Graph Partitioning: Beyond Worst-Case Analysis

Rakesh Venkat
(Indian Institute of Technology, Hyderabad)

CALDAM Pre-Conference School, IIT Hyderabad.
Feb 2020.

Overview

1 Introduction and Motivation

2 Warming up: Planted Clique

3 Edge and Vertex Expansion: Objectives, Model, Results

4 Proof Outline

5 Summary and Further Directions

Outline

1 Introduction and Motivation

2 Warming up: Planted Clique

3 Edge and Vertex Expansion: Objectives, Model, Results

4 Proof Outline

5 Summary and Further Directions

Graph Partitioning

Aim: Break an input graph $G=(V, E)$ into two or more parts, while optimizing some function that measures the partition quality.

Practical Applications

1 Community detection
[Routing network flows, e.g. traffic
3 Image Processing and Graphics
4 Biological Networks, e.g. protein-protein interactions
5 Detecting influential/anomalous nodes in Social Networks
б Epidemic spreading

Practical Applications

1 Community detection
$\boxed{2}$ Routing network flows, e.g. traffic
3 Image Processing and Graphics
4 Biological Networks, e.g. protein-protein interactions
5 Detecting influential/anomalous nodes in Social Networks
б Epidemic spreading
Many more applications..

Various objectives

Given the vast number of applications, there are many different objectives one could consider:

- Min-Bisection
- Max-Bisection
- Sparsest Cut/Edge Expansion.
- Sparsest Vertex Cut/Vertex Expansion.
- Multiway Cut
- Approximate Coloring
- .. (Many variants of the above)..

Solving graph partitioning

Most of these problems are NP-hard to compute exactly, or even approximate well in general. However, inputs in practice are not worst-case.

Solving graph partitioning

Most of these problems are NP-hard to compute exactly, or even approximate well in general. However, inputs in practice are not worst-case.

Understanding these classes also gives us insights into the general case.

Worst-Case Analysis

- Consider a minimization objective that is NP-hard (e.g. Min-Bisection).
- Design an algorithm such that:

$$
\operatorname{ALG}(G) \leq C \cdot \operatorname{OPT}(G) \quad \text { for every graph } G
$$

- Would like as small a value for C as possible (Ideal: $C=1$). Pros:

Worst-Case Analysis

- Consider a minimization objective that is NP-hard (e.g. Min-Bisection).
- Design an algorithm such that:

$$
\operatorname{ALG}(G) \leq C \cdot \operatorname{OPT}(G) \quad \text { for every graph } G
$$

■ Would like as small a value for C as possible (Ideal: $C=1$).
Pros:

- Many clever algorithms have been designed in this framework.
- Often the algorithms work well in practice too.

Worst-Case Analysis

- Consider a minimization objective that is NP-hard (e.g. Min-Bisection).
- Design an algorithm such that:

$$
\operatorname{ALG}(G) \leq C \cdot \operatorname{OPT}(G) \quad \text { for every graph } G
$$

■ Would like as small a value for C as possible (Ideal: $C=1$).
Pros:

- Many clever algorithms have been designed in this framework.
- Often the algorithms work well in practice too.

Cons:

- Pessimistic estimates on algorithm's performance.
- Do not know why the algorithms work well in practice. In many real-life cases, simpler algorithms perform better.
- How do we account for data (e.g. Machine-Learning applications like clustering?)

Beyond Worst-Case Analysis

- Come up with a description of a class of instances that arise in practice.
- Design new algorithms, or analyze known ones on such a class.
- Expect that these will give better guarantees than the worst-case.

Beyond Worst-Case Analysis

- Come up with a description of a class of instances that arise in practice.
- Design new algorithms, or analyze known ones on such a class.
- Expect that these will give better guarantees than the worst-case.
- Clearly, no single description will cover all applications. Many models have been explored.

Beyond Worst-Case Analysis: Scenarios

1 Stability of Instances

- Clustering (Approximation Stability)[BBG09]
- Bilu-Linial Stability (Max-Cut, Multiway Cut) [BL10, MMV14]

[^0]
Beyond Worst-Case Analysis: Scenarios

1 Stability of Instances

- Clustering (Approximation Stability)[BBG09]
- Bilu-Linial Stability (Max-Cut, Multiway Cut) [BL10, MMV14]

12 Random/Semi-Random and Planted Models

- Planted Clique [FK00]
- Graph Bisection [BCLS92, FK01, McSherry01, ABH15 ...]
- Edge Expansion [BS95, MMV12, MMV14]

[^1]
Beyond Worst-Case Analysis: Scenarios

1 Stability of Instances

- Clustering (Approximation Stability)[BBG09]
- Bilu-Linial Stability (Max-Cut, Multiway Cut) [BL10, MMV14]

2 Random/Semi-Random and Planted Models

- Planted Clique [FKOO]
- Graph Bisection [BCLS92, FK01, McSherry01, ABH15 ...]
- Edge Expansion [BS95, MMV12, MMV14]

3 Smoothed Analysis

- Simplex Method for LPs [ST01]
- Local Search [AV06, AMR11, ...]

[^2]
Beyond Worst-Case Analysis: Scenarios

1 Stability of Instances

- Clustering (Approximation Stability)[BBG09]
- Bilu-Linial Stability (Max-Cut, Multiway Cut) [BL10, MMV14]

1 Random/Semi-Random and Planted Models

- Planted Clique [FK00]
- Graph Bisection [BCLS92, FK01, McSherry01, ABH15 ...]
- Edge and Vertex Expansion [BS95, MMV12, MMV14]

3 Smoothed Analysis

- Simplex Method for LPs [ST01]
- Local Search [AV06, AMR11, ...]

4 Other Hybrid or Distribution-Free models

[^3]
Planted and Semi-Random Models

- Semi-Random Models generate inputs via a combination of randomness and adversarial changes.
- The algorithm designer may know the model of generation of inputs. However, the adversarial changes will keep things difficult.

■ In a Planted Model, input graphs are promised to have a solution planted (e.g., a small cut or bisection). However, the rest of the graph can be completely adversarial.

■ Goal: Recover a planted or close-to-optimal solution with high probability over the input distribution, irrespective of adversarial changes.

■ Well-studied problems in such models: (2-way) Edge expansion, Coloring, Planted Clique. [(BS '95), (FK '01), (MMV '12), (MMV '14)]
[BS95]:Blum-Spencer, [FK01]:Feige-Kilian, [MMV*]:Makarychev-Makarychev-Vijayaraghavan.

Outline

1 Introduction and Motivation

2 Warming up: Planted Clique

3 Edge and Vertex Expansion: Objectives, Model, Results

4 Proof Outline

5 Summary and Further Directions

The Maximum Clique Problem

- The Maximum Clique Problem: Given a undirected graph $G=(V, E)$, find the largest clique present in G.

- Extremely Hard to solve: for any $\varepsilon>0$, getting a $n^{1-\varepsilon}$ approximation is NP-Hard!

The Planted Clique Problem: Model

1 What happens in an Erdős-Rényi graph $G\left(n, \frac{1}{2}\right)$?

- The size of a maximum clique is $2 \log _{2} n$ with high probability.
- Proof hack: $\mathbb{E}[$ No. of cliques of size k in $G] \approx\binom{n}{k} 2^{-k^{2} / 2}$. This is 1 when $k \approx 2 \log _{2} n$.

The Planted Clique Problem: Model

1 What happens in an Erdős-Rényi graph $G\left(n, \frac{1}{2}\right)$?

- The size of a maximum clique is $2 \log _{2} n$ with high probability.
- Proof hack: $\mathbb{E}[$ No. of cliques of size k in $G] \approx\binom{n}{k} 2^{-k^{2} / 2}$. This is 1 when $k \approx 2 \log _{2} n$.

2 Can we find a clique of size $2 \log _{2} n$ w.h.p?
■ Can only find one of size $\approx \log _{2} n$. Simple heuristics achieve it.

The Planted Clique Model

1 What if we plant a clique of size k in this graph: Choose a subset $S \subseteq V$, and add all edges within S to the graph? Remaining part of the graph is generated according to $G(n, 0.5)$.

2 If $k<2 \log _{2} n$, then S is not the max-clique, so we can not expect to find it.

The Planted Clique Model

1 What if we plant a clique of size k in this graph: Choose a subset $S \subseteq V$, and add all edges within S to the graph? Remaining part of the graph is generated according to $G(n, 0.5)$.

2 If $k<2 \log _{2} n$, then S is not the max-clique, so we can not expect to find it.

The Planted Clique Model

1 What if we plant a clique of size k in this graph: Choose a subset $S \subseteq V$, and add all edges within S to the graph? Remaining part of the graph is generated according to $G(n, 0.5)$.

2 If $k<2 \log _{2} n$, then S is not the max-clique, so we can not expect to find it.
3 If $k>\sqrt{n \log _{2} n}$, then can find S w.h.p.

- If $v \notin S: \operatorname{deg}(v) \in\left[n / 2-c \sqrt{n \log _{2} n}, n / 2+c \sqrt{n \log _{2} n}\right]$, with high probability.

The Planted Clique Model

1 What if we plant a clique of size k in this graph: Choose a subset $S \subseteq V$, and add all edges within S to the graph? Remaining part of the graph is generated according to $G(n, 0.5)$.

$\boxed{2}$ If $k<2 \log _{2} n$, then S is not the max-clique, so we can not expect to find it.
3 If $k>\sqrt{n \log _{2} n}$, then can find S w.h.p.

- If $v \notin S: \operatorname{deg}(v) \in\left[n / 2-c \sqrt{n \log _{2} n}, n / 2+c \sqrt{n \log _{2} n}\right]$, with high probability.
- If $v \in S, \operatorname{deg}(v) \approx n / 2+k$. If $k \geq 4 c \sqrt{n \lg n}$, then the highest degree vertices will contain S w.h.p.

Planted Clique: $k=\Theta(\sqrt{n})$

1 Above degree counting does not work when $k=\Theta(\sqrt{n})$ (why?)
■ We have to resort to more involved techniques: a Spectral Algorithm.

- Use linear algebraic properties of the adjacency matrix of G.

3 Consider the adjacency matrix of G, compute the second eigenvector v. Let A be the largest k coordinates of v. Return $B=\left\{i \in V:\left|N_{A}(i)\right| \geq 3 k / 4\right\}$.

Theorem ([AKS98])

When $k \geq \sqrt{n}$, the above algorithm recovers S exactly w.h.p.

Planted Clique: $k=\Theta(\sqrt{n})$: Key Idea

1 Since G is random, its adjacency matrix is random.
2 Key Idea: The expected adjacency matrix of G looks like:

$$
\mathbb{E}[A]=\left(\begin{array}{cc|c}
1 & 1 & 0.5 \\
1 & \ddots & \\
\hline 0.5 & 0.5
\end{array}\right)
$$

Planted Clique: $k=\Theta(\sqrt{n})$: Key Idea

1 Since G is random, its adjacency matrix is random.
$\boxed{2}$ Key Idea: The expected adjacency matrix of G looks like:

$$
\mathbb{E}[A]=\left(\begin{array}{cc|c}
1 & 1 & 0.5 \\
1 & \ddots & \\
\hline 0.5 & 0.5
\end{array}\right)
$$

3 The second eigenvector of this matrix is approximately:

$$
(\underbrace{n-k, n-k, \ldots, n-k}_{k \text { times }},-k,-k, \ldots-k) .
$$

Planted Clique: $k=\Theta(\sqrt{n})$: Key Idea

1 Since G is random, its adjacency matrix is random.
2 Key Idea: The expected adjacency matrix of G looks like:

$$
\mathbb{E}[A]=\left(\begin{array}{cc|c}
1 & 1 & 0.5 \\
1 & \ddots & \\
\hline 0.5 & 0.5
\end{array}\right)
$$

3 The second eigenvector of this matrix is approximately:

$$
(\underbrace{n-k, n-k, \ldots, n-k}_{k \text { times }},-k,-k, \ldots-k) .
$$

4 Using random matrix theory, show that the eigenvector of the actual adjacency matrix is not far from this ideal w.h.p.

Planted Clique: with monotone adversary

1 Suppose an adversary comes along and:

- Only deletes some edges that are not completely within S (adversarially).

Planted Clique: with monotone adversary

1 Suppose an adversary comes along and:

- Only deletes some edges that are not completely within S (adversarially).

2 Intuitively the problem is now easier, as the clique stands out more.
3 However, we cannot use the expected adjacency matrix anymore for a spectral algorithm!

Planted Clique: with monotone adversary

1 Suppose an adversary comes along and:
■ Only deletes some edges that are not completely within S (adversarially).

2 Intuitively the problem is now easier, as the clique stands out more.
3 However, we cannot use the expected adjacency matrix anymore for a spectral algorithm!

4 Use Semidefinite Programming Relaxations [FK00]. These are even more 'robust' then spectral algorithms.

[^4]
Planted Bisection (Stochastic Block Model)

Assume: $p>q$.

- When $p-q=\Omega(1)$: Degree counting works.
- Say $p=a \log n / n$, and $q=b \log n / n$. If $(\sqrt{a}-\sqrt{b}) \geq \sqrt{2}$, can use spectral (for purely random) or SDP (for semi-random) algorithms for recovery. [..., ABH14, MNS14, WXH15, Ban15].
- Not recoverable if $(\sqrt{a}-\sqrt{b}) \leq \sqrt{2}$.

ABH14: Abbe-Bandeira-Hall, MNS14:Mossel-Neeman-Sly, WXH15:
Wu-Xu-Hajek, Ban15: Bandeira

Outline

1 Introduction and Motivation

2 Warming up: Planted Clique

3 Edge and Vertex Expansion: Objectives, Model, Results

4 Proof Outline

5 Summary and Further Directions

Problems we consider

1 -way Edge Expansion: Partition an input graph into exactly k parts, while minimizing the maximum edge-expansion.
$\boxed{2}$-way Vertex Expansion: Partition an input graph into exactly k parts, while minimizing the maximum vertex-expansion.

- Edge and vertex expansion are qualitatively different problems. Less work on vertex expansion.

Planted Models

- Planted Models assume that the input graphs come with a planted solution:
- G is guaranteed to have a k-way partition with low k-way edge (or vertex) expansion.

■ Goal: Recover solution guaranteed to be a good approximation of the planted solution.

This Talk: k-way Vertex-Expansion objective.
(Results mentioned in this section are based on joint work with Anand Louis, IISc Bangalore)

Sparse Vertex-Cuts

Sparse Vertex-Cuts

- Edge density across a cut alone may not always be the right indicator of partition sparsity.

- Graph communities may interact heavily, but via just a small number of influential nodes.
- For example, these may be hubs in the network.

The Vertex-Expansion objective

- Φ^{V} measures sparsity via the number of vertices on the boundary of a cut (S, \bar{S})

$$
\Phi^{V}(S)=|V| \frac{|N(S)|+|N(\bar{S})|}{|S||\bar{S}|}
$$

- In the above figure, if $|S|=n / 2$ and $\left|T_{i}\right|=\varepsilon n / 2$, then $\Phi^{v}(S)=4 \varepsilon$.
- Vertex Expansion of G:

$$
\Phi^{V}(G)=\min _{S \subseteq V} \Phi^{V}(S)
$$

k-way Vertex-Expansion objective

$$
\Phi^{\mathrm{V}, \mathrm{k}}(G):=\min _{\left\{S_{1}, \ldots, S_{k}\right\} \in \mathcal{P}_{k}} \max _{i \in[k]} \Phi^{V}\left(S_{i}\right)
$$

- Above, \mathcal{P}_{k} is the set of all k-partitions of the vertex set V.
- In the figure, if $\left|T_{i}\right|=\varepsilon n / k$, and $|S|=n / k$, then
$\Phi^{V}\left(S_{i}\right)=\varepsilon k /(1-1 / k) \leq 2 \varepsilon k$.

Known Results for Sparse Vertex-Cuts

Vertex Expansion/Cuts less well-understood as compared to Edge Expansion/Sparsest Cut.

Algorithms:

- ($k=2$) [FHL '08] : $O(\sqrt{\log n})$-approximation algorithm, using ℓ_{1} line embeddings.
- $(k=2)$ [LRV '13]: $O(\sqrt{\log d / \mathrm{OPT}})$-approximation algorithm, where d is max-degree.
- ($k \geq 2$) Can infer from [CLTZ '18, LM '16]: $O(\sqrt{\log n} \cdot O P T \cdot f(k))$.
[FHL08]: Feige-Hajiaghayi-Lee, [LRV13]: Louis-Raghavendra-Vempala, [AMS07]: Ambühl- Mastrolilli-Svensson, [CLTZ18]:Chan-Louis-Tang-Zhang, [LM16]:Louis-Makarychev.

Known Results for Sparse Vertex-Cuts

Vertex Expansion/Cuts less well-understood as compared to Edge Expansion/Sparsest Cut.

Algorithms:

■ ($k=2$) [FHL '08] : $O(\sqrt{\log n})$-approximation algorithm, using ℓ_{1} line embeddings.

- $(k=2)$ [LRV '13]: $O(\sqrt{\log d / \mathrm{OPT}})$-approximation algorithm, where d is max-degree.
- ($k \geq 2$) Can infer from [CLTZ '18, LM '16]: $O(\sqrt{\log n} \cdot O P T \cdot f(k))$.

Lower bounds ($k=2$):

- [AMS '07]: No PTAS unless SAT has sub-exponential time algorithms.
- [LRV '13]: No constant-factor approximation algorithm, assuming Small-Set Expansion Hypothesis.
[FHL08]: Feige-Hajiaghayi-Lee, [LRV13]: Louis-Raghavendra-Vempala, [AMS07]: Ambühl- Mastrolilli-Svensson, [CLTZ18]:Chan-Louis-Tang-Zhang, [LM16]:Louis-Makarychev.

Known results for k-way Edge expansion

$$
\Phi(G)=\min _{S_{1}, \ldots, S_{k}} \max _{i \in[k]} \frac{\left|E\left(S_{i}, \overline{S_{i}}\right)\right|}{\left|S_{i}\right|\left|\overline{S_{i}}\right|}
$$

Better-studied

- Best known approximations are of the form: $O\left(\mathrm{OPT} \sqrt{\log n} \cdot f_{1}(k)\right)$ or $O\left(\sqrt{\mathrm{OPT}} \cdot f_{2}(k)\right)$.
- [LM '14] $f_{1}(k)=\operatorname{poly}(k)$, to get exactly k-partition, if $\left|S_{i}\right|$'s are not known.
- [BFK+ '11] Bi-criteria guarantee, with $f_{1}(k)=O(\sqrt{\log k})$, if the optimal S_{i} 's are all of size n / k.
- [LRTV '12, LGT '14] Spectral guarantees: $O\left(\sqrt{\lambda_{k}} \cdot \operatorname{poly}(k)\right)$.
[LM14]: Louis-Makarychev, [BFK+11]:Bansal-Feige-Krauthgamer-Nagarajan-Naor-Schwartz, [LRTV12]:Louis-Raghavendra-Tetali-Vempala, [LGT14]:Lee-Gharan-Trevisan

The model k-Part (vertex)

Motivation: Keep well-connected within every part, only few vertices connect outside.

The model k-Part (vertex)

Motivation: Keep well-connected within every part, only few vertices connect outside.

- Partition V into k sets $S_{1}, S_{2}, \ldots S_{k}$, with $\left|S_{t}\right|=n / k$ for every $t \in[k]$.
- Add edges within each each S_{t} to make it a spectral expander of degree (roughly) d and spectral gap $\geq \lambda$.

The model k-Part (vertex)

Motivation: Keep well-connected within every part, only few vertices connect outside.

- Partition V into k sets $S_{1}, S_{2}, \ldots S_{k}$, with $\left|S_{t}\right|=n / k$ for every $t \in[k]$.
- Add edges within each each S_{t} to make it a spectral expander of degree (roughly) d and spectral gap $\geq \lambda$.
- For each $t \in[k]$: Choose boundary vertices $T_{t} \subset S_{t}$ with $\left|T_{t}\right| \leq \varepsilon n / k$. Add arbitrary edges across T_{t} 's
- Monotone adversary: Add edges arbitrarily within every S_{t}.

The model k-Part (vertex)

The model k-Part (vertex)

Main Result

Theorem (Louis-V.19)

For a graph from k-Part satisfying $\varepsilon \leq \lambda / 800 k$, there is a polytime algorithm that outputs a k-partition $\mathcal{P}=\left\{P_{1}, \ldots, P_{k}\right\}$ of V such that:
1 For each $i \in[k],\left|P_{i}\right| \geq \Omega(n / k)$,
■ For each $i \in[k], \Phi^{V}\left(P_{i}\right) \leq O\left(k^{2}\right)$ OPT

Main Result

Theorem (Louis-V.19)

For a graph from k-Part satisfying $\varepsilon \leq \lambda / 800 k$, there is a polytime algorithm that outputs a k-partition $\mathcal{P}=\left\{P_{1}, \ldots, P_{k}\right\}$ of V such that:
1 For each $i \in[k],\left|P_{i}\right| \geq \Omega(n / k)$,
■ For each $i \in[k], \Phi^{V}\left(P_{i}\right) \leq O\left(k^{2}\right)$ OPT

- Above, OPT is the optimal balanced k-partition value.
- Due to planted solution, OPT $\leq 2 \varepsilon k$.
- Final approximation ratio is independent of n.
- Algorithm runs in time polynomial in both n, k.

Main Result

Theorem (Louis-V.19)

For a graph from k-Part satisfying $\varepsilon \leq \lambda / 800 k$, there is a polytime algorithm that outputs a k-partition $\mathcal{P}=\left\{P_{1}, \ldots, P_{k}\right\}$ of V such that:
1 For each $i \in[k],\left|P_{i}\right| \geq \Omega(n / k)$,
■ For each $i \in[k], \Phi^{V}\left(P_{i}\right) \leq O\left(k^{2}\right)$ OPT

- Above, OPT is the optimal balanced k-partition value.
- Due to planted solution, OPT $\leq 2 \varepsilon k$.
- Final approximation ratio is independent of n.
- Algorithm runs in time polynomial in both n, k.
- Similar guarantee holds for the edge expansion version.

General Framework

Hard to optimize over
Easy to optimize over

General Framework

Hard to optimize over
Easy to optimize over

- The continuous space contains the discrete one, and therefore, $\phi_{1} \leq \phi$.
- The relaxation step is generally well-understood.

General Framework

Hard to optimize over
Easy to optimize over

- The continuous space contains the discrete one, and therefore, $\phi_{1} \leq \phi$.
- The relaxation step is generally well-understood.

General Framework

Hard to optimize over
Easy to optimize over

- The continuous space contains the discrete one, and therefore, $\phi_{1} \leq \phi$.
- The relaxation step is generally well-understood.

General Framework

Hard to optimize over
Easy to optimize over

- The continuous space contains the discrete one, and therefore, $\phi_{1} \leq \phi$.
- The relaxation step is generally well-understood.

General Framework

Hard to optimize over
Easy to optimize over

- Rounding step is usually the difficult part. Yields a solution with $\Phi_{\mathrm{ALG}} \leq C \cdot \phi_{1} \leq C \cdot \Phi_{\mathrm{OPT}}$, for some $C \geq 1$.

Outline

1 Introduction and Motivation

2 Warming up: Planted Clique

3 Edge and Vertex Expansion: Objectives, Model, Results

4 Proof Outline

5 Summary and Further Directions

Relaxation for 2-way vertex expansion

Relaxation for 2-way vertex expansion

$$
\Phi_{G}^{V}=\min _{S} n \frac{|N(S) \cup N(\bar{S})|}{|S||\bar{S}|}
$$

- Original Objective

Relaxation for 2-way vertex expansion

$$
\begin{gathered}
\Phi_{G}^{V}=\min _{S} n \frac{|N(S) \cup N(\bar{S})|}{|S||\bar{S}|} \\
\Phi_{G}^{V}=n \min _{x_{i} \in\{-1,1\}} \frac{\sum_{i} \max _{j \in N(i)}\left(x_{i}-x_{j}\right)^{2}}{\sum_{i j \in V \times V}\left(x_{i}-x_{j}\right)^{2}}
\end{gathered}
$$

■ Original Objective

- Where
$x_{i}=1$ if $i \in S$, $x_{i}=-1$ if $i \in \bar{S}$

SDP relaxation: 2-way vertex expansion

Relaxation: Assign a vector $u_{i} \in \mathbb{R}^{d}$ for every $i \in V$:

$$
\Phi_{S D P}^{V}=\frac{1}{n} \cdot \min _{u_{i} \in \mathbb{R}^{d}} \sum_{i \in V} \max _{j \in N(i)}\left\|u_{i}-u_{j}\right\|^{2}
$$

subject to:

$$
\begin{aligned}
\left\|u_{i}\right\|^{2} & =1 & \forall i \in V \\
\sum_{i \in V} \sum_{j \in V}\left\|u_{i}-u_{j}\right\|^{2} & =n^{2} &
\end{aligned}
$$

SDP relaxation: 2-way vertex expansion

Relaxation: Assign a vector $u_{i} \in \mathbb{R}^{d}$ for every $i \in V$:

$$
\Phi_{S D P}^{V}=\frac{1}{n} \cdot \min _{u_{i} \in \mathbb{R}^{d}} \sum_{i \in V} \max _{j \in N(i)}\left\|u_{i}-u_{j}\right\|^{2}
$$

subject to:

$$
\begin{aligned}
\left\|u_{i}\right\|^{2} & =1 & \forall i \in V \\
\sum_{i \in V} \sum_{j \in V}\left\|u_{i}-u_{j}\right\|^{2} & =n^{2} &
\end{aligned}
$$

- Ideal solution is $u_{i} \in \mathbb{R}$, with $u_{i}=1$, if $i \in S_{1}$, and $u_{i}=-1$, if $i \in V \backslash S_{1}$
- This is indeed a relaxation, and therefore $\Phi_{S D P}^{V} \leq 4 \varepsilon$ on k-part with $k=2$.
- Note: An edge expansion objective would have the numerator as:

$$
\sum_{i \in V} \sum_{j \in N(i)}\left\|u_{i}-u_{j}\right\|^{2}
$$

Relaxation for k-way expansion

- As before, assign one vector u_{i} for each $i \in V$.
- In the ideal solution, each vector is k-dimensional.

■ If $i \in S_{t}$, the intended solution is $u_{i}=e_{t}$, the unit vector along the t-th coordinate.

Relaxation for k-way expansion

- As before, assign one vector u_{i} for each $i \in V$.
- In the ideal solution, each vector is k-dimensional.

■ If $i \in S_{t}$, the intended solution is $u_{i}=e_{t}$, the unit vector along the t-th coordinate.
■ The constraints are adjusted accordingly. We also add in additional ℓ_{2}^{2} triangle inequality constraints.

SDP Relaxation for k-way vertex expansion

$$
\Phi_{S D P}^{\mathrm{V}, \mathrm{k}}:=\quad \min _{U} \sum_{i \in V} \eta_{i}
$$

s.t.

$$
\begin{array}{rlrl}
\eta_{i} & \geq\left\|u_{i}-u_{j}\right\|^{2} & \forall i, \forall j \in N(i) \\
\left\|u_{i}\right\|^{2} & =1 & \forall i \in V \\
u_{i}^{T} u_{j} & \geq 0 & \forall i, j \in V \\
\sum_{j} u_{i}^{T} u_{j} & =n / k & \forall i \in V \\
\left\|u_{i}-u_{j}\right\|^{2}+\left\|u_{j}-u_{k}\right\|^{2} & \geq\left\|u_{i}-u_{j}\right\|^{2} & & \forall i, j, k \in V
\end{array}
$$

$$
\Phi_{S D P}^{\mathrm{V}, \mathrm{k}} \leq 2 \varepsilon n
$$

Main Structure Lemma

The actual solution is "close" to the ideal solution for k-part instances

Actual Solution

Main Structure Lemma

Lemma

Let $\left\{u_{i}\right\}_{i \in V}$ be the optimal solution to the SDP for an instance G from k-Part-vertex, with $\varepsilon \leq \lambda / 800 k$. For each $t \in[k]$, let $\mu_{t}=\mathbb{E}_{i \in S_{t}}\left[u_{i}\right]$. The following holds:
(a) $\forall t \in[k]: \quad \mathbb{E}_{j \in S_{t}}\left[\left\|\mu_{t}-u_{j}\right\|^{2}\right] \leq 1 / 800$
(b) $\forall t \in[k]: \quad 1 \geq\left\|\mu_{t}\right\|^{2} \geq \Omega(1)$
(c) $\forall t \neq t^{\prime} \quad \mu_{t}^{T} \mu_{t^{\prime}} \leq 1 / 800$

Main Structure Lemma

Lemma

Let $\left\{u_{i}\right\}_{i \in V}$ be the optimal solution to the SDP for an instance G from k-Part-vertex, with $\varepsilon \leq \lambda / 800 k$. For each $t \in[k]$, let $\mu_{t}=\mathbb{E}_{i \in S_{t}}\left[u_{i}\right]$.
The following holds:
(a) $\forall t \in[k]: \quad \mathbb{E}_{j \in S_{t}}\left[\left\|\mu_{t}-u_{j}\right\|^{2}\right] \leq 1 / 800$
(b) $\forall t \in[k]: \quad 1 \geq\left\|\mu_{t}\right\|^{2} \geq \Omega(1)$
(c) $\forall t \neq t^{\prime} \quad \mu_{t}^{T} \mu_{t^{\prime}} \leq 1 / 800$

- Above, μ_{t} is the centroid of the vectors corresponding to S_{t}.
- The centroids are far apart, and almost orthonormal.

■ Can greedily extract out k disjoint sets of size n / k using line embeddings.

Key: Local-Global Correlation on λ-expanders

λ-expander

Key: Local-Global Correlation on λ-expanders

- Associate a vector $g: V \rightarrow \mathbb{R}^{d}$ with every vertex.

■ Expansion: $\mathbb{E}_{e:\{i \sim j\}}\left[\left\|g_{i}-g_{j}\right\|^{2}\right] \leq \delta$
\qquad

Key: Local-Global Correlation on λ-expanders

λ-expander

- Associate a vector $g: V \rightarrow \mathbb{R}^{d}$ with every vertex.

■ Expansion: $\mathbb{E}_{e:\{i \sim j\}}\left[\left\|g_{i}-g_{j}\right\|^{2}\right] \leq \delta$

$$
\Longrightarrow \quad \mathbb{E}_{i j}\left[\left\|g_{i}-g_{j}\right\|^{2}\right] \leq O(\delta / \lambda) .
$$

- λ is the second smallest eigenvalue of the Laplacian:

$$
L_{G}=I-A / d
$$

Here, d is the degree of the expander. .

Main lemma: Proof that S_{t} 's are clustered

Ignore edges added by monotone adversary. The following (still) holds:

Main lemma: Proof that S_{t} 's are clustered

Ignore edges added by monotone adversary. The following (still) holds:
Fix any $t \in[k]$. Since the SDP objective is $\sum_{i \in V} \eta_{i} \leq 2 \varepsilon n$, we have:

$$
\sum_{i \in S_{t}} \eta_{i} \leq 2 \varepsilon n
$$

$$
\begin{aligned}
& \sum_{i \in S_{t}} \max _{j \in N(i)}\left\|u_{i}-u_{j}\right\|^{2} \leq 2 \varepsilon n \\
& \Longrightarrow \sum_{i \in S_{t}} \frac{1}{d} \sum_{j \in N(i) \cap S_{t}}\left\|u_{i}-u_{j}\right\|^{2} \leq 2 \varepsilon n \quad \ldots \text { since average } \leq \max \\
& \Longrightarrow \mathbb{E}_{\{i, j\} \in E\left(S_{t}\right)}\left\|u_{i}-u_{j}\right\|^{2} \leq \varepsilon k \\
& \Longrightarrow \mathbb{E}_{i, j \in S_{t}}\left\|u_{i}-u_{j}\right\|^{2} \leq \frac{\varepsilon k}{\lambda} \quad \ldots \text { using expansion within } S_{t}
\end{aligned}
$$

Remaining steps in the proof

Following from the Main Lemma, we show:
■ There are k disjoint, well-separated sets of vectors (corresponding to subsets of S_{t} 's), each having small diameter and small vertex expansion.

Remaining steps in the proof

Following from the Main Lemma, we show:
■ There are k disjoint, well-separated sets of vectors (corresponding to subsets of S_{t} 's), each having small diameter and small vertex expansion.

- Given this structure, we can repeatedly (in a greedy fashion) find a $\Omega(n / k)$-sized set of small ($O(k \cdot \mathrm{OPT}$)) vertex expansion using line embeddings.

Remaining steps in the proof

Following from the Main Lemma, we show:

- There are k disjoint, well-separated sets of vectors (corresponding to subsets of S_{t} 's), each having small diameter and small vertex expansion.
- Given this structure, we can repeatedly (in a greedy fashion) find a $\Omega(n / k)$-sized set of small ($O(k \cdot \mathrm{OPT}$)) vertex expansion using line embeddings.
- This does not give a true partition yet. However, we can move from k disjoint sets to a k-partition of vertices while incurring a further $O(k)$ approximation factor loss.
Thus, we get a $O\left(k^{2}\right)$-approximation.

Outline

1 Introduction and Motivation

2 Warming up: Planted Clique

3 Edge and Vertex Expansion: Objectives, Model, Results

4 Proof Outline

5 Summary and Further Directions

Summary and Further Directions

- Going beyond worst-case analysis: semi-random and planted models, inspired from practical scenarios.
- An $O\left(k^{2}\right)$-approximate recovery result for vertex and edge-expansion.

Summary and Further Directions

■ Going beyond worst-case analysis: semi-random and planted models, inspired from practical scenarios.

- An $O\left(k^{2}\right)$-approximate recovery result for vertex and edge-expansion.
- Immediate open questions from expansion objectives:
- $O($ poly $\log (k))$ guarantee? Relaxing expansion criterion?
- Many other problems too can be explored in this framework
- Densest k-subgraph, Clustering variants, etc.
- ML applications also provide a rich source of relevant questions

■ Do higher order SDP or LP constraints help?
■ Other settings such as Online or Streaming algorithms?

Thank You. Questions?

[^0]: BBG09: Balcan-Blum-Gupta, MMV*: Makarychev-Makarychev-Vijayaraghavan FK00: Feige-Krauthgamer, BCLS92: Bui-Chaudhari-Leighton-Sipser, FK01: Feige-Kilian, ABH15: Abbe-Bandeira-Hall, BS95: Blum-Spencer

 ST01: Spielman-Teng, AV06: Arthur-Vassilvitskii, AMR11: Arthur-Manthey-Roglin

[^1]: BBG09: Balcan-Blum-Gupta, MMV*: Makarychev-Makarychev-Vijayaraghavan FK00: Feige-Krauthgamer, BCLS92: Bui-Chaudhari-Leighton-Sipser, FK01: Feige-Kilian, ABH15: Abbe-Bandeira-Hall, BS95: Blum-Spencer

 ST01: Spielman-Teng, AV06: Arthur-Vassilvitskii, AMR11: Arthur-Manthey-Roglin

[^2]: BBG09: Balcan-Blum-Gupta, MMV*: Makarychev-Makarychev-Vijayaraghavan FK00: Feige-Krauthgamer, BCLS92: Bui-Chaudhari-Leighton-Sipser, FK01: Feige-Kilian, ABH15: Abbe-Bandeira-Hall, BS95: Blum-Spencer

 ST01: Spielman-Teng, AV06: Arthur-Vassilvitskii, AMR11: Arthur-Manthey-Roglin

[^3]: BBG09: Balcan-Blum-Gupta, MMV*: Makarychev-Makarychev-Vijayaraghavan FK00: Feige-Krauthgamer, BCLS92: Bui-Chaudhari-Leighton-Sipser, FK01: Feige-Kilian, ABH15: Abbe-Bandeira-Hall, BS95: Blum-Spencer

 ST01: Spielman-Teng, AV06: Arthur-Vassilvitskii, AMR11: Arthur-Manthey-Roglin

[^4]: FK00: Feige-Krauthgamer

