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Would you prefer to be the first player? the second player?

Of course, the first player always wins...

 And if the initial graph is the path Pn on n vertices?

Would you prefer to be the first player? the second player?

Hum hum... seems not so easy...

Easy if n is odd:
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Would you prefer to be the first player? the second player?

Of course, the first player always wins...

 And if the initial graph is the path Pn on n vertices?

Would you prefer to be the first player? the second player?

Hum hum... seems not so easy...

In that case, the first player looses if and only if either

• n = 4, 8, 14, 20, 24, 28, 34, 38, 42, or

• n > 51 and n  4, 8, 20, 24, 28 (mod 34). [GUY, SMITH, 1956]
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Let us now change the “winning rule” as follows: the first player 
unable to move wins the game...
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What about the game on the path Pn?

Again not easy...

Really not easy: a well-known open problem since 1935!...

This game is known as DAWSON’S CHESS game.
T. R. DAWSON. Caissa’s Wild Roses. Problem #80 (1935).
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DAWSON’S CHESS (Two rows of pawns, capturing is mandatory...)
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A flavour of 
Combinatorial Game Theory
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The game of NIM

Nimrod
1951



Combinatorial games (2)

Winning rule

 Normal play
The first player unable to move looses the game.

 Misère play
The first player unable to move wins the game.
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The normal version is usually “easier” to deal with...



Combinatorial games (3)

Rules and options

The set of rules of the game gives, for each position and each 
player, the options of this position.
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Impartial vs partisan combinatorial games

The game is impartial if both players have the same options for 
every position, it is partisan otherwise.



Combinatorial game theory

Since the mathematical solution of the game of NIM by C.L. BOUTON

(1901), the theory of combinatorial games has been increasingly 
developed.
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JOHN H. CONWAY

(1976)
ELVIN R. BERLEKAMP

JOHN H. CONWAY

RICHARD K. GUY (1982)
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Combinatorial game theory

Since the mathematical solution of the game of NIM by C.L. BOUTON

(1901), the theory of combinatorial games has been increasingly 
developed.

14

JOHN H. CONWAY

(1976)
ELVIN R. BERLEKAMP

JOHN H. CONWAY

RICHARD K. GUY (1982)

MICHAEL H. ALBERT

RICHARD J. NOWAKOWSKI

DAVID WOLFE (2007)
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AARON N. SIEGEL

(2013)
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The Fundamental Theorem

If G is an impartial game then either the first or the second 
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Outcomes

Therefore, every position of an impartial combinatorial game is 
either a winning position (1st-player wins), or a losing position (2nd-
player wins). 

The Fundamental Theorem

If G is an impartial game then either the first or the second 
player can force a win.

Observe that

 G is a winning position iff G has at least one losing option,

 G is a losing position iff either G is empty, or G has only winning
options.
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the game G1 + G2, played as follows:

 on her turn, each player chooses the current 
position in G1 or in G2, and then moves according 
to the rules of G1 or G2, respectively,

 the game ends as soon as a player has no move in any of the 
two games. 

= +

+



Sum of games (2)

17Éric Sopena – CALDAM Indo-French Pre-Conference School - Feb. 10-11, 2020

Outcome of the sum of two games (normal play)

Knowing the outcome of both games G1 and G2 does not suffice 
for determining the outcome of G1 + G2...
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Outcome of the sum of two games (normal play)

Knowing the outcome of both games G1 and G2 does not suffice 
for determining the outcome of G1 + G2...

G1 \ G2 winning losing

winning ???? winning

losing winning losing

Outcome of G1 + G2
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The Sprague-Grundy function (impartial games, normal)

Theorem [R.P. SPRAGUE, 1935 – P.M. GRUNDY, 1939]

Every game G is “equivalent” to the game of NIM on a heap of n 
tokens (or a row of n matches) for some positive integer n. 
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The Sprague-Grundy function (impartial games, normal)

Two games G and H are equivalent whenever we can 
replace any occurrence of G by H in any sum of games, 
without changing the outcome of the sum (in particular, 
G and H have the same outcome)...
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The Sprague-Grundy function (impartial games, normal)

Two games G and H are equivalent whenever we can 
replace any occurrence of G by H in any sum of games, 
without changing the outcome of the sum (in particular, 
G and H have the same outcome)...

We then set (G) = n (n is the Sprague-Grundy value of G).
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The Sprague-Grundy function (impartial games, normal)

Two games G and H are equivalent whenever we can 
replace any occurrence of G by H in any sum of games, 
without changing the outcome of the sum (in particular, 
G and H have the same outcome)...

We then set (G) = n (n is the Sprague-Grundy value of G).

Therefore, a game G is a 2nd-player win if and only if (G) = 0.
(Every heap with n > 0 tokens is a winning position.)

Theorem [R.P. SPRAGUE, 1935 – P.M. GRUNDY, 1939]

Every game G is “equivalent” to the game of NIM on a heap of n 
tokens (or a row of n matches) for some positive integer n. 
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Computing the SG-value of an impartial game (1)

If the set of options of G is {G1, ..., Gk}, then

(G) = mex ((G1), ..., (Gk))

where mex(S) is the smallest positive integer value not in S (in 
particular, mex() = 0).
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Computing the SG-value of an impartial game (2)
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Computing the SG-value of an impartial game (2)

If G is a sum of games, say G = G1 + ... + Gk, then

(G) = (G1)  ...  (Gk)

where denotes the xor operation on binary numbers (nim-sum).
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If G is a sum of games, say G = G1 + ... + Gk, then

(G) = (G1)  ...  (Gk)

where denotes the xor operation on binary numbers (nim-sum).

 =  1  3  5  7 = 001  011  101  111 = 0
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Computing the SG-value of an impartial game (2)

If G is a sum of games, say G = G1 + ... + Gk, then

(G) = (G1)  ...  (Gk)

where denotes the xor operation on binary numbers (nim-sum).

 =  1  3  5  7 = 001  011  101  111 = 0

This position of NIM is thus a losing position...



The graph of a combinatorial game
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Game-graph

With every impartial combinatorial game G, one can associate a 
graph (the game-graph of G), denoted Gg and defined as follows:

 vertices of Gg are positions of G,

 P1P2 is an arc in Gg, whenever P2 is an option of P1.



The graph of a combinatorial game

22Éric Sopena – CALDAM Indo-French Pre-Conference School - Feb. 10-11, 2020

Game-graph

With every impartial combinatorial game G, one can associate a 
graph (the game-graph of G), denoted Gg and defined as follows:

 vertices of Gg are positions of G,

 P1P2 is an arc in Gg, whenever P2 is an option of P1.


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Playing on Gg

Every impartial combinatorial game G can be viewed as a game on 
the oriented graph Gg defined as follows:

Playing on the game-graph 
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Playing on Gg

Every impartial combinatorial game G can be viewed as a game on 
the oriented graph Gg defined as follows:

 a token is put on the initial vertex (initial position),

 on her turn, each player moves the token along one arc,

 the first player unable to move looses (or wins...).

Playing on the game-graph 


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The game GEOGRAPHY

Geography Nim on graphs Node-Kayles k-Colouring 0.33 game Timber! Conclusion
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The game GEOGRAPHY

Fiji Iceland Denmark Kiribati ??

Geography Nim on graphs Node-Kayles k-Colouring 0.33 game Timber! Conclusion



GEOGRAPHY (1)

VERTEX GEOGRAPHY [suggested by R.M. KARP]

The game is played on an undirected graph G. Initially, a token is 
placed on some “current vertex” v (starting position (G,v)).
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GEOGRAPHY (2)

EDGE GEOGRAPHY

The game is played on an undirected graph G. Initially, a token is 
placed on some “current vertex” v (starting position (G,v)).

 On her turn, each player moves the token to a neighbour of the 
current vertex and deletes the traversed edge. 
The vertex having the token becomes the current vertex.
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GEOGRAPHY (3)

DIRECTED (VERTEX OR EDGE) GEOGRAPHY

The game is played on a directed graph....

Éric Sopena – CALDAM Indo-French Pre-Conference School - Feb. 10-11, 2020 27



GEOGRAPHY (3)

DIRECTED (VERTEX OR EDGE) GEOGRAPHY

The game is played on a directed graph....

Éric Sopena – CALDAM Indo-French Pre-Conference School - Feb. 10-11, 2020 27

Playing on a game-graph = DIRECTED VERTEX GEOGRAPHY...
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Playing on a game-graph = DIRECTED VERTEX GEOGRAPHY...

... on an directed acyclic graph.


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Playing on a game-graph = DIRECTED VERTEX GEOGRAPHY...

... on an directed acyclic graph.





GEOGRAPHY (4)

DIRECTED (VERTEX OR EDGE) GEOGRAPHY

The game is played on a directed graph....
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Complexity of GEOGRAPHY games (normal play)
(deciding the outcome of a given position)

UNDIRECTED VERTEX: polynomial
[A.S. FRAENKEL, E.R. SCHEINERMAN, D. ULLMAN, 1993]

UNDIRECTED EDGE: PSPACE-complete
[A.S. FRAENKEL, E.R. SCHEINERMAN, D. ULLMAN, 1993]

DIRECTED VERTEX: PSPACE-complete
[D. LICHTENSTEIN, M. SIPSER, 1980]

DIRECTED EDGE: PSPACE-complete
[T.J. SCHAEFER, 1978]



GEOGRAPHY (5)

DIRECTED (VERTEX OR EDGE) GEOGRAPHY

The game is played on a directed graph....
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Complexity of GEOGRAPHY games

But for misère play, all these four games are PSPACE-complete...
[G. RENAULT, S. SCHMIDT, 2015]



UNDIRECTED VERTEX GEOGRAPHY

Theorem [A.S. FRAENKEL, E.R. SCHEINERMAN, D. ULLMAN, 1993]

The position (G, v) is a winning position for the game UNDIRECTED

VERTEX GEOGRAPHY (normal play) iff every maximum matching (that is, 
of maximum cardinality) of G saturates v.

Éric Sopena – CALDAM Indo-French Pre-Conference School - Feb. 10-11, 2020 30



UNDIRECTED VERTEX GEOGRAPHY

Theorem [A.S. FRAENKEL, E.R. SCHEINERMAN, D. ULLMAN, 1993]

The position (G, v) is a winning position for the game UNDIRECTED

VERTEX GEOGRAPHY (normal play) iff every maximum matching (that is, 
of maximum cardinality) of G saturates v.

Éric Sopena – CALDAM Indo-French Pre-Conference School - Feb. 10-11, 2020 30

v



UNDIRECTED VERTEX GEOGRAPHY

Theorem [A.S. FRAENKEL, E.R. SCHEINERMAN, D. ULLMAN, 1993]

The position (G, v) is a winning position for the game UNDIRECTED

VERTEX GEOGRAPHY (normal play) iff every maximum matching (that is, 
of maximum cardinality) of G saturates v.

Éric Sopena – CALDAM Indo-French Pre-Conference School - Feb. 10-11, 2020 30

Proof.
 () 2nd-player winning strategy: choose a maximum matching M 

that does not saturate v, and always move along an edge in M.
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Proof.
 () 2nd-player winning strategy: choose a maximum matching M 

that does not saturate v, and always move along an edge in M.
 () 1st-player winning strategy: choose a maximum matching M 

(which thus saturates v) and always move along an edge in M.
(if no such move is possible, there exists M’ which does not saturate v...)

v



DIRECTED VERTEX GEOGRAPHY
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Theorem [R.J. NOWAKOWSKI, D.G. POOLE, 1996]

The position (Cm  Cn , v) is a winning position for the game 
DIRECTED VERTEX GEOGRAPHY whenever:

 m = 2, or

 n and m are both even.
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Theorem [R.J. NOWAKOWSKI, D.G. POOLE, 1996]

The position (Cm  Cn , v) is a winning position for the game 
DIRECTED VERTEX GEOGRAPHY whenever:

 m = 2, or

 n and m are both even.

Theorem [R.J. NOWAKOWSKI, D.G. POOLE, 1996]
The position (C3  Cn , v) is a winning position for the game 
DIRECTED VERTEX GEOGRAPHY iff n > 0  and n  0, 2, 4, 6, 10, 11, 13, 
15, 16, 17, 19, 21, 22, 23, 25, 27, 28, 32, 34, 36, 38, 40 (mod 42).



DIRECTED VERTEX GEOGRAPHY
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Theorem [M.S. HOGAN, D.G. HORROCKS, 2003]
The position (C4  Cn , v) is a losing position for the game DIRECTED

VERTEX GEOGRAPHY iff n  11 (mod 12).

Theorem [R.J. NOWAKOWSKI, D.G. POOLE, 1996]

The position (Cm  Cn , v) is a winning position for the game 
DIRECTED VERTEX GEOGRAPHY whenever:

 m = 2, or

 n and m are both even.

Theorem [R.J. NOWAKOWSKI, D.G. POOLE, 1996]
The position (C3  Cn , v) is a winning position for the game 
DIRECTED VERTEX GEOGRAPHY iff n > 0  and n  0, 2, 4, 6, 10, 11, 13, 
15, 16, 17, 19, 21, 22, 23, 25, 27, 28, 32, 34, 36, 38, 40 (mod 42).



Geography – Open problems
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Open Problems.

 For which classes of graphs the outcome of GEOGRAPHY (any 
variant) is “easy” to determine?

 Can you characterize the winning positions of DIRECTED VERTEX

GEOGRAPHY on the Cartesian product Cm  Cn of two directed 
cycles when m > 4 ?
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Playing NIM on graphs

Geography Nim on graphs Node-Kayles k-Colouring 0.33 game Timber! Conclusion
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Playing NIM on graphs

Geography Nim on graphs Node-Kayles k-Colouring 0.33 game Timber! Conclusion

or



EDGE NIMG [M. FUKUYAMA, 2003]

 each edge contains a given (non-negative) number of tokens,

 one vertex of the graph is the starting vertex,
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EDGE NIMG (on multigraphs) extends ordinary NIM:

EDGE NIMG (1)


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EDGE NIMG (2)

EDGE NIMG extends UNDIRECTED EDGE GEOGRAPHY (PSPACE-complete):
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EDGE NIMG (3)

FUKUYAMA determined the Sprague-Grundy values of EDGE NIMG
positions whenever G is either a cycle or a tree.
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EDGE NIMG (3)

FUKUYAMA determined the Sprague-Grundy values of EDGE NIMG
positions whenever G is either a cycle or a tree.

He also determined whether a position is a winning or a losing 
position whenever G is bipartite...
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EDGE NIMG (4)

L. ERICKSON (2010), studied the case where each edge has exactly 
one token (UNDIRECTED EDGE GEOGRAPHY), and gave several sufficient 
conditions for a position to be a winning position.



Éric Sopena – CALDAM Indo-French Pre-Conference School - Feb. 10-11, 2020 37

EDGE NIMG (4)

L. ERICKSON (2010), studied the case where each edge has exactly 
one token (UNDIRECTED EDGE GEOGRAPHY), and gave several sufficient 
conditions for a position to be a winning position.

 If G contains two twin vertices v1 and v2 (that is, v1 and
v2 have the same closed neighbourhood) then the 
position (G, v1) is a winning position [L. ERICKSON, 2010].
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 Therefore, every position (Kn, v), n ≥ 2, is a winning position.
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L. ERICKSON (2010), studied the case where each edge has exactly 
one token (UNDIRECTED EDGE GEOGRAPHY), and gave several sufficient 
conditions for a position to be a winning position.

 If G contains two twin vertices v1 and v2 (that is, v1 and
v2 have the same closed neighbourhood) then the 
position (G, v1) is a winning position [L. ERICKSON, 2010].

 Therefore, every position (Kn, v), n ≥ 2, is a winning position.
 Let Qn denote the n-dimensional hypercube. A position (Qn, v) is 

a winning position iff n is odd [L. ERICKSON, W. SHREVE, 2012].

v1 v2



Éric Sopena – CALDAM Indo-French Pre-Conference School - Feb. 10-11, 2020 37

EDGE NIMG (4)

L. ERICKSON (2010), studied the case where each edge has exactly 
one token (UNDIRECTED EDGE GEOGRAPHY), and gave several sufficient 
conditions for a position to be a winning position.

 If G contains two twin vertices v1 and v2 (that is, v1 and
v2 have the same closed neighbourhood) then the 
position (G, v1) is a winning position [L. ERICKSON, 2010].

 Therefore, every position (Kn, v), n ≥ 2, is a winning position.
 Let Qn denote the n-dimensional hypercube. A position (Qn, v) is 

a winning position iff n is odd [L. ERICKSON, W. SHREVE, 2012].

Open Problem.

 What about such graphs with an arbitrary number of tokens at 
each vertex? with at most two tokens?

v1 v2



VERTEX NIMG [G. STOCKMAN, A. FRIEZE, J. VERA, 2004]

 each vertex contains a given (non-negative) number of tokens,

 one vertex of the graph is the starting vertex,
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Several variants can thus be considered: 

delete-then-move or   move-then-delete
loops on vertices are allowed or not (move-then-delete)

move to an “empty vertex” is allowed or not (delete-then-move)

VERTEX NIMG (1)



VERTEX NIMG, delete-then-move, no loop
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VERTEX NIMG (2)



VERTEX NIMG, delete-then-move, no loop

 If the number of tokens is bounded by some constant, then 
deciding whether a position is winning or losing can be done in 
polynomial time [G. STOCKMAN, A. FRIEZE, J. VERA, 2004].
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VERTEX NIMG (2)

VERTEX NIMG, move-then-delete, loop on every vertex
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VERTEX NIMG (2)

VERTEX NIMG, move-then-delete, loop on every vertex

 If the number of tokens is bounded by some constant k ≥ 2, 
then deciding whether a position is winning or losing is PSPACE-
complete [K.G. BURKE, O.C. GEORGE, 2014].
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VERTEX NIMG (2)

Open Problem.
 What is the computational complexity of VERTEX NIMG on graphs 

with optional loops?

VERTEX NIMG, move-then-delete, loop on every vertex

 If the number of tokens is bounded by some constant k ≥ 2, 
then deciding whether a position is winning or losing is PSPACE-
complete [K.G. BURKE, O.C. GEORGE, 2014].



In all versions of NIMG, the game may end with remaining tokens 
on the graph, contrary to ordinary NIM...
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VERTEXNIM (1)



UNDIRECTED VERTEXNIM [E. DUCHÊNE, G. RENAULT, 2014]

 Variant of delete-then-move VERTEX NIMG:
• delete any non-negative number of tokens on the current 

vertex, and then
• move to the next current vertex (having a non-negative 

number of tokens), along a path whose internal vertices do 
not have any token.

In all versions of NIMG, the game may end with remaining tokens 
on the graph, contrary to ordinary NIM...
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 The outcome of any UNDIRECTED VERTEXNIM position (loops are 
allowed) can be computed in polynomial time.

VERTEXNIM (1)



DIRECTED VERTEXNIM [E. DUCHÊNE, G. RENAULT, 2014]
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VERTEXNIM (2)



DIRECTED VERTEXNIM [E. DUCHÊNE, G. RENAULT, 2014]

 The outcome of any DIRECTED VERTEXNIM position (a loop at each 
vertex, the graph is strongly connected) can be computed in 
polynomial time.
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DIRECTED VERTEXNIM [E. DUCHÊNE, G. RENAULT, 2014]

 The outcome of any DIRECTED VERTEXNIM position (a loop at each 
vertex, the graph is strongly connected) can be computed in 
polynomial time.

 Let Cn be a directed cycle of order n, n ≥ 3, with at least two 
tokens at each vertex. For every vertex v, the outcome of the 
position (Cn, v) can be computed in polynomial time.
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VERTEXNIM (2)

Open Problems.

 What about strongly connected graphs with optional loops?

 What about Cn if some vertices have only one token? 

 What about the move-then-delete version?
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NODE-KAYLES

Geography Nim on graphs Node-Kayles k-Colouring 0.33 game Timber! Conclusion
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Geography Nim on graphs Node-Kayles k-Colouring 0.33 game Timber! Conclusion
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Recall our first game...

Take your favorite graph, e.g. Petersen graph.

On her turn, each player chooses a vertex and deletes its closed 
neighbourhood...
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The first player unable to move looses the game...



NODE-KAYLES – COMPLEXITY (1)
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Theorem [T.J. SCHAEFER, 1978]

Determining whether a given position (graph) is a winning position 
or a losing position for NODE-KAYLES is PSPACE-complete.
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Theorem [T.J. SCHAEFER, 1978]

Determining whether a given position (graph) is a winning position 
or a losing position for NODE-KAYLES is PSPACE-complete.

Theorem [H. BODLAENDER, D. KRATSCH, 2002]

Determining whether a given position G is a winning position or a 
losing position for NODE-KAYLES is polynomial whenever G is a 
cocomparability graph, a circular arc graph, a cograph, or has 
bounded asteroidal number.



NODE-KAYLES – COMPLEXITY (2)
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Theorem [R. FLEISCHER, G. TRIPPEN, 2004]

Determining whether a subdivided star with 
bounded degree is a winning position or a 
losing position for NODE-KAYLES is polynomial.
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Theorem [R. FLEISCHER, G. TRIPPEN, 2004]

Determining whether a subdivided star with 
bounded degree is a winning position or a 
losing position for NODE-KAYLES is polynomial.

Theorem [H. BODLAENDER, D. KRATSCH, 2011]

Determining whether a given position G with n vertices is a 
winning position or a losing position for NODE-KAYLES can be done in 
time O(1.6052n), or in time O(1.4423n) if G is a tree.



NODE-KAYLES on paths (DAWSON’S CHESS)
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Sprague-Grundy sequence

The Sprague-Grundy sequence of NODE-KAYLES on paths is the 
(infinite) sequence of Sprague-Grundy values:

(P0) (P1) (P2) (P3) ...



NODE-KAYLES on paths (DAWSON’S CHESS)

The Sprague-Grundy sequence of NODE-KAYLES on paths is ultimately 
periodic, with a period of length 34 and a preperiod of length 51:
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Sprague-Grundy sequence

The Sprague-Grundy sequence of NODE-KAYLES on paths is the 
(infinite) sequence of Sprague-Grundy values:
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Compound games (1)
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Sum of games (reminder)

The (disjunctive) sum of G1 and G2 is the game G1 + G2, played as 
follows:
 on her turn, each player chooses the current position in G1 or in 

G2, and then moves according to the rules of G1 or G2, 
respectively,

 the game ends as soon as a player has no move in any of the 
two games. 
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Sum of games (reminder)

The (disjunctive) sum of G1 and G2 is the game G1 + G2, played as 
follows:
 on her turn, each player chooses the current position in G1 or in 

G2, and then moves according to the rules of G1 or G2, 
respectively,

 the game ends as soon as a player has no move in any of the 
two games. 

Compound games 

In his book (1976), JOHN H. CONWAY introduced
12 distinct notions of compound games, following 
an inspiring paper of C.A.B. SMITH (1966).



Compound games (2)
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How to play in G1 + ... + Gk?
+

+

+
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 Component selection
 one component (disjunctive sum),
 all components (conjonctive sum),
 any number of components, at least one

(selective sum).
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How to play in G1 + ... + Gk?

 Component selection
 one component (disjunctive sum),
 all components (conjonctive sum),
 any number of components, at least one

(selective sum).

 Ending rule
 all components have ended (long rule),
 one component has ended (short rule).

 Winning rule
 normal play,
 misère play.

3 x 2 x 2 = 12

+

+

+



Let’s play again... (1)

Let us consider the path P5 of order 5:
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

Disjunctive sum, long rule, normal play

 Component selection: one component
 Ending rule: all components must have ended 
 Winning rule: the first player unable to move looses
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

Is P5 a winning or a losing position?

Disjunctive sum, long rule, normal play

 Component selection: one component
 Ending rule: all components must have ended 
 Winning rule: the first player unable to move looses



Let’s play again... (1)

Let us consider the path P5 of order 5:

Éric Sopena – CALDAM Indo-French Pre-Conference School - Feb. 10-11, 2020 49



Is P5 a winning or a losing position?

Disjunctive sum, long rule, normal play

 Component selection: one component
 Ending rule: all components must have ended 
 Winning rule: the first player unable to move looses

winning



Let’s play again... (2)

Let us consider the path P5 of order 5:
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

Is P5 a winning or a losing position?

Disjunctive sum, short rule, normal play

 Component selection: one component
 Ending rule: one component has ended 
 Winning rule: the first player unable to move looses





Let’s play again... (2)

Let us consider the path P5 of order 5:
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Is P5 a winning or a losing position?

Disjunctive sum, short rule, normal play

 Component selection: one component
 Ending rule: one component has ended 
 Winning rule: the first player unable to move looses

losing



Disjunctive sum, short rule (2)
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Foreclosed Sprague-Grundy number of paths

 The foreclosed Sprague-Grundy sequence of paths (under 
normal play) is ultimately periodic:
 preperiod of length 245,
 period of length 84.



Disjunctive sum, short rule (2)

Éric Sopena – CALDAM Indo-French Pre-Conference School - Feb. 10-11, 2020 51

Foreclosed Sprague-Grundy number of paths

 The foreclosed Sprague-Grundy sequence of paths (under 
normal play) is ultimately periodic:
 preperiod of length 245,
 period of length 84.

 The number of losing positions is finite:

L = { 0, 4, 5, 9, 10, 14, 28, 50, 54, 98 }



Disjunctive sum, short rule (2)
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Foreclosed Sprague-Grundy number of paths

 The foreclosed Sprague-Grundy sequence of paths (under 
normal play) is ultimately periodic:
 preperiod of length 245,
 period of length 84.

 The number of losing positions is finite:

L = { 0, 4, 5, 9, 10, 14, 28, 50, 54, 98 }

still open for
misère play...



Let’s play again... (3)

Let us consider the path P5 of order 5:
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

Is P5 a winning or a losing position?

Conjunctive sum, long rule, normal play

 Component selection: all components
 Ending rule: all components have ended 
 Winning rule: the first player unable to move looses
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

Is P5 a winning or a losing position?

Conjunctive sum, long rule, normal play

 Component selection: all components
 Ending rule: all components have ended 
 Winning rule: the first player unable to move looses

losing



Conjunctive sum, long rule (1)
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Suspense number

 Strategy: losing quickly on losing components and postponing 
win as long as possible on winning ones...
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win as long as possible on winning ones...

 The suspense number S+(G) (normal play) of a position G is the 
number of coming turns, using this strategy:
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 The suspense number S+(G) (normal play) of a position G is the 
number of coming turns, using this strategy:
 S+(G) = 0 if G is an ended position,
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Suspense number

 Strategy: losing quickly on losing components and postponing 
win as long as possible on winning ones...

 The suspense number S+(G) (normal play) of a position G is the 
number of coming turns, using this strategy:
 S+(G) = 0 if G is an ended position,
 if G’ is an option of G with maximal even suspense, then

S+(G) = S+(G’) + 1,
 if no such option exists and G” is an option of G with  

minimal odd suspense, then S+(G) = S+(G”) + 1.
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Suspense number

 Strategy: losing quickly on losing components and postponing 
win as long as possible on winning ones...

 The suspense number S+(G) (normal play) of a position G is the 
number of coming turns, using this strategy:
 S+(G) = 0 if G is an ended position,
 if G’ is an option of G with maximal even suspense, then

S+(G) = S+(G’) + 1,
 if no such option exists and G” is an option of G with  

minimal odd suspense, then S+(G) = S+(G”) + 1.

A position G is a winning position iff S+(G) is odd...



Conjunctive sum, long rule (2)
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Suspense number of paths

 The suspense sequence of paths (normal play) has a geometric 
period with geometric ratio 2.
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Suspense number of paths

 The suspense sequence of paths (normal play) has a geometric 
period with geometric ratio 2.

For every n ≥ 0, we have:

 S+(Pk) = 2n,   if k = 5(2n – 1),

 S+(Pk) = 2n + 1,   if 5(2n – 1) < k < 5(2n+1 – 1) – 1,

 S+(Pk) = 2n + 2,   if k = 5(2n+1 – 1) – 1.
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Suspense number of paths

 The suspense sequence of paths (normal play) has a geometric 
period with geometric ratio 2.

For every n ≥ 0, we have:

 S+(Pk) = 2n,   if k = 5(2n – 1),

 S+(Pk) = 2n + 1,   if 5(2n – 1) < k < 5(2n+1 – 1) – 1,

 S+(Pk) = 2n + 2,   if k = 5(2n+1 – 1) – 1.

 The set of losing positions is:

{ 5(2n – 1), n ≥ 0 }   { 5(2n+1 – 1) – 1, n ≥ 0 } 



Compound NODE-KAYLES on paths
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Theorem [A. GUIGNARD, E.S., 2009]

For ten over twelve versions of compound NODE-KAYLES on paths, the 
set of losing positions can be characterized.
The two remaining unsolved versions are the following:
 disjunctive sum, misère play, long rule (DAWSON’s problem, 1935),
 disjunctive sum, misère play, short rule.
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Open Problems.

What about NODE-KAYLES on

 caterpillars?

 subdivided caterpillars?

 other subclasses of trees?

 ...
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Open Problems.

What about NODE-KAYLES on

 caterpillars?

 subdivided caterpillars?

 other subclasses of trees?

 ...

Suggestion.

Consider compound versions of other combinatorial games on 
graphs?...
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PROPER K-COLOURING

Geography Nim on graphs Node-Kayles k-Colouring 0.33 game Timber! Conclusion
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Non-combinatorial Graph Colouring Game
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Non-combinatorial Graph Colouring Game

 Using a set of k colours, on her turn, each player properly 
colours an uncoloured vertex of a graph G.
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Non-combinatorial Graph Colouring Game

 Using a set of k colours, on her turn, each player properly 
colours an uncoloured vertex of a graph G.

 If the whole graph is properly coloured the 1st player wins the 
game, otherwise the 2nd player wins the game.

 The game chromatic number of G is the least integer k for 
which the 1st player has a winning strategy.

Most intriguing question

 If the first player wins the game on some graph G using a set of 
k colours, is it true that she can also win the game on G using a 
set of k + 1 colours?
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PROPER K-COLOURING

 An undirected graph G and a set of k colours.
 On her turn, each player picks an uncoloured vertex and colours 

it in a proper way (using a colour that does not appear on any 
of its neighbours).

 Under normal (resp. misère) convention, the first player unable 
to play loses (resp. wins) the game.

G :

C :   {    ,    }

1st player 2nd player

End of the game: 2nd player wins!...
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 Playing this game with a unique colour (k = 1) is equivalent to 
playing NODE-KAYLES...
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Observation.

Playing PROPER K-COLOURING on G is equivalent to playing 
NODE-KAYLES on G  Kk.
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Complexity

Theorem [BEAULIEU, BURKE, DUCHÊNE, 2013].

For every integer k ≥ 1, determining whether a position of PROPER K-
COLOURING is a winning position or not is PSPACE-complete.
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Complexity

Theorem [BEAULIEU, BURKE, DUCHÊNE, 2013].

For every integer k ≥ 1, determining whether a position of PROPER K-
COLOURING is a winning position or not is PSPACE-complete.

Sprague-Grundy values [BEAULIEU, BURKE, DUCHÊNE, 2013]

 Sufficient conditions for a position to be a winning or loosing 
position are known for d-dimensional grids when all dimensions 
are odd, complete d-ary trees when d is odd...

 PROPER K-COLOURING is solved for paths and cycles
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Open Problems.

 What about PROPER K-COLOURING on caterpillars? on complete 
k-ary trees with k even? on trees?...

 Other combinatorial games, based on other types of 
colourings? (e.g. acyclic, distance-two, or edge-colourings...)
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The game of COL (attributed to COLIN VOUT)

 A partisan version of the K-COLOURING GAME.
 The first player uses only colour RED, while the second player 

uses only colour BLUE.
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The game of COL (attributed to COLIN VOUT)

 A partisan version of the K-COLOURING GAME.
 The first player uses only colour RED, while the second player 

uses only colour BLUE.
 The computational complexity of COL seems to be unknown...

The game of SNORT (proposed by SIMON P. NORTON)

 Same as COL, except that adjacent vertices cannot get distinct 
colours (a.k.a. CATS & DOGS)...

 Determining the outcome of a SNORT position is PSPACE-
complete.
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THE 0.33 GAME

Geography Nim on graphs Node-Kayles k-Colouring 0.33 game Timber! Conclusion
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Octal games

 These games are played on heaps of tokens

 On her turn, each player chooses one heap, and remove k > 0 
tokens from this heap, according to the rules of the game
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Octal games

 These games are played on heaps of tokens

 On her turn, each player chooses one heap, and remove k > 0 
tokens from this heap, according to the rules of the game

 These rules are encoded by a sequence 0.d1d2d3... of octal 
digits, describing the moves that are allowed on a heap:

• if you can take j tokens and leave no heap, set J0 = 1

• if you can take j tokens and leave one heap, set J1 = 2

• if you can take j tokens and leave two heaps, set J2 = 4

• then let dj = J0 + J1 + J2 



Octal games (Take-and-Break games)

Éric Sopena – CALDAM Indo-French Pre-Conference School - Feb. 10-11, 2020 66

Octal games

 These games are played on heaps of tokens

 On her turn, each player chooses one heap, and remove k > 0 
tokens from this heap, according to the rules of the game

 These rules are encoded by a sequence 0.d1d2d3... of octal 
digits, describing the moves that are allowed on a heap:

• if you can take j tokens and leave no heap, set J0 = 1

• if you can take j tokens and leave one heap, set J1 = 2

• if you can take j tokens and leave two heaps, set J2 = 4

• then let dj = J0 + J1 + J2 

 The ordinary game of NIM is 0.33333...
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DAWSON’S CHESS

 Played on a path of order n (a heap of n tokens)

 On her turn, each player picks one vertex and deletes its closed 
neighbourhood
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DAWSON’S CHESS

 Played on a path of order n (a heap of n tokens)

 On her turn, each player picks one vertex and deletes its closed 
neighbourhood

Octal encoding of DAWSON’S CHESS

 You can delete one vertex iff the graph is P1, and thus d1 = 1
 You can delete two adjacent vertices iff at least one of them is 

an endpoint, and thus d2 = 1 + 2 = 3
 You can always delete three adjacent vertices, and thus 

d3 = 1 + 2 + 4 = 7
 Therefore, DAWSON’S CHESS is the octal game 0.137
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The game of JAMES BOND

 Played on a path of order n (a heap of n tokens)

 On her turn, each player deletes three adjacent vertices

 The octal encoding of this game is... 0.007

Sprague-Grundy sequence of JAMES BOND

 About 228 values have been computed :
0   0   0   1   1   1   2   2   0   3   3   1   1   1   0   4   ...

 The ultimate periodicity of this sequence is conjectured

Conjecture [GUY, 1996]. The Sprague-Grundy sequence of every finite 
octal game is ultimately periodic.
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 Played on an undirected connected graph

 On her turn, each player deletes one vertex, or two adjacent 
vertices, provided that the remaining graph is still connected
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The game 0.33 on graphs

 Played on an undirected connected graph

 On her turn, each player deletes one vertex, or two adjacent 
vertices, provided that the remaining graph is still connected
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Subdivided stars

S(p1, p2, ..., pk):

Sprague-Grundy values: reduction

Theorem [BEAUDOU et al., 2018].

For every subdivided star S(p1, p2, ..., pk), we have

( S(p1, p2, ..., pk) ) = ( S(p1 mod 3, p2 mod 3, ..., pk mod 3 ). 
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Sprague-Grundy 
values

All the Sprague-
Grundy values are 
in {0,...,3}. 

These values can 
be computed, 
according to the 
number of paths 
and the number of 
paths of length 2.
[BEAUDOU et al., 
2018]
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Subdivided bistars

S1-k-S2

k internal vertices

S1 S2
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Subdivided bistars

S1-k-S2

Sprague-Grundy values

Theorem [BEAUDOU et al., 2018].

For every subdivided bistar S1-k-S2, we have

( S1-k-S2 ) = f((S1), (S2)). 

k internal vertices

S1 S2
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 Is the Sprague-Grundy value of trees bounded?

 What about the misère version? 
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Open Problem.

 What about 0.33 on trees?

 Is the Sprague-Grundy value of trees bounded?

 What about the misère version? 

Conjecture [BEAUDOU et al., 2018].

For every integer n, there exists a caterpillar CT with (CT) = n.
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TIMBER!

Geography Nim on graphs Node-Kayles k-Colouring 0.33 game Timber! Conclusion
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TIMBER! (2)

Observation.

If the underlying (undirected) graph contains a 2-connected 
subgraph of order at least 2, then the first player wins the game. 
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TIMBER! (2)

 Therefore, this game is only interesting for trees!

Observation.

If the underlying (undirected) graph contains a 2-connected 
subgraph of order at least 2, then the first player wins the game. 
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TIMBER! on paths (1)

Theorem [R. NOWAKOWSKI et al., 2014]

The number of loosing positions (orientations) in normal play on a 
path of length k = 1, 2, ... is  0, 1, 0, 2, 0, 5, 0, 14, 0, 42, ...
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TIMBER! on paths (1)

Theorem [R. NOWAKOWSKI et al., 2014]

The number of loosing positions (orientations) in normal play on a 
path of length k = 1, 2, ... is  0, 1, 0, 2, 0, 5, 0, 14, 0, 42, ...

When k = 2n is even, this number is the nth Catalan number:
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Theorem [R. NOWAKOWSKI et al., 2014]

The number of loosing positions (orientations) in normal play on a 
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Theorem [R. NOWAKOWSKI et al., 2014]

The number of loosing positions (orientations) in normal play on a 
path of length k = 1, 2, ... is  0, 1, 0, 2, 0, 5, 0, 14, 0, 42, ...

When k = 2n is even, this number is the nth Catalan number:

L L R L Up Up Down Up
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TIMBER! on paths (1)

Theorem [R. NOWAKOWSKI et al., 2014]

The number of loosing positions (orientations) in normal play on a 
path of length k = 1, 2, ... is  0, 1, 0, 2, 0, 5, 0, 14, 0, 42, ...

When k = 2n is even, this number is the nth Catalan number:

L L R L Up Up Down Up

Cn = number of Dyck paths...
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TIMBER! on paths (2)

Theorem [R. NOWAKOWSKI et al., 2014]

In normal play, loosing positions are exactly those positions whose 
path representation is a Dyck path.
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TIMBER! on paths (2)

Theorem [R. NOWAKOWSKI et al., 2014]

In normal play, loosing positions are exactly those positions whose 
path representation is a Dyck path.

Proof.
 The empty position is a Dyck path (empty).
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TIMBER! on paths (2)

Theorem [R. NOWAKOWSKI et al., 2014]

In normal play, loosing positions are exactly those positions whose 
path representation is a Dyck path.

Proof.
 The empty position is a Dyck path (empty).
 Induction step :

Dyck path



Éric Sopena – CALDAM Indo-French Pre-Conference School - Feb. 10-11, 2020 79

TIMBER! on paths (2)

Theorem [R. NOWAKOWSKI et al., 2014]

In normal play, loosing positions are exactly those positions whose 
path representation is a Dyck path.

Proof.
 The empty position is a Dyck path (empty).
 Induction step :

Dyck path 1st player
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TIMBER! on paths (2)

Theorem [R. NOWAKOWSKI et al., 2014]

In normal play, loosing positions are exactly those positions whose 
path representation is a Dyck path.

Proof.
 The empty position is a Dyck path (empty).
 Induction step :

Dyck path 1st player 2nd player
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TIMBER! on paths (2)

Theorem [R. NOWAKOWSKI et al., 2014]

In normal play, loosing positions are exactly those positions whose 
path representation is a Dyck path.

Proof.
 The empty position is a Dyck path (empty).
 Induction step :

Dyck path 1st player 2nd player Dyck path!
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TIMBER! on paths (3)

Theorem [R. NOWAKOWSKI et al., 2014]

In normal play, loosing positions are exactly those positions whose 
path representation is a Dyck path.

Proof.
 The empty position is a Dyck path (empty).
 Induction step :

non-Dyck path
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TIMBER! on paths (3)

Theorem [R. NOWAKOWSKI et al., 2014]

In normal play, loosing positions are exactly those positions whose 
path representation is a Dyck path.

Proof.
 The empty position is a Dyck path (empty).
 Induction step :

non-Dyck path 1st player
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TIMBER! on paths (3)

Theorem [R. NOWAKOWSKI et al., 2014]

In normal play, loosing positions are exactly those positions whose 
path representation is a Dyck path.

Proof.
 The empty position is a Dyck path (empty).
 Induction step :

non-Dyck path 1st player Dyck path!
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TIMBER! on trees

Theorem [R. NOWAKOWSKI et al., 2014]

 The outcome of a (directed) tree of order n can by computed in 
time O(n2).

 A tree is a loosing position if and only if it can be reduced to an 
empty tree, using two reduction operations.
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TIMBER! on trees

Theorem [R. NOWAKOWSKI et al., 2014]

 The outcome of a (directed) tree of order n can by computed in 
time O(n2).

 A tree is a loosing position if and only if it can be reduced to an 
empty tree, using two reduction operations.

Open problems

 Is there an efficient algorithm to find the Sprague-Grundy value 
of a TIMBER! position on a path?
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 The outcome of a (directed) tree of order n can by computed in 
time O(n2).

 A tree is a loosing position if and only if it can be reduced to an 
empty tree, using two reduction operations.

Open problems

 Is there an efficient algorithm to find the Sprague-Grundy value 
of a TIMBER! position on a path?

 Which reductions on trees (or on paths) preserve the Sprague-
Grundy value? (One such reduction is known.)
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TIMBER! on trees

Theorem [R. NOWAKOWSKI et al., 2014]

 The outcome of a (directed) tree of order n can by computed in 
time O(n2).

 A tree is a loosing position if and only if it can be reduced to an 
empty tree, using two reduction operations.

Open problems

 Is there an efficient algorithm to find the Sprague-Grundy value 
of a TIMBER! position on a path?

 Which reductions on trees (or on paths) preserve the Sprague-
Grundy value? (One such reduction is known.)

 Propagation according to the orientation?...
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It’s now time to conclude...

Geography Nim on graphs Node-Kayles k-Colouring 0.33 game Timber! Conclusion



Many other types of combinatorial games on graphs:

To conclude...
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 Graph deletion games

 Avoidance / Achievement games (adding edges until some 
structure appears, or while some structure does not appear...)

To conclude...

Éric Sopena – CALDAM Indo-French Pre-Conference School - Feb. 10-11, 2020 83



Many other types of combinatorial games on graphs:

 Graph deletion games

 Avoidance / Achievement games (adding edges until some 
structure appears, or while some structure does not appear...)

 PEG DUOTAIRE (2-player version of PEG SOLITAIRE)

To conclude...

Éric Sopena – CALDAM Indo-French Pre-Conference School - Feb. 10-11, 2020 83



Many other types of combinatorial games on graphs:

 Graph deletion games

 Avoidance / Achievement games (adding edges until some 
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 PEG DUOTAIRE (2-player version of PEG SOLITAIRE)

 Take your favourite “graph colouring problem” and 
consider its combinatorial game version...

Acyclic, 2-distance and a few others 
in [G. BEAULIEU, K. BURKE, E. DUCHÊNE, 2013] 
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 Partisan games (different options for players,  e.g. playing with 
black or white tokens)
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To conclude...
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Human beings are never more 

ingenious than in the invention 

of games. 

GOTTFRIED WILHELM LEIBNIZ

GEORGE BERNARD SHAW

We don't stop playing because 

we grow old; we grow old 

because we stop playing.
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Human beings are never more 

ingenious than in the invention 

of games. 

GOTTFRIED WILHELM LEIBNIZ

GEORGE BERNARD SHAW

We don't stop playing because 

we grow old; we grow old 

because we stop playing.

Thank you 

for your 

attention...


