align*}
\Delta u_{1} & =u_{1}\left(x_{1}+\Delta x_{1}\right)-u_{1}\left(x_{1}\right), \tag{17}\\
& =\frac{\partial u_{1}}{\partial x_{1}} \Delta x_{1}, \tag{18}\\
& =\Delta x_{1} S_{11}^{\prime}, \tag{19}\\
& =a \Delta x_{1} . \tag{20}
\end{align*}
$$

If $a>0$, then the velocity at $\left(x_{1}+\Delta x_{1}\right.$ is higher than the velocity at x_{1}. So if $u_{1}\left(x_{1}\right)$ is positive, then the relative velocity contribution is such that the point $\left(x_{1}+\Delta x_{1}\right)$ moves further away from x_{1} thus stretching the line element. The rate of this stretching depends on the magnitude of a.
The contribution of $\delta \mathbf{u}^{(s)}$ is said to represent pure straining motion.
Extending the above argument to all the three directions, we say say that a cube of each side equal to unit length stretches into a cuboid with sides of lengths a, b, c respectively. The volume change in this operation is then equal to $1-a b c$. For an incompressible fluid, since $\Delta \cdot \mathbf{u}=S_{i i}=0, a+b+c=0$. In such a case, pure straining motion is a volume preserving operation.

The same pure straining motion also extends a sphere of unit radius into
 an ellipsoid of minor axes of lengths a, b, c. A classic example of pure straining motion is an extensional flow. Experimentally, such a flow is generated with a four roll mill. This is how stretching experiments on bubbles, drops and polymers are carried out in reality.

It is customary to distinguish between straining motions which result in volume changes and those that don't result in any volume change. The latter part would be identical to the case of an incompressible fluid. So, for a general compressible fluid, we can write
$\Phi=$ Isotropic expansion accommodating all volume changes

+ pure straining motion without change in volume.
This is accomplished by decomposing $S_{i j}$ into an isotropic part with a non-zero trace and a traceless part, i.e.,

$$
\begin{equation*}
S_{i j}=\frac{1}{3} S_{k k} \delta_{i j}+\left(S_{i j}-\frac{1}{3} S_{k k} \delta_{i j}\right) . \tag{22}
\end{equation*}
$$

We therefore have

$$
\begin{equation*}
\Phi=\frac{1}{6} S_{k k} r^{2}+\frac{1}{2}\left(S_{k l}-\frac{1}{3} S_{m m} \delta_{k l}\right) r_{k} r_{l} . \tag{23}
\end{equation*}
$$

It is important to remember that in the above analysis, we have analyzed the straining motions only in the principal directions. We achieved this by tilting the coordinate axes to coincide with the principal directions. As a result, only the diagonal entries of $S_{i j}$ survived. To analyze the role of off-diagonal entries, we will need a a more careful analysis which will be postponed to a later section. But at this point, it suffices to state that $S_{i j}$ contributes to a pure straining motion with or without volume change.

3 Anti-symmetric contribution, $\delta u_{i}^{(a)}$

We see that $\Omega_{i j}$ is anti-symmetrical. We can therefore write

$$
\begin{equation*}
\Omega_{i j}=-\frac{1}{2} \epsilon_{i j k} \omega_{k} . \tag{24}
\end{equation*}
$$

The negative $-1 / 2$ is there for convenience. We therefore have

$$
\begin{align*}
\delta u_{i}^{(a)}=r_{j} \Omega_{i j} & =-\frac{1}{2} \epsilon_{i j k} r_{j} \omega_{k} \tag{25}\\
& =\frac{1}{2}(\boldsymbol{\omega} \times \mathbf{r})_{i} \tag{26}
\end{align*}
$$

Clearly, $\delta u_{i}^{(a)}$ is the tangential velocity produced at a point with position vector \mathbf{r} resulting in a solid-body rotation with angular velocity $\omega / 2$.
Comparing the components of $\Omega_{i j}$ with the last expression, we can write the corresponding components of $\boldsymbol{\omega}$.

$$
\begin{align*}
\omega_{1} & =\frac{\partial u_{3}}{\partial x_{2}}-\frac{\partial u_{2}}{\partial x_{3}} \tag{27}\\
\omega_{2} & =\frac{\partial u_{1}}{\partial x_{3}}-\frac{\partial u_{3}}{\partial x_{1}} \tag{28}\\
\omega_{3} & =\frac{\partial u_{2}}{\partial x_{1}}-\frac{\partial u_{1}}{\partial x_{2}} \tag{29}
\end{align*}
$$

The vector $\boldsymbol{\omega}$ is called the local vorticity. In symbolic notation, we can also write

$$
\begin{equation*}
\boldsymbol{\omega}=\boldsymbol{\nabla} \times \mathbf{u} \tag{30}
\end{equation*}
$$

If $\boldsymbol{\nabla} \times \mathbf{u}=0$ everywhere in the flow, we refer to such a flow as an irrotational flow since the local rotation vanishes at every point. We will return to this point later.

3.1 Additional physical interpretation

It is easy to see why $\boldsymbol{\nabla} \times \mathbf{u}$ appears as twice the local angular velocity of the fluid. By using Kelvin-Stokes theorem (also simply stated as the Stokes theorem), we have

$$
\begin{equation*}
\int(\boldsymbol{\nabla} \times \mathbf{u}) \cdot \mathbf{n} d A=\oint \mathbf{u} \cdot \mathbf{d r} \tag{31}
\end{equation*}
$$

Let the area be a small circle of radius a. We therefore have

$$
\begin{align*}
\text { Tangential velocity averaged over circumference } & =\frac{1}{2 \pi a} \oint \mathbf{u} \cdot \mathbf{d r} \tag{32}\\
& =a \frac{1}{2 \pi a^{2}} \oint \mathbf{u} \cdot \mathbf{d r} \tag{33}\\
& =a \frac{1}{2}(\nabla \times \mathbf{u}) \cdot \mathbf{n} \tag{34}
\end{align*}
$$

In the last expression, we have assumed $(\boldsymbol{\nabla} \times \mathbf{u})$ to be constant since it is reasonable to assume that the vorticity field is constant over a very tiny area of size πa^{2}.

But tangential velocity at the edge of a circle of radius a is given by $u_{t}=a \times$ (angular velocity). Hence

$$
\begin{equation*}
\text { angular velocity }=\frac{1}{2}(\boldsymbol{\nabla} \times \mathbf{u}) \tag{35}
\end{equation*}
$$

4 Summary

In summary, we have seen that, to first order in linear dimensions of a small region surrounding the position \mathbf{x}, the velocity in this region consists, in effect, of a superposition of

1. a uniform translation with velocity $\mathbf{u}(x)$,
2. a pure straining motion characterized by a rate-of-strain tensor, $S_{i j}$, which itself can be further decomposed into an isotropic expansion and a straining motion without change in volume,
3. a rigid-body rotation with angular velocity $\frac{\omega}{2}$.

In analytical terms, the conclusion is that the velocity at the position ($\mathbf{x}+\mathbf{r}$) may be written approximately as

$$
\begin{equation*}
u_{i}(\mathbf{x}+\mathbf{r})=u_{i}(\mathbf{x})+\frac{\partial}{\partial x_{i}}\left(\frac{1}{2} r_{j} r_{k} S_{j k}\right)+\frac{1}{2} \epsilon_{i j k} \omega_{j} r_{k}+O\left(r^{2}\right), \tag{36}
\end{equation*}
$$

or in symbolic notation as

$$
\begin{equation*}
\mathbf{u}(\mathbf{x}+\mathbf{r})=\mathbf{u}(\mathbf{x})+\frac{\partial \Phi}{\partial \mathbf{x}}+\frac{1}{2}(\boldsymbol{\omega} \times \mathbf{r})+O\left(r^{2}\right), \tag{37}
\end{equation*}
$$

where $S_{i j}$ and ω_{j} are evaluated at the point \mathbf{x}.

5 Vorticity and vortex

We defined the local vorticity of a fluid as $\boldsymbol{\omega}=\boldsymbol{\nabla} \times \mathbf{u}$. We briefly discuss the difference between vorticity and vortex here by considering three different flow cases.

5.1 Unidirectional shear flow

Consider a simple viscous flow through a channel of width $2 h$. The velocity is given by

$$
\begin{equation*}
[u, v, w]=\left[u_{0}\left(1-\frac{y^{2}}{h^{2}}\right), 0,0\right] . \tag{38}
\end{equation*}
$$

$$
\omega_{z}=\frac{2 u_{0}}{h}
$$

$$
\omega_{z}=-\frac{2 u_{0}}{h}
$$

The only non-zero velocity component is

$$
\begin{align*}
\omega_{z} & =\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y} \tag{39}\\
& =0-u_{0}\left(\frac{-2 y}{h^{2}}\right) \tag{40}\\
& =\frac{2 u_{0}}{h} \frac{y}{h} \tag{41}
\end{align*}
$$

Therefore $\left|\omega_{z}\right|$ is maximum at $y= \pm h$ and $\omega_{z}=0$ at $y=0$. Here the streamlines are straight, yet vorticity is non-zero.

5.2 Stagnation point flow

Now let us consider another flow as shown schematically in figure XXXX. The velocity components are given by

$$
\begin{equation*}
(u, v, w)=(c x,-c y, 0) \tag{42}
\end{equation*}
$$

where c is an arbitrary positive constant. It is easy to verify that all the vorticity components are zero, i.e.,

$$
\begin{equation*}
\omega_{x}=\omega_{y}=\omega_{z}=0 \tag{43}
\end{equation*}
$$

The streamlines in this flow are curved, yet the vorticity is zero. The present example clearly demonstrates that vorticity is not directly connected with the curvature of streamlines.

5.3 Point vortex

A point vortex is an irrotational vortex with vorticity at just one single point in the entire flow. The velocity components in the cylindrical polar coordinates are given by

The z component of vorticity in cylindrical coordinates is given by

$$
\begin{align*}
\omega_{z} & =\frac{1}{r} \frac{\partial\left(r u_{\theta}\right)}{\partial r}-\frac{1}{r} \frac{\partial u_{r}}{\partial \theta}, \tag{45}\\
& =\frac{1}{r} \frac{\partial \Gamma}{\partial r}=0, \quad \quad \text { except at } r=0 \tag{46}
\end{align*}
$$

Vorticity is identically zero everywhere except at $r=0$ where the derivative operation is not well defined. This is an example of a vortex with zero vorticity, and a flow with closed streamlines with zero vorticity. We will return to the subject of irrotational vortex later when dealing with the concept of circulation.

6 Decomposition of straining motion

In the previous sections, we decomposed the total deformation into a translation, a pure straining motion and a solid-body rotation. The pure straining motion was analyzed by rotating the coordinate axes to coincide with the principal axes such that only the diagonal entries of $S_{i j}$ survive.

The rate-of-strain tensor ${ }^{2}, S_{i j}=\frac{1}{2}\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right)$, is a second order tensor. Written in a matrix form, we have

$$
\mathbf{S}=\left(\begin{array}{lll}
S_{11} & S_{12} & S_{13} \\
S_{12} & S_{22} & S_{23} \\
S_{13} & S_{23} & S_{33}
\end{array}\right)
$$

We will show that the diagonal entries in \mathbf{S} are associated with extensional strains and off-diagonal extras are associated with shear strains. We know that the straining component of relative velocity is given by

$$
\begin{equation*}
\delta u_{i}^{(s)}=r_{j} S_{i j} . \tag{47}
\end{equation*}
$$

Let $\mathbf{r}=\boldsymbol{\alpha} d s$ where $\boldsymbol{\alpha}$ is a unit vector in the \mathbf{r} direction and $d s$ is the length. Hence

$$
\begin{equation*}
\delta u_{i}^{(s)}=\alpha_{j} S_{i j} d s=d_{i} d s \tag{48}
\end{equation*}
$$

where $\mathbf{d}=\boldsymbol{\alpha} \cdot \mathbf{S}$ is the strain vector as shown schematically in the figure.
For a point P^{\prime} in the α_{i} direction from P, the vector d_{i} is the strain rate of P^{\prime} with respect to P. It indicates the direction and velocity with which P^{\prime} moves away from P. Clearly, as shown in the figure, d_{i} is not necessarily along α_{i}. As suggested
 by vector decomposition, we can write

$$
\begin{equation*}
\delta u_{i}^{(s)}=\delta u_{i}^{(e s)}+\delta u_{i}^{(s s)} . \tag{49}
\end{equation*}
$$

The first term on RHS is the extensional strain which denotes deformation in the α_{i} direction, whereas the second term is the shearing strain which denotes deformation perpendicular to the α_{i} direction.

6.1 Extensional strain

The extensional strain is proportional to $\boldsymbol{\alpha} \cdot \mathbf{d}$ pointing in the $\boldsymbol{\alpha}$ direction. This can be written as

$$
\begin{align*}
& \delta \mathbf{u}^{(e s)}=\boldsymbol{\alpha}(\boldsymbol{\alpha} \cdot \mathbf{d}) d s, \tag{50}\\
& \delta u_{i}^{(e s)}=\alpha_{i} \alpha_{j} d_{j} d s . \tag{51}
\end{align*}
$$

For example, let P be at the origin and P^{\prime} be on the x axis at a distance $d s$. The vector $\mathbf{r}=\boldsymbol{\alpha} d s$ is therefore pointing in the direction of x axis and we have

$$
\alpha_{1}=1, \quad \alpha_{2}=\alpha_{3}=0 .
$$

Hence

$$
\begin{align*}
\delta u_{1}^{(e s)} & =d_{1} d s \\
& =(\boldsymbol{\alpha} \cdot \mathbf{S})_{1} d s \\
& =S_{11} d s \tag{52}
\end{align*}
$$

Therefore S_{11} is the extension rate of two particles separated in the x_{1} direction.
Similarly, it can be shown that $\delta u_{2}^{(e s)}=\alpha_{2}\left(\alpha_{j} d_{j}\right) d s=0$.

[^0]
6.2 Shear strain

The shear strain is the component of strain vector, d_{i} perpendicular to the α_{i} direction. This can be accomplished by the cross product of $\boldsymbol{\alpha}$ and $(\boldsymbol{\alpha} \times \mathbf{d})$. Therefore, we have

$$
\begin{equation*}
\delta \mathbf{u}^{(s s)}=(\boldsymbol{\alpha} \times \mathbf{d}) \times \boldsymbol{\alpha} d s \tag{53}
\end{equation*}
$$

Alternately, we can also calculate the shear strain as

$$
\begin{equation*}
\delta \mathbf{u}^{(s s)}=\delta \mathbf{u}^{(s)}-\delta \mathbf{u}^{(e s)} \tag{54}
\end{equation*}
$$

If $P=(0,0,0)$ and $P^{\prime}=(d s, 0,0)$, we have $\boldsymbol{\alpha}=(1,0,0)$. Hence

$$
\boldsymbol{\alpha} \times \mathbf{d}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & 0 & 0 \\
d_{1} & d_{2} & d_{3}
\end{array}\right|=-\mathbf{j} d_{3}+\mathbf{k} d_{2} .
$$

and

$$
(\boldsymbol{\alpha} \times \mathbf{d}) \times \boldsymbol{\alpha}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
0 & -d_{3} & d_{2} \\
1 & 0 & 0
\end{array}\right|=\mathbf{j} d_{2}+\mathbf{k} d_{3} .
$$

Moreover, since $d_{i}=\alpha_{j} S_{i j}$, we have

$$
\begin{align*}
& d_{1}=\sum_{j} \alpha_{j} S_{1 j}=S_{11}, \tag{55}\\
& d_{2}=\sum_{j} \alpha_{j} S_{2 j}=S_{12} . \tag{56}
\end{align*}
$$

Putting everything together, we have

$$
\begin{align*}
& \delta u_{1}^{(s s)}=0, \quad(\text { since there is no } i \text {-component in }(\boldsymbol{\alpha} \times \mathbf{d}) \times \boldsymbol{\alpha}), \tag{57}\\
& \delta u_{2}^{(s s)}=d_{2}=S_{12}, \tag{58}\\
& \delta u_{3}^{(s s)}=d_{3}=S_{13} . \tag{59}
\end{align*}
$$

Clearly, there is no relative velocity in the x_{1}-direction. S_{12} gives the shearing velocity in the x_{2}-direction of a particle P^{\prime} which is originally separated from P only in the x_{1}-direction. Figure XXXXX

In general, the off-diagonal entries of $S_{i j}$ give the shearing velocity in the j-direction for two particles initially separated in the i-direction.

7 Simple Shear Flow

To see the application of all the previous analysis, let us consider a standard flow and determine the components of the relative velocity in the neighborhood of single point, P. Let the velocity components be given by

$$
\begin{equation*}
\left(u_{1}, u_{2}, u_{3}\right)=\left(c x_{2}, 0,0\right), \tag{60}
\end{equation*}
$$

where $c>0$ determines the velocity gradient of the shear flow. This flow is called the simple shear flow. The rate-of-strain tensor becomes

$$
\mathbf{S}=\left(\begin{array}{ccc}
0 & c / 2 & 0 \\
c / 2 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Using $d_{i}=\alpha_{j} S_{i j}$, we have

$$
\begin{align*}
d_{1} & =\alpha_{1} S_{11}+\alpha_{2} S_{12}+\alpha_{3} S_{13}=\alpha_{2} \frac{c}{2} \tag{61}\\
d_{2} & =\alpha_{1} S_{21}+\alpha_{2} S_{22}+\alpha_{3} S_{33}=\alpha_{1} \frac{c}{2} \tag{62}\\
d_{3} & =\alpha_{1} S_{31}+\alpha_{2} S_{32}+\alpha_{3} S_{33}=0 \tag{63}
\end{align*}
$$

Vorticity, $\boldsymbol{\omega}=(0,0,-c)$.
Now we are in a position to calculate the elementary motions of P^{\prime} with respect to P. Specifically, we consider five points around $P=(0,0,0)$ whose vertices and $\boldsymbol{\alpha}$ components are given below:

At 1: $\quad P^{\prime}=(1,0,0) ; \quad\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)=(1,0,0)$,
At 2: $\quad P^{\prime}=\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right) ; \quad\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)=\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right)$,
At 3: $\quad P^{\prime}=(0,1,0) ; \quad\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)=(0,1,0)$,
At 4: $\quad P^{\prime}=\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right) ; \quad\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)=\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right)$,
At 5: $\quad P^{\prime}=(-1,0,0) ; \quad\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)=(-1,0,0)$.

7.1 The velocity due to solid-body rotation

$$
\begin{align*}
\delta u_{i}^{(a)} & =-\frac{1}{2} \epsilon_{i j k} r_{j} \omega_{k}, \tag{64}\\
& =-\frac{1}{2} \epsilon_{i j k} \alpha_{j} \omega_{k} d s \tag{65}\\
& =-\frac{1}{2} \epsilon_{i j 3} \alpha_{j} \omega_{3} d s \quad \text { (since only } 3 \text {-component of } \omega \text { is non-zero.) } \tag{66}
\end{align*}
$$

Hence

$$
\begin{align*}
\delta u_{1}^{(a)} & =-\frac{1}{2} \epsilon_{123} \alpha_{2} \omega_{3} d s, \tag{67}\\
& =-\frac{1}{2} \alpha_{2}(-c) d s, \tag{68}\\
& =\alpha_{2} \frac{c}{2} d s \tag{69}\\
\delta u_{2}^{(a)} & =-\alpha_{1} \frac{c}{2} d s, \tag{70}\\
\delta u_{3}^{(a)} & =0 . \tag{71}
\end{align*}
$$

At each of the points P^{\prime}, we have,

$$
\begin{array}{lll}
\text { At 1: } & \delta u_{1}^{(a)}=0, & \delta u_{2}^{(a)}=-\frac{c}{2} d s, \\
\text { At 2: } & \delta u_{1}^{(a)}=\frac{c}{2 \sqrt{2}} d s, & \delta u_{2}^{(a)}=-\frac{c}{2 \sqrt{2}} d s, \\
\text { At 3: } & \delta u_{1}^{(a)}=\frac{c}{2} d s, & \delta u_{2}^{(a)}=0, \\
\text { At 4: } & \delta u_{1}^{(a)}=\frac{c}{2 \sqrt{2}} d s, & \delta u_{2}^{(a)}=\frac{c}{2 \sqrt{2}} d s, \\
\text { At 5: } & \delta u_{1}^{(a)}=0, & \delta u_{2}^{(a)}=\frac{c}{2} d s .
\end{array}
$$

The relative velocity at points around 0 is shown schematically in figure below.

7.2 The velocity due to straining (deforming) motion

The relative velocity due to straining is given by

$$
\begin{equation*}
\delta u_{i}^{(s)}=r_{j} S_{i j}=\alpha_{j} d s S_{i j}=\alpha_{j} S_{i j} d s=d_{i} d s . \tag{72}
\end{equation*}
$$

Hence

$$
\begin{align*}
\delta u_{1}^{(s)} & =d_{1} d s=\alpha_{2} \frac{c}{2} d s, \tag{73}\\
\delta u_{2}^{(s)} & =d_{2} d s=\alpha_{1} \frac{c}{2} d s, \tag{74}\\
\delta u_{3}^{(s)} & =d_{3} d s=0 . \tag{75}
\end{align*}
$$

We can further decompose the straining motion into an extensional part and a shear part.

7.2.1 Extensional strain

Recall that

$$
\begin{equation*}
\delta u_{i}^{(e s)}=\alpha_{i} \alpha_{j} d_{j} d s \tag{76}
\end{equation*}
$$

Hence

$$
\begin{align*}
\delta u_{1}^{(e s)} & =\alpha_{1} \sum_{j} \alpha_{j} d_{j} d s=\alpha_{1}^{2} \alpha_{2} c d s, \tag{77}\\
\delta u_{2}^{(e s)} & =\alpha_{2} \sum_{j} \alpha_{j} d_{j} d s=\alpha_{1} \alpha_{2}^{2} c d s, \tag{78}\\
\delta u_{3}^{(e s)} & =\alpha_{3} \sum_{j} \alpha_{j} d_{j} d s=0 . \tag{79}
\end{align*}
$$

At each of the points P^{\prime}, we have,

$$
\begin{aligned}
\text { At 1: } & \delta u_{1}^{(e s)}=0, & & \delta u_{2}^{(e s)}=0, \\
\text { At 2: } & \delta u_{1}^{(e s)}=\frac{c}{2 \sqrt{2}} d s, & & \delta u_{2}^{(e s)}=\frac{c}{2 \sqrt{2}} d s, \\
\text { At 3: } & \delta u_{1}^{(e s)}=0, & & \delta u_{2}^{(e s)}=0, \\
\text { At 4: } & \delta u_{1}^{(e s)}=\frac{c}{2 \sqrt{2}} d s, & & \delta u_{2}^{(e s)}=-\frac{c}{2 \sqrt{2}} d s, \\
\text { At 5: } & \delta u_{1}^{(e s)}=0, & & \delta u_{2}^{(e s)}=0 .
\end{aligned}
$$

The relative velocity at points around 0 is shown schematically in figure below.

7.2.2 Shear strain

The shear strain can be obtained by removing the extensional part of the total strain:

$$
\begin{equation*}
\delta u_{i}^{(s s)}=\delta u_{i}^{(s)}-\delta u_{i}^{(e s)} \tag{80}
\end{equation*}
$$

Therefore,

$$
\begin{align*}
\delta u_{1}^{(s s)} & =\left(\frac{1}{2}-\alpha_{1}^{2}\right) \alpha_{2} c d s, \tag{81}\\
\delta u_{2}^{(s s)} & =\left(\frac{1}{2}-\alpha_{2}^{2}\right) \alpha_{1} c d s, \tag{82}\\
\delta u_{3}^{(s s)} & =0 . \tag{83}
\end{align*}
$$

Maximum shearing happens at the coordinate axis, i.e. when $\alpha_{1}=0$ or $\alpha_{2}=0$. When both $\alpha_{1}= \pm 1 / \sqrt{2}$ and $\alpha_{2}= \pm 1 / \sqrt{2}$, shearing motion is zero. This forms a set of axis (the principal axes) rotated at 45° from the coordinate axes.

At each of the points P^{\prime}, we have,
At 1: $\delta u_{1}^{(s s)}=0, \quad \delta u_{2}^{(s s)}=\frac{c}{2} d s$,
At 2: $\delta u_{1}^{(s s)}=0, \quad \delta u_{2}^{(s s)}=0$,
At 3: $\quad \delta u_{1}^{(s s)}=\frac{c}{2} d s, \quad \delta u_{2}^{(s s)}=0$,
At 4: $\delta u_{1}^{(s s)}=0, \quad \delta u_{2}^{(s s)}=0$,
At 5: $\delta u_{1}^{(s s)}=0, \quad \delta u_{2}^{(s s)}=-\frac{c}{2} d s$.

The relative velocity at points around 0 is shown schematically in figure.

7.2.3 Principal axes

The principal axes of $S_{i j}$ are defined such that only the diagonal entries of $S_{i j}$ survive. The contribution of relative motion with such a rate-of-strain tensor suppresses shear strain contribution as we have already
seen that the shear strain contribution arises from the off-diagonal entries of $S_{i j}$. Clearly, the shear strain contribution goes to zero at points 2 and 4. At both these points, the total strain is identical to the extensional strain. Therefore, we expect that principal axes to coincide with directions $\overrightarrow{02}$ and $\overrightarrow{04}$.
To determine the principal axes of $S_{i j}$, we first calculate the eigenvalues and then its eigenvectors. The characteristic equation of $S_{i j}$ is given by

$$
\begin{equation*}
\lambda^{3}-I^{(1)} \lambda^{2}-I^{(2)} \lambda-I^{(3)}=0, \tag{84}
\end{equation*}
$$

where $I^{(1)}, I^{(2)}$ and $I^{(3)}$ are the invariants of matrix $S_{i j}$.

$$
\begin{align*}
& I^{(1)}=\operatorname{tr}(S)=S_{i i}, \tag{85}\\
& I^{(2)}=\frac{1}{2}\left[\operatorname{tr}\left(\mathbf{S}^{2}\right)-(\operatorname{tr}(\mathbf{S}))^{2}\right]=\frac{1}{2}\left(S_{i j} S_{j i}-S_{i i} S_{j j}\right), \tag{86}\\
& I^{(3)}=\operatorname{Det}[\mathbf{S}] . \tag{87}
\end{align*}
$$

In the case of simple shear flow, $S_{12}=S_{21}=c / 2$ and all other entries are zeros. The invariants then take the values

$$
\begin{equation*}
I^{(1)}=I^{(3)}=0, \quad I^{(2)}=\frac{c^{2}}{4} . \tag{88}
\end{equation*}
$$

The characteristic equation becomes

$$
\begin{equation*}
\lambda^{3}-\left(\frac{c^{2}}{4}\right) \lambda=0 \tag{89}
\end{equation*}
$$

which gives

$$
\begin{equation*}
\lambda=0 \quad \text { or } \quad \lambda= \pm \frac{c}{2} . \tag{90}
\end{equation*}
$$

The first eigenvalue is redundant as the base flow is two-dimensional. The eigenvectors, $\boldsymbol{\beta}$, are obtained from the equation

$$
\begin{equation*}
\beta_{i}\left(S_{i j}-\lambda \delta_{i j}\right)=0 \tag{91}
\end{equation*}
$$

Inserting $\lambda=c / 2$, we get

$$
\begin{equation*}
-\frac{c}{2} \beta_{1}^{(1)}+\frac{c}{2} \beta_{2}^{(1)}=0, \tag{92}
\end{equation*}
$$

which is satisfied with $\boldsymbol{\beta}^{(1)}=\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$. Similarly, the second eigenvector becomes $\boldsymbol{\beta}^{(2)}=\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$. Both these vectors in the $\pm 45^{\circ}$ directions. These principal directions are consistent with the directions of maximum and minimum extensional strain together with zero shear strain.

[^0]: ${ }^{2} S_{i j}$ is also referred to as the rate-of-deformation tensor. In literature, this tensor is also referred to with other symbols, $\varepsilon_{i j}$ or $\dot{\gamma}_{i j}$.

