Graph Partitioning: Beyond Worst-Case Analysis

Rakesh Venkat
(Indian Institute of Technology, Hyderabad)

CALDAM Pre-Conference School, IIT Hyderabad.
Feb 2020.

Introduction and Motivation

Warming up: Planted Clique

Edge and Vertex Expansion: Objectives, Model, Results
Proof Outline

Summary and Further Directions

Introduction and Motivation

Graph Partitioning

Aim: Break an input graph G = (V, E) into two or more parts, while
optimizing some function that measures the partition quality.

Practical Applications

=

Community detection

]

Routing network flows, e.g. traffic

@

Image Processing and Graphics

[~

Biological Networks, e.g. protein-protein interactions

]

Detecting influential /anomalous nodes in Social Networks

Epidemic spreading

Practical Applications

Community detection
Routing network flows, e.g. traffic
Image Processing and Graphics
Biological Networks, e.g. protein-protein interactions
Detecting influential /anomalous nodes in Social Networks
@ Epidemic spreading

Many more applications..

Various objectives

Given the vast number of applications, there are many different
objectives one could consider:

m Min-Bisection

Max-Bisection

Sparsest Cut/Edge Expansion.
Sparsest Vertex Cut/Vertex Expansion.
Multiway Cut

Approximate Coloring

.. (Many variants of the above)..

Solving graph partitioning

Most of these problems are NP-hard to compute exactly, or even
approximate well in general. However, inputs in practice are not
worst-case.

Solving graph partitioning

Most of these problems are NP-hard to compute exactly, or even
approximate well in general. However, inputs in practice are not
worst-case.

Understanding these classes also gives us insights into the general case.

Worst-Case Analysis

m Consider a minimization objective that is NP-hard (e.g.
Min-Bisection).

m Design an algorithm such that:

(ALG(G) < C-OPT(G) for every graph G|

m Would like as small a value for C as possible (Ideal: C =1).

Pros:

Worst-Case Analysis

m Consider a minimization objective that is NP-hard (e.g.
Min-Bisection).

m Design an algorithm such that:

(ALG(G) < C-OPT(G) for every graph G|

m Would like as small a value for C as possible (Ideal: C =1).
Pros:
m Many clever algorithms have been designed in this framework.

m Often the algorithms work well in practice too.

Worst-Case Analysis

m Consider a minimization objective that is NP-hard (e.g.
Min-Bisection).

m Design an algorithm such that:

(ALG(G) < C-OPT(G) for every graph G|

m Would like as small a value for C as possible (Ideal: C =1).
Pros:
m Many clever algorithms have been designed in this framework.
m Often the algorithms work well in practice too.
Cons:
m Pessimistic estimates on algorithm’s performance.

m Do not know why the algorithms work well in practice. In many
real-life cases, simpler algorithms perform better.

m How do we account for data (e.g. Machine-Learning applications
like clustering?)

Beyond Worst-Case Analysis

m Come up with a description of a class of instances that arise in
practice.

m Design new algorithms, or analyze known ones on such a class.
m Expect that these will give better guarantees than the worst-case.

Beyond Worst-Case Analysis

m Come up with a description of a class of instances that arise in
practice.

m Design new algorithms, or analyze known ones on such a class.
m Expect that these will give better guarantees than the worst-case.

m Clearly, no single description will cover all applications. Many
models have been explored.

Beyond Worst-Case Analysis: Scenarios

Stability of Instances

m Clustering (Approximation Stability)[BBG09]
m Bilu-Linial Stability (Max-Cut, Multiway Cut) [BL10, MMV14]

BBG09: Balcan-Blum-Gupta, MMV*: Makarychev-Makarychev-Vijayaraghavan

FKO00: Feige-Krauthgamer, BCLS92: Bui-Chaudhari-Leighton-Sipser, FKO01:
Feige-Kilian, ABH15: Abbe-Bandeira-Hall, BS95: Blum-Spencer

STO1: Spielman-Teng, AV06: Arthur-Vassilvitskii, AMR11:
Arthur-Manthey-Roglin

nd Worst-Case Analysis: Scenarios

Stability of Instances

m Clustering (Approximation Stability)[BBG09]
m Bilu-Linial Stability (Max-Cut, Multiway Cut) [BL10, MMV14]

Random/Semi-Random and Planted Models
m Planted Clique [FK00]
m Graph Bisection [BCLS92, FK01, McSherry01, ABH15 ...]
m Edge Expansion [BS95, MMV12, MMV14]

BBG09: Balcan-Blum-Gupta, MMV*: Makarychev-Makarychev-Vijayaraghavan

FKO00: Feige-Krauthgamer, BCLS92: Bui-Chaudhari-Leighton-Sipser, FKO01:
Feige-Kilian, ABH15: Abbe-Bandeira-Hall, BS95: Blum-Spencer

STO1: Spielman-Teng, AV06: Arthur-Vassilvitskii, AMR11:
Arthur-Manthey-Roglin

nd Worst-Case Analysis: Scenarios

Stability of Instances

m Clustering (Approximation Stability)[BBG09]
m Bilu-Linial Stability (Max-Cut, Multiway Cut) [BL10, MMV14]

Random/Semi-Random and Planted Models

m Planted Clique [FK00]
m Graph Bisection [BCLS92, FK01, McSherry01, ABH15 ...]
m Edge Expansion [BS95, MMV12, MMV14]

Smoothed Analysis

m Simplex Method for LPs [STO01]
m Local Search [AV06, AMRL11, ...]

BBGO09: Balcan-Blum-Gupta, MMV*: Makarychev-Makarychev-Vijayaraghavan

FKO00: Feige-Krauthgamer, BCLS92: Bui-Chaudhari-Leighton-Sipser, FKO01:
Feige-Kilian, ABH15: Abbe-Bandeira-Hall, BS95: Blum-Spencer

STO1: Spielman-Teng, AV06: Arthur-Vassilvitskii, AMR11:
Arthur-Manthey-Roglin

nd Worst-Case Analysis: Scenarios

Stability of Instances

m Clustering (Approximation Stability)[BBG09]
m Bilu-Linial Stability (Max-Cut, Multiway Cut) [BL10, MMV14]

Random/Semi-Random and Planted Models

m Planted Clique [FK00]
m Graph Bisection [BCLS92, FK01, McSherry01, ABH15 ...]
m Edge and Vertex Expansion [BS95, MMV12, MMV14]

Smoothed Analysis

m Simplex Method for LPs [STO01]
m Local Search [AV06, AMRL11, ...]

Other Hybrid or Distribution-Free models

BBGO09: Balcan-Blum-Gupta, MMV*: Makarychev-Makarychev-Vijayaraghavan

FKO00: Feige-Krauthgamer, BCLS92: Bui-Chaudhari-Leighton-Sipser, FKO01:
Feige-Kilian, ABH15: Abbe-Bandeira-Hall, BS95: Blum-Spencer

STO1: Spielman-Teng, AV06: Arthur-Vassilvitskii, AMR11:
Arthur-Manthey-Roglin

Planted and Semi-Random Models

m Semi-Random Models generate inputs via a combination of
randomness and adversarial changes.
m The algorithm designer may know the model of generation of inputs.
However, the adversarial changes will keep things difficult.

m In a Planted Model, input graphs are promised to have a solution
planted (e.g., a small cut or bisection). However, the rest of the
graph can be completely adversarial.

m Goal: Recover a planted or close-to-optimal solution with high
probability over the input distribution, irrespective of adversarial
changes.

m Well-studied problems in such models: (2-way) Edge expansion,
Coloring, Planted Clique. [(BS '95), (FK '01), (MMV '12), (MMV
'14)]

[BS95]:Blum-Spencer, [FK01]:Feige-Kilian,
[MMV*]:Makarychev-Makarychev-Vijayaraghavan.

Warming up: Planted Clique

The Maximum Clique Problem

m The Maximum Clique Problem: Given a undirected graph
G = (V, E), find the largest clique present in G.

m Extremely Hard to solve: for any ¢ > 0, getting a n'~¢

approximation is NP-Hard!

The Planted Clique Problem: Model

1
What happens in an Erdés-Rényi graph G(n, 5)7

m The size of a maximum clique is 2log, n with high probability.

m Proof hack: E[No. of cliques of size k in G] ~ <Z>2_k2/2. This is 1

when k = 2 log, n.

The Planted Clique Problem: Model

1
What happens in an Erdés-Rényi graph G(n, 5)7
m The size of a maximum clique is 2log, n with high probability.

m Proof hack: E[No. of cliques of size k in G] ~ <Z>2_k2/2. This is 1

when k = 2 log, n.

Can we find a clique of size 2log, n w.h.p?
m Can only find one of size ~ log, n. Simple heuristics achieve it.

The Planted Clique Model

What if we plant a clique of size k in this graph: Choose a subset
S C V, and add all edges within S to the graph? Remaining part of
the graph is generated according to G(n,0.5).

G(n,1/2)

S size k clique

If Kk < 2log, n, then S is not the max-clique, so we can not expect
to find it.

The Planted Clique Model

What if we plant a clique of size k in this graph: Choose a subset
S C V, and add all edges within S to the graph? Remaining part of
the graph is generated according to G(n,0.5).

G(n,1/2)

S size k clique

If Kk < 2log, n, then S is not the max-clique, so we can not expect
to find it.

The Planted Clique Model

What if we plant a clique of size k in this graph: Choose a subset
S C V, and add all edges within S to the graph? Remaining part of
the graph is generated according to G(n,0.5).

G(n,1/2)

S size k clique

If Kk < 2log, n, then S is not the max-clique, so we can not expect
to find it.

If Kk > +/nlog, n, then can find S w.h.p.
mIf v¢5: deg(v) € [n/2 —cy/nlog, n,n/2 + cy/nlog, n] , with high

probability.

The Planted Clique Model

What if we plant a clique of size k in this graph: Choose a subset
S C V, and add all edges within S to the graph? Remaining part of
the graph is generated according to G(n,0.5).

G(n,1/2)

S size k clique

If Kk < 2log, n, then S is not the max-clique, so we can not expect
to find it.
If Kk > +/nlog, n, then can find S w.h.p.
mIf v¢5: deg(v) € [n/2 —cy/nlog, n,n/2 + cy/nlog, n] , with high
probability.
mIfves, deg(v) = n/2+ k. If k> 4c+/nlgn, then the highest
degree vertices will contain S w.h.p.

Planted Clique: k = ©(+/n)

Above degree counting does not work when k = ©(y/n) (why?)

We have to resort to more involved techniques: a Spectral
Algorithm.

m Use linear algebraic properties of the adjacency matrix of G.

Consider the adjacency matrix of G, compute the second eigenvector
v. Let A be the largest k coordinates of v. Return
B={ie V:|Na(i)| > 3k/4}.

Theorem ([AKS98])
When k > +/n, the above algorithm recovers S exactly w.h.p.

AKS98: Alon-Kriveilevich-Sudakov98

Planted Clique: k = ©(v/n): Key Idea

Since G is random, its adjacency matrix is random.

Key Idea: The expected adjacency matrix of G looks like:

(1 1105 \

\05 | 05)

Planted Clique: k = ©(v/n): Key Idea

Since G is random, its adjacency matrix is random.

Key Idea: The expected adjacency matrix of G looks like:

(08
E[A = | L

\05 | 05)

The second eigenvector of this matrix is approximately:
(n—kn—k,....n—k,—k,—k,... — k).

k times

Planted Clique: k = ©(v/n): Key Idea

Since G is random, its adjacency matrix is random.

Key Idea: The expected adjacency matrix of G looks like:

(08

\05 | 05)

The second eigenvector of this matrix is approximately:
(n—kn—k,....n—k,—k,—k,... — k).

k times
Using random matrix theory, show that the eigenvector of the actual
adjacency matrix is not far from this ideal w.h.p.

Planted Clique: with monotone adversary

Suppose an adversary comes along and:

m Only deletes some edges that are not completely within S
(adversarially).

S: size k clique

Adversary may detete edges not in S

FKOO: Feige-Krauthgamer

Planted Clique: with monotone adversary

Suppose an adversary comes along and:

m Only deletes some edges that are not completely within S
(adversarially).

S: size k clique

Adversary may detete edges not in S

Intuitively the problem is now easier, as the clique stands out more.

However, we cannot use the expected adjacency matrix anymore for
a spectral algorithm!

FKOO: Feige-Krauthgamer

Planted Clique: with monotone adversary

Suppose an adversary comes along and:
m Only deletes some edges that are not completely within S
(adversarially).

S: size k clique

Adversary may detete edges not in S

Intuitively the problem is now easier, as the clique stands out more.

However, we cannot use the expected adjacency matrix anymore for
a spectral algorithm!

Use Semidefinite Programming Relaxations [FK00]. These are even
more ‘robust’ then spectral algorithms.

FKOO: Feige-Krauthgamer

Planted Bisection (Stochastic Block Model)

—

q= Prob. of edge across (4, B)

Assume: p > q.
m When p — g = Q(1): Degree counting works.

m Say p=alogn/n, and g = blogn/n. If (\/a—v/b) > V/2, can use
spectral (for purely random) or SDP (for semi-random) algorithms
for recovery. [..., ABH14, MNS14, WXH15, Ban15].

= Not recoverable if (va — vb) < V2.

ABH14: Abbe-Bandeira-Hall, MNS14:Mossel-Neeman-Sly, WXH15:
Wu-Xu-Hajek, Ban15: Bandeira

Edge and Vertex Expansion: Objectives, Model, Results

Problems we consider

k-way Edge Expansion: Partition an input graph into exactly k
parts, while minimizing the maximum edge-expansion.

k-way Vertex Expansion: Partition an input graph into exactly k
parts, while minimizing the maximum vertex-expansion.

m Edge and vertex expansion are qualitatively different problems. Less
work on vertex expansion.

Planted Models

m Planted Models assume that the input graphs come with a planted
solution:

m G is guaranteed to have a k-way partition with low k-way edge (or
vertex) expansion.

m Goal: Recover solution guaranteed to be a good approximation of
the planted solution.

This Talk: k-way Vertex-Expansion objective.

(Results mentioned in this section are based on joint work with Anand
Louis, ISc Bangalore)

Sparse Vertex-Cuts

Sparse Vertex-Cuts

m Edge density across a cut alone may not always be the right
indicator of partition sparsity.

m Graph communities may interact heavily, but via just a small number
of influential nodes.

m For example, these may be hubs in the network.

The Vertex-Expansion objective

S

oV measures sparsity via the number of vertices on the boundary of
acut(S,S) B
IN(S)| + [N(S)]

»V(S) = |V ik
© = VTS

m In the above figure, if |S| = n/2 and |Ti| = en/2, then ®"(S) = 4.
m Vertex Expansion of G:

[¢V(G) = min ¢V(5>}

k-way Vertex-Expansion objective

[d)V*(G) = min max ¢V(S,-)}
{S1,...,Sk}EPr i€[K]

m Above, Py is the set of all
k-partitions of the vertex set V.
m In the figure, if | T;| = en/k,
and |S| = n/k, then
®V(S;) = ek/(1—1/k) < 2¢k.

Known Results for Sparse Vertex-Cuts

Vertex Expansion/Cuts less well-understood as compared to Edge
Expansion/Sparsest Cut.
Algorithms:
m (k =2) [FHL '08] : O(+/log n)-approximation algorithm, using ¢1
line embeddings.
m (k=2) [LRV '13]: O(+/logd/OPT)-approximation algorithm,
where d is max-degree.
m (k > 2) Can infer from [CLTZ '18, LM '16]: O(y/logn- OPT - f(k)).

[FHLO8]: Feige-Hajiaghayi-Lee, [LRV13]: Louis-Raghavendra-Vempala, [AMS07]:
Ambiihl- Mastrolilli-Svensson, [CLTZ18]:Chan-Louis-Tang-Zhang,
[LM16]:Louis-Makarychev.

Known Results for Sparse Vertex-Cuts

Vertex Expansion/Cuts less well-understood as compared to Edge
Expansion/Sparsest Cut.

Algorithms:

m (k =2) [FHL '08] : O(+/log n)-approximation algorithm, using ¢1
line embeddings.

m (k=2) [LRV '13]: O(+/logd/OPT)-approximation algorithm,

where d is max-degree.
m (k > 2) Can infer from [CLTZ '18, LM "16]: O(+/logn- OPT - f(k)).

Lower bounds (k = 2):

m [AMS '07]: No PTAS unless SAT has sub-exponential time
algorithms.

m [LRV "13]: No constant-factor approximation algorithm, assuming
Small-Set Expansion Hypothesis.

[FHLO8]: Feige-Hajiaghayi-Lee, [LRV13]: Louis-Raghavendra-Vempala, [AMS07]:
Ambiihl- Mastrolilli-Svensson, [CLTZ18]:Chan-Louis-Tang-Zhang,
[LM16]:Louis-Makarychev.

Known results for k-way Edge expansion

E(Si,
®(G) = min_ max }‘S—Sl
SienSe i€kl |Si]|S|

Better-studied
m Best known approximations are of the form: O (OPT\/Iog n- fl(k))

or 0 (VOPT - (k).

m [LM '14] fi(k) = poly(k), to get exactly k-partition, if |S;|'s are not
known.

m [BFK+ '11] Bi-criteria guarantee, with fi(k) = O(y/log k), if the
optimal S;'s are all of size n/k.

m [LRTV '12, LGT '14] Spectral guarantees: O(+/ A« - poly(k)).

[LM14]: Louis-Makarychev,
[BFK+11]:Bansal-Feige-Krauthgamer-Nagarajan-Naor-Schwartz,
[LRTV12]:Louis-Raghavendra-Tetali-Vempala, [LGT14]:Lee-Gharan:Trevisan

The model k-Part (vertex)

Motivation: Keep well-connected within every part, only few vertices
connect outside.

The model k-Part (vertex)

Motivation: Keep well-connected within every part, only few vertices
connect outside.

m Partition V into k sets 51, S, ...k, with |S:| = n/k for every
t € [k].

m Add edges within each each S; to make it a spectral expander of
degree (roughly) d and spectral gap > A.

The model k-Part (vertex)

Motivation: Keep well-connected within every part, only few vertices
connect outside.

m Partition V into k sets 51,5, ...5k, with |S;| = n/k for every
t € [k].

m Add edges within each each S; to make it a spectral expander of
degree (roughly) d and spectral gap > A.

m For each t € [k]: Choose boundary vertices T; C S; with
| T:| <en/k. Add arbitrary edges across T;'s

m Monotone adversary: Add edges arbitrarily within every S;.

The model k-Part (vertex)

Sa

S

|Se| = %

A-expander

—~~
Pa
(V]

=
-
(]
>
~—
4
—
)
o
1
<

o)

O
o
S
(]

e

—

The model k-Part (vertex)

Sa
Sk
S1
T
Ty,
.
.
Ss .
IS¢ = %
A-expander ITt‘ = %

The model k-Part (vertex)

Sa
Sk
S1
./ [AZ>e
Ty,
.
.
Ss .
1St = %
A-expander ‘Tt| = %

Main Result

Theorem (Louis-V.19)

For a graph from k-Part satisfying e < \/800k, there is a polytime
algorithm that outputs a k-partition P = {Px, ..., Px} of V such that:

For each i € [K], |Pi| > Q(n/k),

For each i € [k], " (P;) < O(k*)OPT

Main Result

Theorem (Louis-V.19)

For a graph from k-Part satisfying e < \/800k, there is a polytime
algorithm that outputs a k-partition P = {Px, ..., Px} of V such that:

For each i € [K], |Pi| > Q(n/k),

For each i € [k], " (P;) < O(k*)OPT

m Above, OPT is the optimal balanced k-partition value.
m Due to planted solution, OPT < 2¢k.

m Final approximation ratio is independent of n.

m Algorithm runs in time polynomial in both n, k.

Main Result

Theorem (Louis-V.19)

For a graph from k-Part satisfying e < \/800k, there is a polytime
algorithm that outputs a k-partition P = {Px, ..., Px} of V such that:

For each i € [K], |Pi| > Q(n/k),

For each i € [k], " (P;) < O(k*)OPT

m Above, OPT is the optimal balanced k-partition value.
m Due to planted solution, OPT < 2¢k.

m Final approximation ratio is independent of n.
m Algorithm runs in time polynomial in both n, k.

m Similar guarantee holds for the edge expansion version.

General Framework

Hard to optimize over Easy to optimize over

o= min f(x)

Integer Space (x; € {0,1})

OPT

xe{0,1}"

General Framework

Hard to optimize over Easy to optimize over

b= minf(x) M 1= minf(x)
Integer Space (x; € {0,1})

Continuous space (x; € R™)

OPT

x€{0,1}"

m The continuous space contains the discrete one, and therefore,
o1 < @

m The relaxation step is generally well-understood.

General Framework

Hard to optimize over Easy to optimize over

b= minf(x) M 1= minf(x)
Integer Space (x; € {0,1})

Continuous space (x; € R™)

OPT

x€{0,1}"

m The continuous space contains the discrete one, and therefore,
o1 < @

m The relaxation step is generally well-understood.

General Framework

Hard to optimize over Easy to optimize over

b= minf(x) M 1= minf(x)
Integer Space (x; € {0,1})

Continuous space (x; € R™)

OPT

ALG

Rounding

o [ALGORITHM]

m The continuous space contains the discrete one, and therefore,
o1 < @

m The relaxation step is generally well-understood.

General Framework

Hard to optimize over Easy to optimize over

o= min f(x)

Integer Space (x; € {0,1})

M ¢ = min (x)

Continuous space (x; € R™)

OPT

x€{0,1}"

ALG

Rounding
[ALGORITHM]

dare < C - dopr

m The continuous space contains the discrete one, and therefore,

o1 < @

m The relaxation step is generally well-understood.

General Framework

Hard to optimize over Easy to optimize over

¢ = min £(x) M o1 = min f(x)
Integer Space (x; € {0,1})

Continuous space (x; € R™)

OPT

ALG

.

Rounding
[ALGORITHM]

xe{0,1)

darc < C- dopr

m Rounding step is usually the difficult part. Yields a solution with
Darg < C- ¢ < C-dopr, for some C > 1.

Proof Outline

Relaxation for 2-way vertex expansion

Relaxation for 2-way vertex expansion

IN(S) U N(S)| = Original Objective
EEE

®Y = minn
¢ 5

Relaxation for 2-way vertex expansion

oV _ i IN(S)UN(S)
¢ s 1S[|S]

oY — . > maxjen(iy(xi — x;)?
¢c=n min 5
xe{-11} Zijer v(xi =)

7

m Original Objective

m Where
x,-:lifiES,i
xi=—-1ifieS

S
T2

X[:71

SDP relaxation: 2-way vertex expansion

Relaxation: Assign a vector u; € RY for every i € V:
DY = = - min max ||u; — uj|?
‘€Rd i 3 J
n uer cv JEN(I)
subject to:
2 .
luil]* =1 VieV

Do i~ wl* =2

ieVv jev

SDP relaxation: 2-way vertex expansion

Relaxation: Assign a vector u; € RY for every i € V:

DY = = min max ||u; — u;])?
7 d i [
n uer cv JEN(I)
subject to:
2 .
luil]* =1 VieV
2 2
D =l =n
iev jev
m |deal solution is u; € R, with u; =1, if i € 51, and u; = -1, if
ieV \ S5
m This is indeed a relaxation, and therefore ®¥,p < 4¢ on k-part with
k=2

m Note: An edge expansion objective would have the numerator as:

S50 lui =l

ieVv ieN(i)

Relaxation for k-way expansion

m As before, assign one vector u; for each i € V.
m In the ideal solution, each vector is k-dimensional.

m If /i € S;, the intended solution is uj = e, the unit vector along the
t-th coordinate.

Ideal Solution

5

Relaxation for k-way expansion

m As before, assign one vector u; for each i € V.
m In the ideal solution, each vector is k-dimensional.

m If /i € S;, the intended solution is uj = e, the unit vector along the
t-th coordinate.

m The constraints are adjusted accordingly. We also add in additional
63 triangle inequality constraints.

Ideal Solution

SDP Relaxation for k-way vertex expansion

V,k . 2
q;SDP = m&n Zﬁi
iev
s.t.
m > o -yl Vi, Vj € N(i)
Juill® = 1 VeV
uTuj > 0 Vi,jev
> ulu = n/k vieVv
J
i = gl + gy —) > [l — o Vij ke V

V,k

Main Structure Lemma

The actual solution is “close” to the ideal solution for k-part instances

Ideal Solution Actual Solution

Main Structure Lemma

Lemma

Let {uj};c\ be the optimal solution to the SDP for an instance G from
k-Part-vertex, with e < \/800k. For each t € [k], let ur = Eies,[ui].
The following holds:

(a) Ve [k Ejes,[llue — uj]l*] < 1/800
(b) Vee [k 1> [u]®>Q(1)
(c) Vt#t p]pe <1/800

Main Structure Lemma

Lemma

Let {uj};c\ be the optimal solution to the SDP for an instance G from
k-Part-vertex, with e < \/800k. For each t € [k], let ur = Eies,[ui].
The following holds:

(a) Ve [k Ejes,[llue — uj]l*] < 1/800
(b) Vee [k 1> [u]®>Q(1)
(c) Vt#t p]pe <1/800

m Above, u; is the centroid of the vectors corresponding to S;.
m The centroids are far apart, and almost orthonormal.

m Can greedily extract out k disjoint sets of size n/k using line
embeddings.

Key: Local-Global Correlation on A-expanders

g:V =R

A-expander

Key: Local-Global Correlation on A-expanders

m Associate a vector g : V — RY with
every vertex.

= Expansion: E..(;;[lg — gl*] < ¢
S

g:V =R

A-expander

Key: Local-Global Correlation on A-expanders

m Associate a vector g : V — RY with
every vertex.

m Expansion:]Ee:{,-Nj}[||gi*ng2] <4
= Ejlllei — gl*] < O(5/X).

m) is the second smallest eigenvalue of
the Laplacian:

Le =1 — A/d
g:V =R ¢ /

A-expander Here, d is the degree of the expander. .

Main lemma: Proof that S;'s are clustered

Ignore edges added by monotone adversary. The following (still) holds:

Main lemma: Proof that S;'s are clustered

Ignore edges added by monotone adversary. The following (still) holds:

Fix any t € [k]. Since the SDP objective is Zn; < 2en, we have:

iev
Z ni < 2en
i€S:
2
max | — uj|* < 2¢n
ics JEN)
1 2 .
= Z rl Z lui — uj||” < 2en ... since average < max
i€S: — jEN(I)NS;
2
= Egijyercs) lui — uill” < ek
k . . o
= E;jes, ||ui — uj||2 < = ... using expansion within S;

A

Remaining steps in the proof

Following from the Main Lemma, we show:

m There are k disjoint, well-separated sets of vectors (corresponding to
subsets of S;'s), each having small diameter and small vertex
expansion.

Remaining steps in the proof

Following from the Main Lemma, we show:

m There are k disjoint, well-separated sets of vectors (corresponding to
subsets of S;'s), each having small diameter and small vertex
expansion.

m Given this structure, we can repeatedly (in a greedy fashion) find a
Q(n/k)-sized set of small (O(k - OPT)) vertex expansion using line
embeddings.

Remaining steps in the proof

Following from the Main Lemma, we show:

m There are k disjoint, well-separated sets of vectors (corresponding to
subsets of S;'s), each having small diameter and small vertex
expansion.

m Given this structure, we can repeatedly (in a greedy fashion) find a
Q(n/k)-sized set of small (O(k - OPT)) vertex expansion using line
embeddings.

m This does not give a true partition yet. However, we can move from
k disjoint sets to a k -partition of vertices while incurring a further
O(k) approximation factor loss.

Thus, we get a O(k?)-approximation.

Summary and Further Directions

Summary and Further Directions

m Going beyond worst-case analysis: semi-random and planted models,
inspired from practical scenarios.

= An O(k?)-approximate recovery result for vertex and edge-expansion.

Summary and Further Directions

Going beyond worst-case analysis: semi-random and planted models,
inspired from practical scenarios.

An O(k?)-approximate recovery result for vertex and edge-expansion.

m Immediate open questions from expansion objectives:
m O(poly log(k)) guarantee? Relaxing expansion criterion?

Many other problems too can be explored in this framework
m Densest k-subgraph, Clustering variants, etc.
m ML applications also provide a rich source of relevant questions

Do higher order SDP or LP constraints help?

m Other settings such as Online or Streaming algorithms?

Thank You.
Questions?

	Introduction and Motivation
	Warming up: Planted Clique
	Edge and Vertex Expansion: Objectives, Model, Results
	Proof Outline
	Summary and Further Directions

