MATH 215/255, SECTION 102, MIDTERM II, NOVEMBER 192012 (H. DIXIT)

Closed Book and Notes. Calculators not allowed.
50 Minutes. Total: 40 marks
This exam contains two pages along with a table of Laplace transforms.

Problem 1: [12 marks] Short answers. Detailed explanation not required. 3 marks for each question.
i) Find the particular solution of the non-homogeneous equation

$$
y^{\prime \prime}+y^{\prime}+3 y=t
$$

ii) Find the damping constant, γ, such that the following spring-mass-damper system is critically damped:

$$
2 y^{\prime \prime}+\gamma y^{\prime}+8 y=0
$$

iii) Express the function, $f(t)$, shown in the figure below in terms of unit step functions.

iv) Find the inverse Laplace transform of

$$
F(s)=\frac{2}{s^{2}+3 s-4}
$$

Problem 2: [10 points] If $y_{1}(t)=(1+t)$ and $y_{2}(t)=e^{t}$ are solutions of the homogeneous part of the following differential equation,

$$
t y^{\prime \prime}-(1+t) y^{\prime}+y=t^{2} e^{2 t}, \quad t>0
$$

find the particular solution using variation of parameters.

Problem 3: [10 points] Consider a spring-mass-damper system forced by an external forcing with frequency ω. The position of the mass is described by the following initial value problem:

$$
u^{\prime \prime}+5 u^{\prime}+6 u=3 \cos (\omega t), \quad u(0)=1, u^{\prime}(0)=0 .
$$

i) Determine the steady state or forced response of the system. [7 points]
ii) The steady state response can be expressed as $R \cos (\omega t-\delta)$. Determine the amplitude R in terms of ω. [3 points]

Problem 4: [8 points] Consider the following differential equation with discontinuous forcing:

$$
y^{\prime \prime}+3 y^{\prime}+2 y=\left\{\begin{array}{ll}
1 & 0 \leq t<10, \\
0 & t \geq 10,
\end{array} ; \quad y(0)=y^{\prime}(0)=0,\right.
$$

i) Calculate the solution $y(t)$ using Laplace transforms. [6 points]
ii) Determine $\lim _{t \rightarrow \infty} y(t)$. [2 points]

	$f(t)=\mathcal{L}^{-1}\{F(s)\}$	$F(s)=\mathcal{L}\{f(t)\}$
1.	1	$\frac{1}{s}, \quad s>0$
2.	$e^{a t}$	$\frac{1}{s-a}, \quad s>a$
3.	$t^{n}, \quad n=$ positive integer	$\frac{n!}{s^{n+1}}, \quad s>0$
4.	$t^{p}, \quad p>-1$	$\frac{\Gamma(p+1)}{s^{p+1}}, \quad s>0$
5.	$\sin (a t)$	$\frac{a}{s^{2}+a^{2}}, \quad s>0$
6.	$\cos (a t)$	$\frac{s}{s^{2}+a^{2}}, \quad s>0$
7.	$\sinh (a t)$	$\frac{a}{s^{2}-a^{2}}, \quad s>\|a\|$
8.	$\cosh (a t)$	$\frac{s}{s^{2}-a^{2}}, \quad s>\|a\|$
9.	$e^{a t} \sin (b t)$	$\frac{b}{(s-a)^{2}+b^{2}}, \quad s>a$
10.	$e^{a t} \cos (b t)$	$\frac{s-a}{(s-a)^{2}+b^{2}}, \quad s>a$
11.	$t^{n} e^{a t}, \quad n=$ positive integer	$\frac{n!}{(s-a)^{n+1}}, \quad s>a$
12.	$u_{c}(t)$	$\frac{e^{-c s}}{s}, \quad s>0$
13.	$u_{c}(t) f(t-c)$	$e^{-c s} F(s)$
14.	$e^{c t} f(t)$	$F(s-c)$
15.	$f(c t)$	$\frac{1}{c} F\left(\frac{s}{c}\right), \quad c>0$
16.	$\int_{0}^{t} f(t-\tau) g(\tau) d \tau$	$F(s) G(s)$
17.	$\delta(t-c)$	$e^{-c s}$
18.	$f^{(n)}(t)$	$s^{n} F(s)-s^{n-1} f(0)-\cdots-f^{(n-1)}(0)$
19.	$(-1)^{n} f(t)$	$F^{(n)}(s)$

Math $215 / 255$ Midterm II Solutions
Problem 1:
(i)

$$
y^{\prime \prime}+y^{\prime}+3 y=t
$$

Find posirular solution.
Using method of undetumbed coeprecients, let

$$
\begin{aligned}
y_{p}=A t+B \\
\Rightarrow \quad y_{p}^{\prime}=A \\
y_{p}^{\prime \prime}=0 \\
\left.\Rightarrow \quad 0+A+3(A t+B)=t \quad \begin{array}{l}
\quad 3 A=1 \quad \\
\\
\Rightarrow \quad A+3 B=0
\end{array}\right\} \begin{array}{l}
A=\frac{1}{3} \\
B=\frac{-1}{9}
\end{array} \\
\therefore \quad y_{p}=\frac{t}{3}-\frac{1}{9} \quad
\end{aligned}
$$

$$
\begin{equation*}
2 y^{\prime \prime}+8 y^{\prime}+8 y=0 \tag{ii}
\end{equation*}
$$

Find r such that the system is critically damped.

Chomactustice equation:

$$
\Rightarrow \quad \begin{aligned}
& 2 \lambda^{2}+\gamma \lambda+8=0 \\
& \Rightarrow \quad \lambda=\frac{-\gamma \pm \sqrt{\gamma^{2}-4 \cdot 2 \cdot 8}}{4} \\
&=\frac{-\gamma \pm \sqrt{\gamma^{2}-64}}{4}
\end{aligned}
$$

System viitrcally damped when $r^{2}-64=0 \Rightarrow r=8$
Note: If $\gamma<8, \lambda$'s are complex conjugates: Underdamped If $r>8, \lambda$'s are real 4 negative: Over damped.
(iil)

$$
\begin{aligned}
& f(t)=\left\{\begin{array}{cccc}
1 & 0 \leqslant t<1 \\
-1 & 1 \leq t<3 \\
2 & 3 \leq t<4 \\
0 & t \geqslant 4 & 1 & 0
\end{array}\right. \\
& \Rightarrow f(t)=1+\left\{\begin{array}{cc}
0 & 0 \leq t<1 \\
-2 & 1 \leq t<3 \\
1 & 3 \leq t<4 \\
-1 & t \geqslant 4
\end{array}\right. \\
&=1+(-2) u_{1}(t)+3 u_{3}(t)-2 u_{4}(t) \\
&=1-2 u_{1}(t)+3 u_{3}(t)-2 u_{4}(t)
\end{aligned}
$$

(iv)

$$
\begin{aligned}
& f(s)=\frac{2}{s^{2}+3 s-4} \\
&=\frac{2}{(s+4)(s-1)}=2\left[\frac{A}{s+4}+\frac{B}{s-1}\right] \\
& \Rightarrow A(s-1)+B(s+4)=1 \Rightarrow-A+4 B=1 \quad A=\frac{1}{5}\left[\frac{-1}{s+4}+\frac{1}{s-1}\right] \\
& \therefore \quad f(s)=\frac{2}{5}\left[\begin{array}{l}
A=\frac{1}{5} \\
\Rightarrow \quad f(t)
\end{array}\right. \\
& \Rightarrow \frac{2}{5}\left[-e^{-4 t}+e^{t}\right]
\end{aligned}
$$

Problen 2:

$$
t y^{\prime \prime}-(1+t) y^{\prime}+y=t^{2} e^{2 t}, \quad t>0
$$

$y_{1}(t)=1+t$
$y_{2}(t)=e^{t}$$\quad$ Homogenews Solutions

$$
\begin{aligned}
& y_{2}(t)=e^{t} \\
\Rightarrow \quad & y_{\text {home }}=c_{1}(1+t)+c_{2} e^{t}
\end{aligned}
$$

Poririmal solutron: Let $y_{p}=u_{1}(t)(1+t)+u_{2}(t) e^{t}$

$$
\begin{aligned}
& y_{p}=u_{1}(t)(1+t)+u_{2} \\
& y_{p}^{\prime}=u_{1}^{x}(1+t)+u_{1}+u_{2}^{\prime} e^{t}+u_{2} e^{t}
\end{aligned}
$$

set

$$
\begin{align*}
& u_{1}^{\prime}(1+t)+u_{2}^{\prime} e^{t}=0 \tag{1}\\
\Rightarrow & y_{p}^{\prime}=u_{1}+u_{2} e^{t} \\
& y_{p}^{\prime \prime}=u_{1}^{\prime}+u_{2}^{\prime} e^{t}+u_{2} e^{t}
\end{align*}
$$

$$
\begin{gather*}
\text { Substituting, we have } \\
\qquad\left[u_{1}^{\prime}+u_{2}^{\prime} e^{t}+u_{2} e^{t}\right]-(1+t)\left[u_{1}+u_{2} e^{t}\right]+\left[u_{1}(t+t)+u_{2} e^{t}\right] \\
= \\
=t^{2} e^{2 t} \\
\Rightarrow u_{1}\left[-\left(1+t^{\prime}\right)+\left(1 y^{\prime} t\right)\right]+u_{2}\left[-(1+t) e^{t}+t e^{t}+e^{t}\right] \tag{2}\\
+t u_{1}^{\prime}+u_{2}^{\prime} t e^{t}=t^{2} e^{2 t} \\
\Rightarrow \text { (1) }
\end{gather*}
$$

Solving for $u_{1}^{\prime} \& u_{2}^{\prime}$ from (1) \& (2) :-

$$
\left[\begin{array}{cc}
1+t & e^{t} \\
1 & e^{t}
\end{array}\right]\left[\begin{array}{l}
u_{1}^{\prime} \\
u_{2}^{\prime}
\end{array}\right]=\left[\begin{array}{c}
0 \\
t e^{2 t}
\end{array}\right]
$$

$$
\begin{aligned}
& {\left[\begin{array}{l}
u_{1}^{\prime} \\
u_{2}^{\prime}
\end{array}\right]=\frac{\left[\begin{array}{cc}
e^{t} & -e^{t} \\
-1 & 1+t
\end{array}\right]}{(1+t) e^{t}-e^{t}}\left[\begin{array}{c}
0 \\
t e^{2 t}
\end{array}\right]} \\
& =\frac{1}{t e^{t}}\left[\begin{array}{cc}
e^{t} & -e^{t} \\
-1 & 1+t
\end{array}\right]\left[\begin{array}{c}
0 \\
t e^{2 t}
\end{array}\right] \\
& \Rightarrow u_{1}^{\prime}=\frac{1}{t e^{t}} x-t e^{3 t}=e^{2 t} \\
& \text { A } u_{2}^{\prime}=\frac{1}{t e^{t}} \times(1+t) t e^{2 t}=(1+t) e^{t} \\
& \therefore \quad u_{1}=\lambda t+4 \quad u_{1}=-\frac{e^{2 t}}{2}+c_{1} \\
& \text { and } u_{2}=u_{2}=t e^{t}+c_{2} \\
& \therefore y_{p}=\left(-\frac{e^{2+2 t}}{2}+4\right)(1+t)+\left(t e^{t}+c_{2}\right) e^{t} \\
& =\underbrace{c_{1}(1+t)+c_{2} e^{t}-\frac{(1+t)}{2} e^{2 t}+t e^{2 t}} \\
& \text { same as }
\end{aligned}
$$ homogeneous solution

\Rightarrow Partrimar Solution : $y_{p}=\left(\frac{t-1}{2}\right) e^{2 t}$

Problem (3):

$$
\begin{aligned}
u^{\prime \prime}+5 u^{\prime}+6 u=3 \cos (w t) ; \quad u(0) z & =1 \\
u^{\prime}(0) & =0 .
\end{aligned}
$$

(i) Steady state response $=$ Posticular Solution.

Vsing methed of underumined coeffrecuts, ler

$$
\begin{aligned}
& u_{p}=A \cos (\omega t)+B \sin (\omega t) \\
& u_{p}^{\prime}=-A \cos \sin (\omega t)+B \omega \cos (\omega t) \\
& \left.u_{p}^{\prime \prime}=-A \omega^{2} \cos \operatorname{l\omega t}\right)-B \omega^{2} \sin (\omega t)
\end{aligned}
$$

$$
\begin{aligned}
& {\left[-A \omega^{2} \cos (\omega t)-B \omega^{2} \sin (\omega t)\right]+5[-A \omega \sin (\omega t)+B \omega \cos (\omega t)]} \\
& \left.\begin{array}{rl}
& +6[A \cos (\omega t)
\end{array}+B \sin (\omega t)\right]=3 \cos (\omega t) \\
& O(\sin \omega t):-B \omega^{2}-5 A \omega+6 B=0 \quad \Rightarrow \quad A=\frac{6-\omega^{2}}{5 \omega} B
\end{aligned}
$$

$$
\begin{array}{r}
\Rightarrow \quad\left(6-w^{2}\right) \frac{6-w^{2}}{5 \omega} B+5 \omega B=3 \\
\left.\Rightarrow \quad\left[6-w^{2}\right)^{2}+25 \omega^{2}\right] B=15 \omega \\
\Rightarrow \quad B=\frac{15 \omega}{\left[\left(6-\omega^{2}\right)^{2}+25 \omega^{2}\right]} \\
\therefore \quad A=\frac{3\left(6-w^{2}\right)}{\left[\left(6-\omega^{2}\right)^{2}+25 \omega^{2}\right]}
\end{array}
$$

Subsotuting, we have
(ii)

Note that if the damping was $z^{l l o}$, the differeatral equation blames

$$
u^{\prime \prime}+6 u=3 \cos (\omega t)
$$

solving for amplimade R_{1}, we get

$$
\begin{aligned}
R & =\frac{3}{\left(6-\omega^{2}\right)} \\
\therefore \text { AS } \quad \omega & \rightarrow \sqrt{6}, \quad R \rightarrow \infty \quad \text { Resonance }
\end{aligned}
$$

Problem (4):

$$
y^{\prime \prime}+3 y^{\prime}+2 y= \begin{cases}1 & 0 \leqslant t<10 \\ 0 & t \geqslant 10\end{cases}
$$

$$
y(0)=y^{\prime}(0)=0
$$

(i) Taking Laplace traniform, we have

$$
\begin{aligned}
& \text { Let } \quad u_{p}=R \cos (\omega t-\delta) \\
& =R \cos \delta \cos (\omega t)+R \sin \delta \cdot \sin (\omega t) \\
& \Rightarrow \quad R^{2}=A^{2}+B^{2} \\
& =\frac{9\left(6-10^{2}\right)^{2}}{\left[\left(6-1 \omega^{2}\right)^{2}+25 \omega^{2}\right]^{2}}+\frac{225 \omega^{2}}{\left[\left(6-\omega^{2}\right)^{2}+25 \omega^{2}\right]} \\
& =\frac{9\left[\left(6-\omega^{2}\right)^{2}+25 \omega^{2}\right]}{\left[\left(6-\omega^{2}\right)^{2}+25 \omega^{2}\right]^{2}} \\
& \therefore \quad R=\frac{3}{\sqrt{\left(6-w^{2}\right)^{2}+25 w^{2}}}
\end{aligned}
$$

$$
\begin{gathered}
{\left[s^{2} y(s)-s y(0)-y^{\prime}(0)\right]+3[s y(s)-y(0)]+2 y(s)} \\
=\mathcal{L}\{g(t)\}
\end{gathered}
$$

where $g(t)= \begin{cases}1 & 0 \leq t<10 \\ 0 & t \geqslant 10\end{cases}$

$$
=1+\left\{\begin{array}{cc}
0 & 0 \leq t<10 \\
-1 & t \geqslant 10
\end{array}\right.
$$

$$
=1-u_{10}(t)
$$

$$
\Rightarrow\left(s^{2}+3 s+2\right) y(s)=\frac{1}{s}-\frac{e^{-10 s}}{s}
$$

$$
\Rightarrow \quad y(s)=H(s)-e^{-10 s} H(s)
$$

where $H(s)=\frac{1}{s\left(s^{2}+3 s+2\right)}$

$$
\begin{aligned}
& =\frac{1}{s(s+1)^{(s+2)}} \\
& =\frac{1}{2 s}-\frac{1}{s+1}+\frac{1}{2(s+2)}
\end{aligned}
$$

$$
\begin{aligned}
h(t) & =\mathcal{L}^{-1}\{H(s)\}=\frac{1}{2}-e^{-t}+\frac{1}{2} e^{-2 t} \\
y(t) & =\mathcal{L}^{-1}\{y(s)\}=h(t)-u_{10}(t) h(t-10) \\
\Rightarrow y(t) & =\left(\frac{1}{2}-e^{-t}-\frac{1}{2} e^{-2 t}\right)-u_{10}(t)\left[\frac{1}{2}-e^{-(t-10)}+\frac{1}{2} e^{-2(t-10)}\right]
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& \text { As } t \rightarrow \infty ; \quad e^{-t} \rightarrow 0 \\
& e^{-2 t} \rightarrow 0 \\
& \& \quad u_{10}(t)=1 \\
& \Rightarrow \operatorname{Lim}_{t \rightarrow \infty} y(t)= \\
& \frac{2}{2}-\operatorname{lx}\left[\frac{1}{2}\right]=0
\end{aligned}
$$

