MATH 215/255, SECTION 102, MIDTERM I, OCTOBER 122012 (H. DIXIT)

Closed Book and Notes. 50 Minutes. Total: 40 points This exam contains two pages.

Problem 1: [12 points] State whether the following statements are True or False. Justify your answer with a clear explanation.
i) The following equation is an exact equation [3 points].

$$
\frac{d y}{d x}=\frac{2 x+3 y}{3 x+2 y}
$$

ii) The two functions $y_{1}(t)=e^{-2 t}$ and $y_{2}(t)=e^{t}$ form a fundamental set of solutions of the differential equation $y^{\prime \prime}+y^{\prime}-2 y=0$. [3 points]
iii) For the following differential equation, $y=1$ is a stable equilibrium.

$$
\frac{d y}{d x}=(y-1)(y-2)
$$

(Note: Can verify true or false without solving the equation). [3 points]
iv) If $f(t), g(t)$ and $h(t)$ are three differentiable functions, then $W[f g, f h](t)=f^{2} W[g, h](t)$. Here W is the Wronskian. [3 points]

Problem 2: [7 points] Consider the following differential equation:

$$
(t-3) y^{\prime}+2 y=\frac{1}{t-3}, \quad y(0)=1
$$

i) Without solving the differential equation, obtain the interval of existence. [2 points]
ii) Now obtain a solution of the differential equation. Does the interval of existence agree with that obtained in part (i)? [5 points]

Problem 3: [9 points] Consider the following differential equation:

$$
y^{\prime \prime}-2 y^{\prime}-3 y=0 .
$$

i) Obtain the general solution. [4 points]
ii) If $y(0)=\alpha$ and $y^{\prime}(0)=\beta$, obtain the exact solution in terms of α and β. [3 points]
iii) What should be the relation between α and β such that $y(t) \rightarrow 0$ as $t \rightarrow \infty$. [2 points]

Problem 4: [12 points] Consider the following differential equation for fish population, $y(t)$:

$$
\frac{d y}{d t}=f(y), \quad \text { where } f(y)=\sqrt{y}-\frac{y}{2} ; \quad y>0, t>0
$$

i) Determine the equilibrium solutions. [2 points]
ii) Plot $f(y)$ versus y and use this to plot the solution curves, i.e. y versus t for several initial conditions. Comment on the stability of the equilibrium solutions. [5 points]
iii) Now solve the differential equation with the initial condition $y(0)=1$. Verify that $\lim _{t \rightarrow \infty}=y_{e}$ where y_{e} is an equilibrium solution. [5 points]

MIDTERM - I SOLUTIONS
12 October 2012
(1) True or false Questions
(i)

$$
\begin{gathered}
\frac{d y}{d x}=\frac{2 x+3 y}{3 x+2 y} \quad(2 x+3 y)-(3 x+2 y) \frac{d y}{d x}=0 \\
\Rightarrow+N \frac{d y}{d x}=0 \\
M+2 x+3 y \quad \frac{A_{n}}{\partial y}=3 \\
M=\frac{\partial N}{\partial x}=-3 \\
N=-(3 x+2 y) \quad
\end{gathered}
$$

Ans: FALSE

Sine $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, the equation is NoT exact.
(${ }^{\text {i }) ~}$

$$
\begin{aligned}
& y_{1}=e^{-2 t} \\
& y_{2}=e^{t}
\end{aligned}
$$

Ans: TrUE

Equation $\quad y^{\prime \prime}+y^{\prime}-2 y=0$
$y_{1} \& y_{2}$ are solutions of the above equation.

$$
\begin{aligned}
& y_{1} \& y_{2} \text { are solution: } \\
& \begin{aligned}
W\left[y_{1}, y_{2}\right](t) & =\left|\begin{array}{cc}
y_{1}(t) & y_{2}^{\prime}(t) \\
y_{1}^{\prime}(t) & y_{2}^{\prime}(t)
\end{array}\right|=\left|\begin{array}{cc}
e^{-2 t} & e^{t} \\
-2 e^{-2 t} & e^{t}
\end{array}\right| \\
& =e^{-t}+2 e^{-t}=3 e^{-t} \neq 0
\end{aligned}
\end{aligned}
$$

Sine $\omega \neq 0, y_{1} \& y_{2}$ form a fundamental set of solutions.
(iii)

$$
\begin{array}{cc}
\frac{d y}{d t}=\underbrace{(y-1)(y-2)}_{f(y)} \\
\begin{array}{l}
\text { y } \\
\text { stable equilibrium. }
\end{array}
\end{array}
$$

(iv)

$$
\begin{aligned}
& {[f g, f h](t)=\left\lvert\, \begin{array}{ll}
f g & f h \\
f g^{\prime}+f^{\prime} g & f h^{\prime}+f^{\prime} h
\end{array}\right.} \\
& =\left(f h^{\prime}+f^{\prime} h\right) f g-f h\left(f g^{\prime}+f^{\prime} g\right) \\
& \\
& =f^{2}\left(h^{\prime} g-h g^{\prime}\right) \\
& g^{\prime}=\frac{d g}{d t} \\
& h^{\prime}=\frac{d f}{d t}
\end{aligned}
$$

$$
=f^{2}\left|\begin{array}{rr}
q & h \\
g^{\prime} & h^{\prime}
\end{array}\right|
$$

An: TRUE

$$
\Rightarrow \quad w[f g \nsim f h](t)=f^{2} w[g, h](t)
$$

(2) $(t-3) y^{\prime}+2 y=\frac{1}{t-3}$;

$$
y(0)=1
$$

(i) Writing the equation in standard form:

$$
y^{\prime}+p(t) y=q(t) \text {, we have }
$$

$$
y^{\prime}+\left(\frac{2}{t-3}\right) y=\frac{1}{(t-3)^{2}}
$$

$p(t)$ and $q(t)$ are discontinuous at $t=3$.
Since the initial
 Condition is prescribed
at $x=(0)$, the intural
of enitume is $-\infty \ll 3$
(ii)

$$
\text { Integrating factor is } \phi=e^{\int \frac{2}{t-3} d t}
$$

$$
\begin{aligned}
\phi & =e \\
& =e^{2 \ln |t-3|}=(t-3)^{2}
\end{aligned}
$$

$$
\Rightarrow y^{\prime}(t-3)^{2}+2(t-3) y=1
$$

$$
\Rightarrow \frac{d}{d t}\left[y(t-3)^{2}\right]=1
$$

$$
\begin{aligned}
& \Rightarrow \frac{d}{d t}[y(t-3)]=1 \\
& \Rightarrow y(t-3)^{2}=t+c \quad y=\frac{t+c}{(t-3)^{2}}
\end{aligned}
$$

Now $y(0)=1 \Rightarrow 1=\frac{c}{9} \Rightarrow c=9$

$$
y(t)=\frac{t+9}{(t-3)^{2}} \leftarrow \quad \text { Solution } \quad \text { at } t=3
$$

(3)

$$
y^{\prime \prime}-2 y^{\prime}-3 y=0
$$

(i) General Solution:-

Let $y=e^{r t}$

$$
\begin{aligned}
& \Rightarrow y^{\prime}=r e^{r t} \\
& y^{\prime \prime}=r^{2} e^{r t} \\
& \Rightarrow\left(r^{2}-2 r-3\right) e^{r t}=0
\end{aligned}
$$

Charactustre equation: $\quad r^{2}-2 r-3=0$

$$
\begin{aligned}
\Rightarrow(r-3)(r+1) & =0 \\
\Rightarrow r_{1}=3, r_{2} & =-1 \\
\therefore \quad y_{1}(t) & =e^{3 t} ; y_{2}=e^{-t}
\end{aligned}
$$

General Solution:- $y(t)=c_{1} e^{3 t}+c_{2} e^{-t}$
(ii) Now

$$
\begin{aligned}
& y(0)=\alpha \Rightarrow \alpha=c_{1}+c_{2}, \\
& y^{\prime}(0)=\beta \\
& \beta=3 c_{1}-c_{2}
\end{aligned}
$$

$$
\begin{aligned}
\therefore \quad 4 c_{1}=\alpha+\beta \Rightarrow \quad c_{1} & =\frac{\alpha+\beta}{4}, \\
c_{2} & =\alpha-\left(\frac{\alpha+\beta}{4}\right)=\frac{3 \alpha-\beta}{4}
\end{aligned}
$$

$$
\therefore y(t)=\left(\frac{\alpha+\beta}{4}\right) e^{3 t}+\left(\frac{3 \alpha-\beta}{4}\right) e^{-t}
$$

$$
\therefore y(t)=\left(\frac{\alpha+\beta}{4}\right) e^{3 t}+\left(\frac{3 \alpha-\beta}{4}\right) e^{-t}
$$

(iii) As $t \rightarrow \infty, e^{-t} \rightarrow 0$, but $e^{3 t}$ grows unboundedly.

Therefore, for $y(t) \rightarrow 0$ as $t \rightarrow \infty$, we requite

$$
\frac{\alpha+\beta}{4}=0 \quad \Rightarrow \quad \alpha+\beta=0
$$

(4)

$$
\begin{array}{r}
\frac{d y}{d t}=f(y) \quad \text { where } f(y)=\sqrt{y}-\frac{y}{2} \\
y \geqslant 0, t>0
\end{array}
$$

(i) Equilibrium Solutions:-

$$
\begin{aligned}
& f(y)=0 \quad \Rightarrow \quad \sqrt{y}-\frac{y}{2}=0 \\
& \Rightarrow \quad y=0 \quad \text { and } \quad y=4
\end{aligned}
$$

(ii) $\quad \frac{d f}{d y}=\frac{1}{2 \sqrt{y}}-\frac{1}{2}$

$$
\frac{d f}{d y}=0 \Rightarrow y=1
$$

At $\left.y=0 ; \frac{d t}{d y} \rightarrow \infty \quad\right\}$ plot
At $y=1 ; \quad \frac{d t}{d y}=0 \quad \int_{\text {vs } \frac{d t}{d y}}^{\text {plot }}$ of

Intuval	$\frac{d y}{d t}=f(y)$	$\frac{d f}{d y}$	$\frac{d^{2} y}{d t^{2}}=\frac{d f}{d y} \cdot f(y)$	
$(0,1)$	>0	>0	>0	: Concave up
$(1,4)$	>0	<0	<0	: Concave down
$(4, \infty)$	<0	<0	>0	:concave up.
y	y			

(iii) Solution:

$$
\begin{aligned}
& \frac{d y}{d t}=\sqrt{y}-\frac{y}{2} \\
& y(0)=1
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \frac{d y}{\sqrt{y}-\frac{y}{2}}=d t \\
& \Rightarrow \frac{2 d y}{\sqrt{y}(2-\sqrt{y})}=d t
\end{aligned}
$$

Let $\quad \sqrt{y}=u \Rightarrow y=u^{2}$

$$
\Rightarrow \quad d y=2 u d u
$$

$$
\begin{aligned}
\Rightarrow \frac{2 \cdot 2 \mu d u}{\mu(2-u)} & =d t \\
\Rightarrow 2 \cdot 2 \int \frac{d u}{2-u} & =\int d t \\
\Rightarrow 2 \cdot 2 \ln |2-u| & (-1)
\end{aligned}=t+c_{1}, ~=\frac{-t-c_{1}}{4} .
$$

Let $\quad c=e^{-\frac{c_{1}}{4}}:$ arbitrary constant.

$$
\begin{aligned}
& \text { at } c=e^{-\frac{c_{1}}{4}}: \text { arbitrary constant. } \\
& \Rightarrow \quad 2-u=c e^{-t / 4} \text { or } \quad u=2-c e^{-t / 4}
\end{aligned}
$$

$$
\begin{aligned}
y(0) & =1 \\
\Rightarrow u(0) & =1
\end{aligned} \quad \Rightarrow \quad 1=2-c \quad \Rightarrow c=1
$$

Now $\quad y(0)=1$

$$
\therefore u(t)=2-e^{-t / 4}
$$

$$
\therefore \quad \sqrt{y}=2-e^{-t / 4}
$$

$$
\begin{aligned}
& \sqrt{y}=\frac{2-e}{} \\
& \text { or } y=\left(2-e^{-t / 4}\right)^{2} \\
& 1
\end{aligned}
$$

Clearly, at $t=0, y=1$ and as $\quad t \rightarrow \infty ; \quad y=\lim _{t \rightarrow \infty}\left(2-e^{-t / 4}\right)^{2}=4$

