Math 215/255: Elementary Differential Equations I Harish N Dixit,
Department of Mathematics, UBC

Method of Undetermined coefficients - finding particular solution

$$
a y^{\prime \prime}+b y^{\prime}+c y=g(t)
$$

- Case I: If $g(t)=e^{\alpha t}$, then try $y_{p}=A e^{\alpha t}$, substitute y_{p} and compare $e^{\alpha t}$ terms on both sides to find A.
- Case II: If $g(t)=\cos \alpha t, \sin (\alpha t)$ or a combination of the two, then try $y_{p}=A \cos \alpha t+B \sin (\alpha t)$, substitute y_{p} and compare sin and cos terms on both sides to find A and B.
- Case III: If $g(t)=t^{n}$ - a polynomial, then
try $y_{p}=A t^{n}+B t^{n-1}+\ldots$, substitute y_{p} and compare similar terms on both sides to find the constants.
- Case I: If $g(t)=e^{\alpha t}$, then try $y_{p}=A t e^{\alpha t}$, substitute y_{p} and compare $e^{\alpha t}$ and $t e^{\alpha t}$ terms on both sides to find A.
- Case II: If $g(t)=\cos \alpha t, \sin (\alpha t)$ or a combination of the two, then try $y_{p}=t(A \cos \alpha t+B \sin (\alpha t))$, substitute y_{p} and compare sin, cos, $\underline{t \sin }$ and $t \cos$ terms on both sides to find A and B.
- Case III: If $g(t)=t^{n}$ - a polynomial, then
$\operatorname{try} y_{p}=t\left(A t^{n}+B t^{n-1}+\ldots\right)$, substitute y_{p} and compare similar terms on both sides to find the constants.

Variation of parameters - finding particular solution

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)
$$

> | If y_{1} and y_{2} are homogeneous solutions, |
| :--- |
| then $y_{H}(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)$ |

- Particular solution: Put $y=u_{1}(t) y_{1}+u_{2}(t) y_{2}$.
- Obtain y^{\prime}, set $u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0$ - Eq (1).
- From the simplified y^{\prime}, calculate $y^{\prime \prime}$ to obtain a second equation between u_{1}^{\prime} and u_{2}^{\prime} - Eq (2).
- Solve for the variables u_{1}^{\prime} and u_{2}^{\prime}. Integrate these to get u_{1} and u_{2}.
- Put everything together to get the particular solution.

Laplace Transforms

$$
a y^{\prime \prime}+b y^{\prime}+c y=g(t)
$$

Useful things to remember:

- $F(s)=\mathcal{L}\{f(t)\}=\int_{0}^{\infty} e^{-s t} f(t) d t$.
- If $\mathcal{L}\{y(t)\}=Y(s)$, then $\mathcal{L}\left\{y^{\prime}(t)\right\}=s Y(s)-y(t=0)$ and $\mathcal{L}\left\{y^{\prime \prime}(t)\right\}=s^{2} Y(s)-s y(t=0)-y^{\prime}(t=0)$.
- Never mix up variables s and t in the same equation.
- Unit step function:

$$
u_{c}(t)= \begin{cases}0 & 0 \leq t<c \\ 1 & t \geq c\end{cases}
$$

- If $f(t)=\mathcal{L}^{-1}\{F(s)\}$, then $\mathcal{L}^{-1}\left\{e^{-c s} F(s)\right\}=u_{c}(t) f(t-c)$. This is available in the table.
- Where ever required, express $g(t)$ in terms of $u_{c}(t)$ and then modify the expression to get it in the form $u_{c}(t) g(t-c)$. Always check to make sure your expression for $g(t)$ is correct.

Homogeneous Linear Equations

$$
\mathbf{X}^{\prime}=\mathbf{A X}
$$

Put $\mathbf{X}=\boldsymbol{\xi} e^{\lambda t}$

Real \& distinct eigenvalues

- Write two fundamental solutions as
$\mathbf{X}^{(1)}=\boldsymbol{\xi}^{(1)} e^{\lambda_{1} t}$ and
$\mathbf{X}^{(2)}=\boldsymbol{\xi}^{(2)} e^{\lambda_{2} t}$
- General solution is
$\mathbf{X}=c_{1} \mathbf{X}^{(1)}+c_{2} \mathbf{X}^{(2)}$.

Complex eigenvalues

- Write $\mathbf{X}^{(\mathbf{1})}=\boldsymbol{\xi}^{(\mathbf{1})} e^{\lambda_{+} t}$
- Take real and imaginary part of $\mathbf{X}^{(1)}$
- If $\mathbf{U}=\operatorname{Re}\left\{\mathbf{X}^{(\mathbf{1})}\right\}$ and $\mathbf{V}=\operatorname{Im}\left\{\mathbf{X}^{(\mathbf{1})}\right\}$, then general solution is $\mathbf{X}=c_{1} \mathbf{U}+c_{2} \mathbf{V}$.

Repeated eigenvalues

- First solution:
$\mathbf{X}^{(1)}=\boldsymbol{\xi}^{(1)} e^{\lambda t}$
- Second solution: Put $\mathbf{X}=\boldsymbol{\xi} t e^{\lambda t}+\boldsymbol{\eta} \boldsymbol{e}^{\lambda t}$
- Substitute to obtain $(\mathbf{A}-\lambda \mathbf{I}) \boldsymbol{\eta}=\boldsymbol{\xi}$ and find η.
- Put everything together to get $\mathbf{X}^{(2)}$. General solution is $\mathbf{X}=c_{1} \mathbf{X}^{(1)}+c_{2} \mathbf{X}^{(2)}$.

Homogeneous Linear Equations: Classification of critical point $\mathbf{X}^{\prime}=\mathbf{A X}$
 $(0,0)$ is a critical/equilibrium point

Steps:

- Put $\mathbf{X}=\boldsymbol{\xi} e^{\lambda t}$.
- Substitute to get $(\mathbf{A}-\lambda \mathbf{I}) \boldsymbol{\xi}=\mathbf{0}$.
- Compute eigenvalues and eigenvectors of the matrix \mathbf{A}.
- If λ_{1} and λ_{2} are real and of same sign - Node.
- If λ_{1} and λ_{2} are real and of opposite sign - Saddle.
- If λ_{1} and λ_{2} are complex conjugates - Spiral. The real part of $\lambda_{1,2}$ controls the growth/decay of spiral.
- If λ_{1} and λ_{2} are purely imaginary, i.e. no real part - Center.
- If $\operatorname{Re}\left\{\lambda_{1,2}\right\}>0$, then the critical point is unstable.
- Two solutions: $\mathbf{X}^{(\mathbf{1})}=\boldsymbol{\xi}^{(1)} e^{\lambda_{1} t}$ and $\mathbf{X}^{(2)}=\boldsymbol{\xi}^{(\mathbf{2})} e^{\lambda_{2} t}$

