# ME7100: Advanced Topics in Mathematical Tools <br> Assignment-2 <br> Instructor: Harish N Dixit <br> Department of Mechanical \& Aerospace Engineering, IIT Hyderabad. 

Due date: 6th February 2022, before the class begins. Make plots on a separate sheet of paper and include them along with your solutions.

Problem 1: Solve the following differential equation using regular perturbation techniques for $\epsilon \ll 1$ :

$$
\frac{d^{2} y}{d x^{2}}-(1+\epsilon x) y=0, \quad y(0)=1, \quad y^{\prime}(0)=-1
$$

Obtain the solution upto $O(\epsilon)$ correction. Using any tool of your liking, obtain the exact or numerical solution of the above equation. Now make a plot of exact/numerical solution versus the approximate solution, i.e. $y_{\text {approx }}=y_{0}+\epsilon y_{1}$, for different values of $\epsilon=0.05,0.1,0.5$ in the range $x \in[0,2]$ and $y \in[0,1]$.

Problem 2: The equation of a pendulum of length $l$ is written in non-dimensionless form as

$$
\frac{d^{2} \theta}{d t^{2}}=-\sin \theta, \quad \theta(0)=\phi, \quad \frac{d \theta}{d t}(t=0)=0
$$

where time is non-dimensionalized by $\sqrt{l / g}$. Using regular perturbation techniques, obtain the solution for the case when $\phi \ll 1$. Compare this to the case of a simple pendulum when $\sin \theta$ is replaced by $\theta$. Is your approximate solution uniformly valid in time?
Hint: Consider rescaling $\theta$ by exploiting the small parameter in the problem.
Problem 3: The equation of a projectile with a linear drag force is given by the equation

$$
\frac{\partial^{2} y}{\partial t^{2}}+\epsilon \frac{\partial y}{\partial t}+1=0 ; \quad y(0)=0, \quad \frac{\partial y}{\partial t}(t=0)=1
$$

where $\epsilon>0$ is the drag coefficient. Using perturbation theory, obtain an approximate solution in the limit of small drag, correct upto $O\left(\epsilon^{2}\right)$.

Problem 4: Solve the following differential equation using perturbation techniques:

$$
\epsilon \frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+e^{x}=0, \quad y(0)=0, \quad y(1)=0
$$

Clearly determine where the boundary layer is located, obtain the scaling for the boundary layer width, obtain the inner and outer solutions and construct a uniformly valid approximation. Make a plot showing the three solutions - inner, outer, uniformly valid solutions. Does your solution agree well with the exact/numerical solution of the equation?

Problem 5: Solve the following differential equation using perturbation techniques for $\epsilon \ll 1$ :

$$
\epsilon \frac{d^{2} y}{d x^{2}}-x^{2} \frac{d y}{d x}-y=0, \quad y(0)=1, \quad y(1)=1
$$

This problem is a bit more tricky than problem-1. First obtain the outer solution and examine the regions nearly the two boundaries closely. After determining the inner solutions, obtain a uniformly valid solution.

Make a plot in Matlab or Mathematica comparing the exact/numerical solution with the perturbation solution.

