Math 215/255: Elementary Differential Equations I Harish N Dixit, Department of Mathematics, UBC

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = 三 の < ⊙

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 … のへで

Laplace Transforms ay'' + by' + cy = g(t)

Useful things to remember:

- $F(s) = \mathcal{L}{f(t)} = \int_0^\infty e^{-st} f(t) dt.$
- If $\mathcal{L}{y(t)} = Y(s)$, then $\mathcal{L}{y'(t)} = sY(s) y(t = 0)$ and $\mathcal{L}{y''(t)} = s^2Y(s) sy(t = 0) y'(t = 0)$.
- Never mix up variables s and t in the same equation.
- Unit step function:

$$u_c(t) = \left\{ egin{array}{c} 0 & 0 \leq t < c \ 1 & t \geq c. \end{array}
ight.$$

- If $f(t) = \mathcal{L}^{-1}{F(s)}$, then $\mathcal{L}^{-1}{e^{-cs}F(s)} = u_c(t)f(t-c)$. This is available in the table.
- Where ever required, express g(t) in terms of u_c(t) and then modify the expression to get it in the form u_c(t)g(t - c). Always check to make sure your expression for g(t) is correct.

$$\mathbf{X} = c_1 \mathbf{X}^{(1)} + c_2 \mathbf{X}^{(2)}.$$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

Homogeneous Linear Equations: Classification of critical point X' = AX(0,0) is a critical/equilibrium point

Steps:

- Put $\mathbf{X} = \boldsymbol{\xi} e^{\lambda t}$.
- Substitute to get $(\mathbf{A} \lambda \mathbf{I})\boldsymbol{\xi} = \mathbf{0}$.
- Compute eigenvalues and eigenvectors of the matrix A.
 - If λ_1 and λ_2 are real and of same sign Node.
 - If λ_1 and λ_2 are real and of opposite sign Saddle.
 - If λ₁ and λ₂ are complex conjugates Spiral. The real part of λ_{1,2} controls the growth/decay of spiral.
 - If λ_1 and λ_2 are purely imaginary, i.e. no real part Center.
- If $Re{\lambda_{1,2}} > 0$, then the critical point is unstable.

• Two solutions:
$$X^{(1)} = \xi^{(1)} e^{\lambda_1 t}$$
 and $X^{(2)} = \xi^{(2)} e^{\lambda_2 t}$

