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1 Kinematics of local fluid motion

Fluids are different from solids in one important way: fluids cannot resist tangential (shear) stresses but
solids do. Solids respond by undergoing deformation (strains) which develop internal stresses, eventually
resisting the external loading on them. For most solids, at small strains, the stress is proportional to strain,
the Hooke’s law. But in the case of fluids, they continue to deform as long as the applied shear stress is
present. The internal mechanism to develop internal stresses similar to solids is absent. Hence fluids, at
least the simple ones, cannot resist strains. But different fluids respond by the rate at which they undergo
this continuous deformation. Thus we must relate stress to rates of deformations, not deformation itself.

Kinematics deals with formulating an exact mathematical description to describe this rate of deformation.
The elementary motions can be classified into following categories:

• translation

• solid-body rotation

• straining

1. extensional strain

2. shear strain

There are two different methods to describe fluid
flows:

1. Lagrangian viewpoint

2. Eulerian viewpoint

The two viewpoints only differ in the choice of in-
dependent variables.

Independent variables

Lagrangian x0i and t̂
Initial point

Eulerian xi and t
Fixed point in space
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2 Lagrangian viewpoint

The Lagrangian viewpoint is an natural ex-
tension of particle mechanics. Each parti-
cle is identified by its initial position, x0i at time t̂ = 0. To measure a phys-
ical property in a flow, we could leave a small probe which will make measurements
as it traverses the fluid. For simplicity, let us assume that the mass of the probe is negligible so that the
path line taken by the probe is a faithful depiction of the local flow at its position. The use of weather or
sounding balloons to measure quantities such as atmospheric pressure, temperature, humidity, etc. is an
example of a Lagrangian measurement.
If this were to be a temperature probe, then the
temperature in Lagrangian variables is then given
by

T = TL
(
x0i , t̂

)
. (1)

The subscript L denotes that the temperature is
measured in a Lagrangian framework. The varia-
tion of temperature in time and space would de-
pend on where this probe get carried along with
the flow as time passes. Let ri be the position of
a material point, the probe in this case, at time t̂,
i.e.

ri = f
(
x0i , t̂

)
(2)

describes the path taken by the material point as it travels in space. It is evident that knowing the function
f is key to the success of any Lagrangian measurement. The velocity and acceleration of a particle are
then given by

vi =
∂f

∂t̂
; ai =

∂2f

∂t̂2
. (3)

If there are multiple material points, then vi and ai will in general will be different for each of these points.
In steady flow, the initial position will completely determine the path taken by the material point at all
times since f

(
x0i , t̂

)
does not change with time.

2.1 Stagnation point flow

Let us examine the above concepts with the help of a common flow. If we release tracer particles from
the point

(
x01, x

0
2, x

0
3

)
at t̂ = 0, then the particle trajectory in this flow is given by

r1 = f(x01, t̂) = x01 exp(ct̂), (4)

r2 = f(x02, t̂) = x02 exp(−ct̂), (5)

r3 = x03. (6)

The velocity along the trajectory of the material point is given by

v1 =
∂

∂t̂
f(x01, t̂) = cx01 exp(ct̂), (7)

v2 =
∂

∂t̂
f(x02, t̂) = −cx02 exp(−ct̂), (8)

v1 =
∂

∂t̂
f(x03, t̂) = 0. (9)
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(a) (b)

Eliminating t̂, we have

r1r2 = x01x
0
2,

r2 =
x01x

0
2

r1
; r3 = x03.

The path made by the particle in the r1 − r2 plane is a rectangular hyperbola. The distance between any
two particles is given by

dr1 =
∂f

∂x01
dx01 +

∂f

∂x02
dx02, (10)

= dx01 exp(ct̂), (11)

dr2 = dx02 exp(−ct̂). (12)

In this flow, two points along a horizontal (vertical) line continue to remain on the horizontal (vertical)
line at all times.

It should be clear from the above example that in the Lagrangian viewpoint, the major dependent variable
is the position vector, ri, and not the velocity.

3 Eulerian viewpoint

In this viewpoint, we watch a fixed point, xi, in space as time t proceeds. All flow properties such as ri,
vi, etc. are functions of xi and t. In the context of previous discussion, a temperature measurement in
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an Eulerian view is like keeping the temperature probe fixed at a single point in space and measuring the
temperature ‘field’ at a single point in space. In this kind of measurement, to determine the temperature
field, a large number of fixed probes are necessary. Fixed weather stations on the surface of earth is an
example of an Eulerian measurement.
The temperature measured from many of fixed probes at
locations xi and time t, i.e., TE(xi, t), tells us how the
temperature changes in space. At a fixed point, TE(xi, t)
give us the local history of temperature.
The particle position vector in Eulerian variables is sim-
ply

ri = ri(xi, t) = xi. (13)

To draw the equivalence between Lagrangian and Eu-
lerian viewpoints, all is require is to look at the same
point in space and at the same time. In an Eulerian
viewpoint, the point is simply xi and in the Lagrangian
viewpoint, we require a material point to pass through
this point. Hence

ri = ri(xi, t) = xi and t = t̂. (14)

Substituting ri = xi into the Lagrangian definition, we have xi = f(x0i , t).
Now xi is the position vector in Eulerian coordinates and f(x0i , t) tells us the history of a particle that
started off at x0i when t = 0 and is now at xi after a time t.

4 Streamlines

In order to compare the path taken by a material point in a Lagrangian viewpoint to something similar
in an Eulerian viewpoint, we need to define a streamline. A streamline is an imaginary line that at any
instant is tangent to the local velocity vector.
If dxi is a differential element along a streamline, the tangency condition
is expressible by three equations:

dx1
v1

=
dx2
v2

=
dx3
v3

. (15)

The above relations can also be written as

εijkvjdxk = 0 or v × dx = 0. (16)

A unique direction to streamline is determined at all points in space
except at those points at which the velocity goes to zero. If the velocity
is zero at some point, it is possible for two or more streamlines to exist
at that point.

4.1 Stagnation point flow

Let us revisit the stagnation point flow that we encountered earlier. The Eulerian-Lagrangian transfor-
mation is given by

x1 = x01 exp(ct), x2 = x02 exp(−ct). (17)
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The velocity ‘field’ is found by substituting x0i into vi:

v1 = cx01 exp(ct) = cx1, (18)

v1 = −cx02 exp(−ct) = −cx2. (19)

Therefore,

v = v1e1 + v2e2, (20)

= cx1e1 − cx2e2. (21)

Clearly v is independent of time. Hence this is a steady flow. The streamlines are obtained by using the
relation:

dx1
v1

=
dx2
v2

,

thus

dx2
dx1

=
v2
v1

=
−cx2
cx1

= −x2
x1
.

Integrating this equation, we get

x2 =
A

x1
. (22)

So in this case, streamlines coincides with pathlines. In general, pathlines and streamlines are identical in
a steady flow.
It is important to keep in mind that a flow which appears steady in one coordinate system may appear
unsteady in another coordinate system.

5 Substantial or Material derivative

In this Eulerian viewpoint, we lose the ability to track individual fluid particles. Moreover to describe
the time-rate of change of a quantity, we need to know its history in the Lagrangian framework. The
substantial or material derivative is an expression that allows us to formulate, in Eulerian variables, a
time derivative as we follow a material particle.

Let H1 be any arbitrary property of the flow under consideration. The parameter H may be expressed in
Lagrangian variables as HL(x0i , t̂) and in Eulerian variables as HE(xi, t). For an equivalence between the
two frameworks, we require

H = HL(x0i , t̂) = HE(xi, t). (23)

This equality makes sense only if we substitute the Eulerian-Lagrangian
transformation into the above equation:

H = HL(x0i , t̂) = HE
(
xi = f(x0i , t̂), t = t̂

)
. (24)

The rate of change of H as we follow a particle if found from the chain
rule:

∂H
∂t̂

=
∂HL
∂t̂

, (25)

=
∂HE
∂xi

∂xi

∂t̂
+
∂HE
∂t

∂t

∂t̂
, (26)

=
∂H
∂xi

∂f

∂t̂
+
∂H
∂t

. (27)

1The alphabet H is in honor of Prof. Bud Homsy.
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But since vi =
∂f

∂t̂
, we have

∂HL
∂t̂︸ ︷︷ ︸

Lagrangian variables

=
∂HE
∂t

+ vi
∂HE
∂xi︸ ︷︷ ︸

Eulerian variables

. (28)

The combination on the RHS has the physical interpretation of a time derivative following a fluid particle.
This substantial derivative occurs so frequently that Stokes gave it a special symbol:

∂()

∂t̂
≡ D()

Dt
≡ ∂()

∂t
+ vi

∂()

∂xi
. (29)

In symbolic notation,

D(·)
Dt
≡ ∂(·)

∂t
+ (v ·∇)(·) . (30)

The above boxed equations are one of the most important expressions that you will encounter in this
course. The first term in RHS defines the local rate of change. It vanishes unless there is a change with
time at a fixed location. The second term in RHS is the convective derivative. It vanishes unless there
are spatial gradients in the flow. This gradient is advected or convected with a flow velocity vi.

Example-1:
Let us examine the above analysis by taking H to be the position vector, rj . Since rj = rj(xi, t) = xi in
Eulerian coordinates, we have

Drj
Dt

=
∂rj
∂t

+ vi
∂rj
∂xi

,

= 0 + viδij ,

= vj . (31)

This example just shows that the change of displacement is equal to the velocity.

Example-2:
The expression for substantial derivative can also be used to derive boundary conditions in a free surface
flow. If η(x, t)=constant describes a material surface in a fluid, then η as a quantity is invariant for all
fluid elements on the surface. Hence

Dη

Dt
= 0.

Let η = z − f(x, y, t). Hence setting the substantial derivative to zero gives us

∂η

∂t
+ (u ·∇)η = 0,

∂η

∂t
+ u

∂η

∂x
+ v

∂η

∂y
+ w

∂η

∂z
= 0,

=⇒ w =
∂f

∂t
+ u

∂f

∂x
+ v

∂f

∂y
.

Later in the course, we will see that the above expression is used to obtain the kinematic condition at a
free surface.
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6 Conservation of mass

The requirement of conservation of mass imposes certain restrictions on the velocity field, and although
these are not strictly ‘kinematical’, it is convenient to consider them at this stage.

Consider a closed surface A whose position is fixed relative to some
coordinate axes, and it encloses a volume V . If ρ is the density of
the fluid at a position x and time t, then the mass of the enclosed
fluid is

∫
ρdV and the net rate at which mass is flowing outwards is∫

ρu · ndA.

In the absence of any sources or sinks, mass is conserved.

=⇒ d

dt

{∫
ρdV

}
= −

∫
ρu · ndA, (32)

=⇒
∫
∂ρ

∂t
dV = −

∫
∇ · (ρu)dV, (33)

=⇒
∫ {

∂ρ

∂t
+ ∇ · (ρu)

}
dV = 0. (34)

Since the choice of V is arbitrary, we require

∂ρ

∂t
+ ∇ · (ρu) = 0. (35)

This is one of the most fundamental equations of fluid mechanics. Expanding the divergence, we get

1

ρ

Dρ

Dt︸ ︷︷ ︸
fractional change in density

+ ∇ · u︸ ︷︷ ︸
fractional change in volume

= 0. (36)

The first term represents the fractional change in density whereas the second term represents the fractional
change in volume. It is easy to verify the latter statement.

The volume τ of a material body of a fluid changes as a result of movement of each element nds of the
bounding surface:

dτ

dt
=

∫
u · nds, (37)

=

∫
∇ · u dτ. (38)

Rate at which the volume of a material element changes is given by

lim
τ→0

1

τ

dτ

dt︸ ︷︷ ︸
rate of dilation

= lim
τ→0

1

τ

∫
∇ · u dτ = ∇ · u︸ ︷︷ ︸

rate of expansion

. (39)

A fluid is said to be incompressible when the density of an element of fluid is not affected by changes in
pressure. Thus, for an incompressible fluid, the rate of change of ρ following the motion is zero, i.e,

Incompressible fluid:
Dρ

Dt
= 0. (40)
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In this case, the mass conservation equation becomes

Incompressible fluid: ∇ · u = 0. (41)

In summary, two possibilities emerge from the same mass conservation equation:

∂ρ

∂t
+ ∇ · (ρu) = 0

∇ · u = 0
both steady and unsteady flows

∇ · (ρu) = 0
Only steady flows

In
co

m
pr

es
si
bl

e

steady
and

com
pressible

6.1 Use of stream function to satisfy mass conservation

If flow is either 2D or axisymmetric, then ∇ · u or ∇ · (ρu) is the sum of only two terms. Then, mass
conservation can be used to define a scalar field, ψ.

Ex: Consider u = (u, v, 0) and u, v are independent of z. Then

∇ · u = 0 =⇒ ∂u

∂x
+
∂v

∂y
= 0. (42)

Define u =
∂ψ

∂y
and v − ∂ψ

∂x
, then it is easy to verify that the continuity equation is identically satisfied.

We therefore have

δψ =
∂ψ

∂x
dx+

∂ψ

∂y
dy, (43)

= udy − vdx. (44)

This is an exact differential. If ψ0 is the value of ψ at a point 0, then ψ at any point can be obtained by
integrating the above equation:

ψ − ψ0 =

∫
udy − vdx. (45)

The integral on the RHS is a line integral along any arbitrary curve connecting 0 and P . Physically, the
RHS is the flux of fluid volume across the curve OP . The flux is taken to be positive in the anti-clockwise
sense about P .
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The flux of volume across the closed curve from any two different paths
joining O and P is zero when the flow is incompressible. The flux repre-
sented by the integral is therefore independent of the choice of the path
between 0 and P .
Since the flux of volume across any curve joining two points is equal to
the difference between values of ψ at these two points, ψ is therefore
constant along a streamline. Hence we can assign ψ a name, the stream-
function.

ψ can also be thought of as a “vector potential” such that

u = ∇×B where B = (0, 0, ψ). (46)

Let ψ1 − ψ2 = ε, the average velocity q between the two streamlines ψ1=constant and ψ2=constant is
given by the

q ≈ ε

(distance between the streamlines)
. (47)

So if the two streamlines come close to each
other, then q increases. Such a situation arises
when we have flow over an aerofoil. Right
above the airfoil, the streamlines get bunched
together (but never touching each other) and
hence the fluid velocity increases above the
airfoil. We will later see that this results
in a decrease in pressure above the airfoil,
and hence a lift force, as a consequence of
Bernoulli’s equation.

9


	Kinematics of local fluid motion
	Lagrangian viewpoint
	Stagnation point flow

	Eulerian viewpoint
	Streamlines
	Stagnation point flow

	Substantial or Material derivative
	Conservation of mass
	Use of stream function to satisfy mass conservation


