Finding independent sets in hereditary graph classes

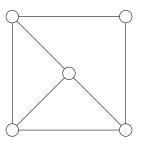
Rémi Watrigant (joint work with É. Bonnet, N. Bousquet, P. Charbit, S. Thomassé)

Université de Lyon - École Normale Supérieure de Lyon, France

CALDAM 2020 pre-conference school February 10-11, 2020. Hyderabad, India

Maximum Independent Set (MIS)

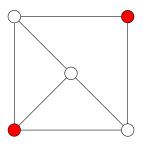
Problem: Given a graph



and an integer k: Is there an independent set of size at least k?

Maximum Independent Set (MIS)

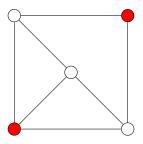
Problem: Given a graph



and an integer k: Is there an independent set of size at least k?

Maximum Independent Set (MIS)

Problem: Given a graph



and an integer k: Is there an independent set of size at least k?

- classical NP-complete problem
- W[1]-complete (no algorithm running in $f(k)n^{O(1)}$ time)
- no $n^{1-\varepsilon}$ -approximation unless P = NP

What about on restricted graphs classes?

Maximum Independent Set (MIS) in restricted graph classes

Among others:

- polynomial in bipartite graphs (Kőnig's theorem)
- polynomial in chordal graphs (simplicial decomposition)
- polynomial in perfect graphs (ellipsoid method)
- polynomial in P_6 -free graphs [Grzesik et al, SODA 19]
- NP-complete in graphs with maximum degree 3
- NP-complete in triangle-free graphs

Maximum Independent Set (MIS) in restricted graph classes

Among others:

- polynomial in bipartite graphs (Kőnig's theorem)
- polynomial in chordal graphs (simplicial decomposition)
- polynomial in perfect graphs (ellipsoid method)
- polynomial in P₆-free graphs [Grzesik et al, SODA 19]
- NP-complete in graphs with maximum degree 3
- NP-complete in triangle-free graphs

General question:

Given a fixed graph H, can we solve Maximum Independent Set more efficiently in H-free graphs^a?

^aGraphs that do not admit *H* as an **induced subgraph**.

Maximum Independent Set (MIS) in restricted graph classes

Among others:

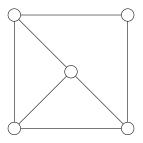
- polynomial in bipartite graphs (Kőnig's theorem)
- polynomial in chordal graphs (simplicial decomposition)
- polynomial in perfect graphs (ellipsoid method)
- polynomial in P₆-free graphs [Grzesik et al, SODA 19]
- NP-complete in graphs with maximum degree 3
- NP-complete in triangle-free graphs

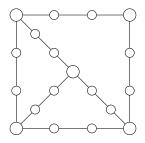
General question:

Given a fixed graph H, can we solve Maximum Independent Set more efficiently in H-free graphs^a?

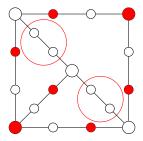
^aGraphs that do not admit H as an **induced subgraph**.

"more efficiently": polynomial? approximation? FPT?

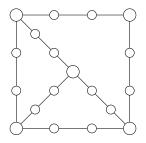




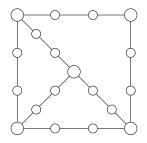
Subdivide every edge twice



Subdivide every edge twice $\Rightarrow \alpha(G') = \alpha(G) + |E(G)|$



Subdivide every edge any fixed even number of times



Subdivide every edge any fixed even number of times

Maximum Independent Set remains NP-hard in H-free graphs except if H is...

Maximum Independent Set remains NP-hard in H-free graphs except if H is... for H <u>connected</u>:

NP-complete, if H is <u>not</u> a path or a subdivided claw (claw = ←)
 → "most" graphs

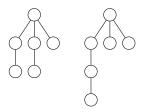
Maximum Independent Set remains NP-hard in H-free graphs except if H is... for H <u>connected</u>:

- NP-complete, if H is <u>not</u> a path or a subdivided claw (claw = ←)
 → "most" graphs
- in P, if H is a path on up to 6 vertices
- in P, if H is a claw with one edge subdivided once (•••</br>

Maximum Independent Set remains NP-hard in H-free graphs except if H is... for H <u>connected</u>:

- NP-complete, if H is <u>not</u> a path or a subdivided claw (claw = ←)
 → "most" graphs
- in P, if H is a path on up to 6 vertices
- in P, if H is a claw with one edge subdivided once (•••</br>
- for other H, the problem is open

Minimal open cases:



Maximum Independent Set remains NP-hard in H-free graphs except if H is... for H <u>connected</u>:

- NP-complete, if H is <u>not</u> a path or a subdivided claw (claw = ←)
 → "most" graphs
- in P, if H is a path on up to 6 vertices
- in P, if H is a claw with one edge subdivided once (•••<* a.k.a. the fork)
- for other H, the problem is open

Here, we focus on NP-complete cases

Parameterized algorithms

A problem is **Fixed-Parameter Tractable** (FPT) if it can be solved in time $f(k)n^{O(1)}$, where

- *n* is the size of an instance
- k is a parameter (here: size of the independent set we are looking for)
- f(.) is any computable (possibly exponential) function

Parameterized algorithms

A problem is **Fixed-Parameter Tractable** (FPT) if it can be solved in time $f(k)n^{O(1)}$, where

- *n* is the size of an instance
- k is a parameter (here: size of the independent set we are looking for)
- f(.) is any computable (possibly exponential) function

Do all problems admit FPT algorithms?

- Maximum Independent set can be solved in $O(n^k.k^2)$ time
 - \rightarrow but this is not FPT

Parameterized algorithms

A problem is **Fixed-Parameter Tractable** (FPT) if it can be solved in time $f(k)n^{O(1)}$, where

- *n* is the size of an instance
- k is a parameter (here: size of the independent set we are looking for)
- f(.) is any computable (possibly exponential) function

Do all problems admit FPT algorithms?

- Maximum Independent set can be solved in $O(n^k.k^2)$ time
 - \rightarrow but this is not FPT

Unless FPT \neq W[1], Maximum Independent Set (in general graphs) is **<u>not</u>** FPT

Parameterized algorithms

A problem is **Fixed-Parameter Tractable** (FPT) if it can be solved in time $f(k)n^{O(1)}$, where

- *n* is the size of an instance
- k is a parameter (here: size of the independent set we are looking for)
- f(.) is any computable (possibly exponential) function

Toy example: Independent Set is FPT in -free graphs:

Parameterized algorithms

A problem is **Fixed-Parameter Tractable** (FPT) if it can be solved in time $f(k)n^{O(1)}$, where

- *n* is the size of an instance
- k is a parameter (here: size of the independent set we are looking for)
- f(.) is any computable (possibly exponential) function

Toy example: Independent Set is FPT in \checkmark -free graphs:

• case 1: there is a vertex of degree $\geq k$:

Parameterized algorithms

A problem is **Fixed-Parameter Tractable** (FPT) if it can be solved in time $f(k)n^{O(1)}$, where

- *n* is the size of an instance
- k is a parameter (here: size of the independent set we are looking for)
- f(.) is any computable (possibly exponential) function

Toy example: Independent Set is FPT in A-free graphs:

• case 1: there is a vertex of degree $\geq k$:

Parameterized algorithms

A problem is **Fixed-Parameter Tractable** (FPT) if it can be solved in time $f(k)n^{O(1)}$, where

- *n* is the size of an instance
- k is a parameter (here: size of the independent set we are looking for)
- f(.) is any computable (possibly exponential) function

Toy example: Independent Set is FPT in A-free graphs:

• case 1: there is a vertex of degree $\geq k$:

either we construct an independent set of size k

• or the graph has at most $k(k-1) = O(k^2)$ vertices \Rightarrow brute-force

More generally:

Ramsey's theorem

Given r, k > 1, there exists an integer Ram(r, k) such that any graph G with at least Ram(r, k) vertices must contain either:

- a clique of size r, or
- an independent set of size k

Example: Ram(3,3) = 6, Ram(4,4) = 18

More generally:

Ramsey's theorem

Given r, k > 1, there exists an integer Ram(r, k) such that any graph G with at least Ram(r, k) vertices must contain either:

- a clique of size r, or
- an independent set of size k

Example: Ram(3,3) = 6, Ram(4,4) = 18

Application : MIS in K_r -free graphs (no clique of size $\geq k$):

- if G has more than Ram(r, k) vertices, answer YES
- Otherwise: $|V(G)| < Ram(r, k) = O(k^{r-1})$

More generally:

Ramsey's theorem

Given r, k > 1, there exists an integer Ram(r, k) such that any graph G with at least Ram(r, k) vertices must contain either:

- a clique of size r, or
- an independent set of size k

Example: Ram(3,3) = 6, Ram(4,4) = 18

Application : MIS in K_r -free graphs (no clique of size $\geq k$):

- if G has more than Ram(r, k) vertices, answer YES
- Otherwise: $|V(G)| < Ram(r, k) = O(k^{r-1})$

Maximum Independent Set is FPT in K_r -free graphs for every $r \ge 1$

(we say it admits a **kernel** with $O(k^{r-1})$ vertices)

Now : what if the forbidden graph H is "almost" a clique?

Let's call it K_r^{-2}

 \rightarrow can't use Ramsey here...

H satisfies the **Erdős-Hajnal** property if there is $0 < \varepsilon_H \le 1$ such that for any *H*-free graph *G* on *n* vertices, either:

- G contains a clique of size n^{ε_H} , or
- G contains an independent set of size n^{ε_H}

Conjecture: every graph satisfies the EH-property

H satisfies the **Erdős-Hajnal** property if there is $0 < \varepsilon_H \le 1$ such that for any *H*-free graph *G* on *n* vertices, either:

- G contains a clique of size n^{ε_H} , or
- G contains an independent set of size n^{ε_H}

Conjecture: every graph satisfies the EH-property

Graphs known to satisfy the EH-property:

- *K_r* (simple induction)
- any graph on four vertices
- graphs that can be constructed from them by "substitution operation"

Open for many graphs, in particular:

- C_5 : cycle on five vertices
- P₅: path on five vertices

H satisfies the **Erdős-Hajnal** property if there is $0 < \varepsilon_H \le 1$ such that for any *H*-free graph *G* on *n* vertices, either:

- G contains a clique of size n^{ε_H} , or
- G contains an independent set of size n^{ε_H}

Conjecture: every graph satisfies the EH-property

 K_r satisfies the EH-property (e.g. free graphs have $\alpha(G) \ge \sqrt{n}$)

by induction on *r*:

- if there is a vertex v of degree $\geq n^{\frac{r-2}{r-1}}$:
 - ► N(v) is K_{r-1}-free (by induction)

 $\Rightarrow \text{ there is an independent set of size} \geq \left(n^{\frac{r-2}{r-1}}\right)^{\frac{1}{r-2}} = n^{\frac{1}{r-1}}$

• otherwise:

We construct an independent set of size $\geq \frac{n}{n^{\frac{r-2}{r-1}}} = n^{\frac{1}{r-1}}$

H satisfies the **Erdős-Hajnal** property if there is $0 < \varepsilon_H \le 1$ such that for any *H*-free graph *G* on *n* vertices, either:

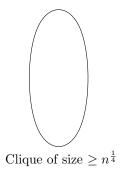
- G contains a clique of size n^{ε_H} , or
- G contains an independent set of size n^{ε_H}

Conjecture: every graph satisfies the EH-property

 K_r^{-2} satisfies the Erdős-Hajnal property, and an independent set or a clique of size $n^{\frac{1}{r-1}}$ can be found in polynomial time (simple induction)

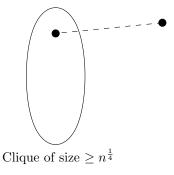
Example: $O(k^4)$ kernel in free graphs

- invoke Erdős-Hajnal algorithm:
 - either large independent set \rightarrow done
 - or large clique $\geq n^{1/4}$



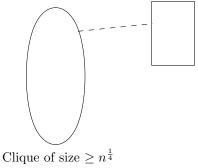
Example: $O(k^4)$ kernel in free graphs

- invoke Erdős-Hajnal algorithm:
 - either large independent set \rightarrow done
 - or large clique $\geq n^{1/4}$



Example: $O(k^4)$ kernel in 4+-free graphs

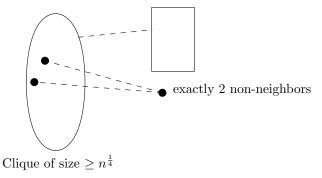
- invoke Erdős-Hajnal algorithm:
 - either large independent set \rightarrow done
 - or large clique $\geq n^{1/4}$



1 non-neighbor

Example: $O(k^4)$ kernel in free graphs

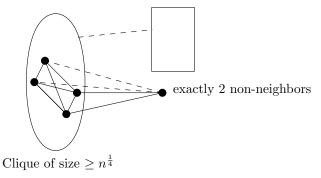
- invoke Erdős-Hajnal algorithm:
 - $\blacktriangleright\,$ either large independent set $\rightarrow\,$ done
 - or large clique $\geq n^{1/4}$



1 non-neighbor

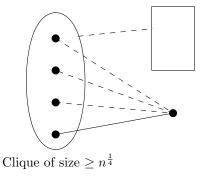
Example: $O(k^4)$ kernel in free graphs

- invoke Erdős-Hajnal algorithm:
 - either large independent set \rightarrow done
 - or large clique $\geq n^{1/4}$

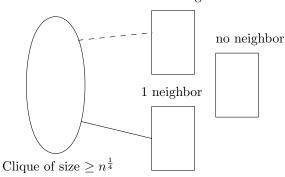


1 non-neighbor

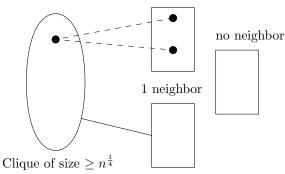
- invoke Erdős-Hajnal algorithm:
 - either large independent set \rightarrow done
 - or large clique $\geq n^{1/4}$



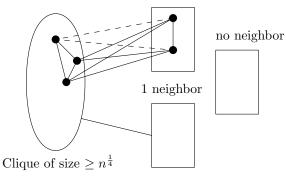
- invoke Erdős-Hajnal algorithm:
 - either large independent set \rightarrow done
 - or large clique $\geq n^{1/4}$



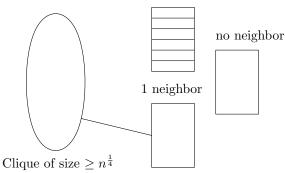
- invoke Erdős-Hajnal algorithm:
 - either large independent set \rightarrow done
 - or large clique $\geq n^{1/4}$



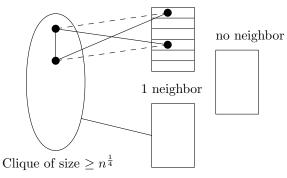
- invoke Erdős-Hajnal algorithm:
 - either large independent set \rightarrow done
 - or large clique $\geq n^{1/4}$



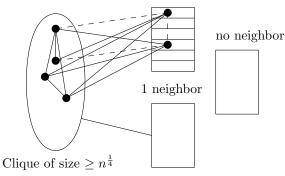
- invoke Erdős-Hajnal algorithm:
 - either large independent set \rightarrow done
 - or large clique $\geq n^{1/4}$



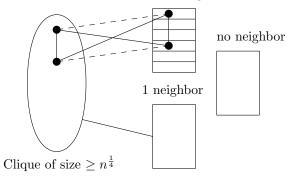
- invoke Erdős-Hajnal algorithm:
 - either large independent set \rightarrow done
 - or large clique $\geq n^{1/4}$



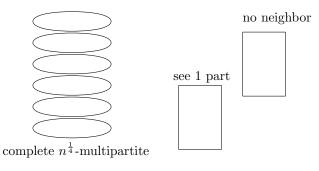
- invoke Erdős-Hajnal algorithm:
 - either large independent set \rightarrow done
 - or large clique $\geq n^{1/4}$



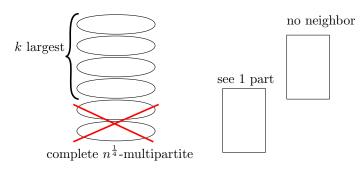
- invoke Erdős-Hajnal algorithm:
 - either large independent set \rightarrow done
 - or large clique $\geq n^{1/4}$



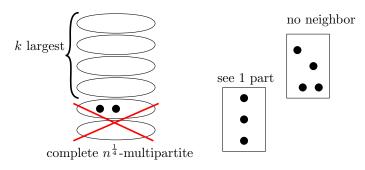
- invoke Erdős-Hajnal algorithm:
 - either large independent set \rightarrow done
 - or large clique $\geq n^{1/4}$



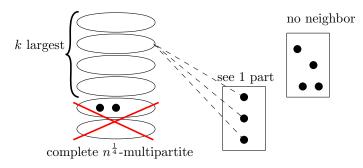
- invoke Erdős-Hajnal algorithm:
 - either large independent set \rightarrow done
 - or large clique $\geq n^{1/4}$
- if # parts > k: reduce: keep only the k largest parts



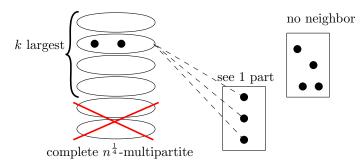
- invoke Erdős-Hajnal algorithm:
 - either large independent set \rightarrow done
 - or large $clique \ge n^{1/4}$
- if # parts > k: reduce: keep only the k largest parts



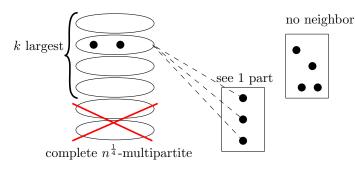
- invoke Erdős-Hajnal algorithm:
 - either large independent set \rightarrow done
 - or large clique $\geq n^{1/4}$
- if # parts > k: reduce: keep only the k largest parts



- invoke Erdős-Hajnal algorithm:
 - either large independent set \rightarrow done
 - or large clique $\geq n^{1/4}$
- if # parts > k: reduce: keep only the k largest parts



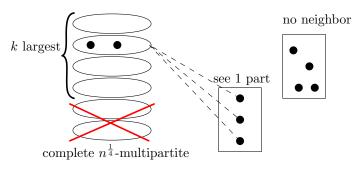
- invoke Erdős-Hajnal algorithm:
 - either large independent set \rightarrow done
 - or large clique $\geq n^{1/4}$
- if # parts > k: reduce: keep only the k largest parts
- at the end:
 - $k \geq \# parts$

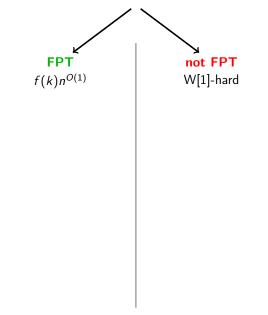


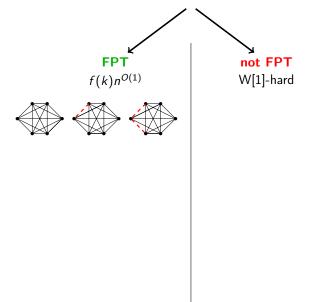
- invoke Erdős-Hajnal algorithm:
 - $\blacktriangleright\,$ either large independent set $\rightarrow\,$ done
 - or large clique $\geq n^{1/4}$
- if # parts > k: reduce: keep only the k largest parts
- at the end:

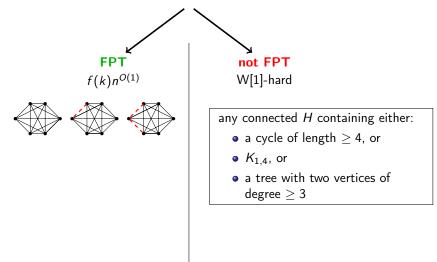
$$k \geq \# parts \geq n^{1/4} \quad o G$$
 has at most k^4 vertices

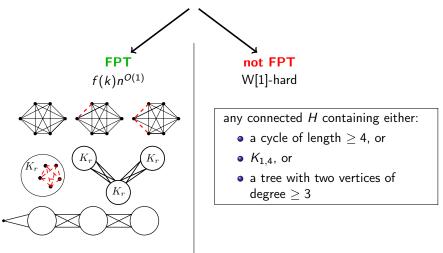
••

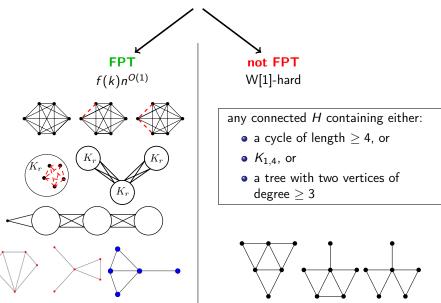








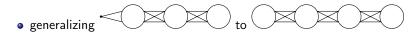




- $\bullet\,$ we thought the FPT/W-hard dichotomy would be an easier job than the P/NP-hard one
 - \rightarrow but it looks like a very challenging task

- we thought the FPT/W-hard dichotomy would be an easier job than the P/NP-hard one
 - \rightarrow but it looks like a very challenging task
- FPT algorithms for *P_t*-free graphs?

- we thought the FPT/W-hard dichotomy would be an easier job than the P/NP-hard one
 - \rightarrow but it looks like a very challenging task
- FPT algorithms for *P_t*-free graphs?



- we thought the FPT/W-hard dichotomy would be an easier job than the P/NP-hard one
 - \rightarrow but it looks like a very challenging task
- FPT algorithms for *P_t*-free graphs?

- algorithmic use of structural graph theory results
 - Ramsey
 - Erdős-Hajnal
 - Kővari-Sós-Turán

- we thought the FPT/W-hard dichotomy would be an easier job than the P/NP-hard one
 - \rightarrow but it looks like a very challenging task
- FPT algorithms for *P_t*-free graphs?

- algorithmic use of structural graph theory results
 - Ramsey
 - Erdős-Hajnal
 - Kővari-Sós-Turán
- polynomial kernel/no polynomial kernel dichotomy?

and voilà ! Questions ?