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Graph Partitioning

Aim: Break an input graph G = (V ,E ) into two or more parts, while
optimizing some function that measures the partition quality.



Practical Applications

1 Community detection

2 Routing network flows, e.g. traffic

3 Image Processing and Graphics

4 Biological Networks, e.g. protein-protein interactions

5 Detecting influential/anomalous nodes in Social Networks

6 Epidemic spreading

Many more applications..
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Various objectives

Given the vast number of applications, there are many different
objectives one could consider:

Min-Bisection

Max-Bisection

Sparsest Cut/Edge Expansion.

Sparsest Vertex Cut/Vertex Expansion.

Multiway Cut

Approximate Coloring

.. (Many variants of the above)..



Solving graph partitioning

Most of these problems are NP-hard to compute exactly, or even
approximate well in general. However, inputs in practice are not
worst-case.

Understanding these classes also gives us insights into the general case.
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Worst-Case Analysis

Consider a minimization objective that is NP-hard (e.g.
Min-Bisection).

Design an algorithm such that:

ALG(G ) ≤ C · OPT(G ) for every graph G

Would like as small a value for C as possible (Ideal: C = 1).

Pros:

Many clever algorithms have been designed in this framework.

Often the algorithms work well in practice too.

Cons:

Pessimistic estimates on algorithm’s performance.

Do not know why the algorithms work well in practice. In many
real-life cases, simpler algorithms perform better.

How do we account for data (e.g. Machine-Learning applications
like clustering?)
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Beyond Worst-Case Analysis

Come up with a description of a class of instances that arise in
practice.

Design new algorithms, or analyze known ones on such a class.

Expect that these will give better guarantees than the worst-case.

Clearly, no single description will cover all applications. Many
models have been explored.
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Beyond Worst-Case Analysis: Scenarios

1 Stability of Instances

Clustering (Approximation Stability)[BBG09]
Bilu-Linial Stability (Max-Cut, Multiway Cut) [BL10, MMV14]

2 Planted Clique [FK00]
Graph Bisection [BCLS92, FK01, McSherry01, ABH15 ...]

[BS95, MMV12, MMV14]

3 Smoothed Analysis

Simplex Method for LPs [ST01]
Local Search [AV06, AMR11, ...]

4 Other Hybrid or Distribution-Free models

BBG09: Balcan-Blum-Gupta, MMV*: Makarychev-Makarychev-Vijayaraghavan
FK00: Feige-Krauthgamer, BCLS92: Bui-Chaudhari-Leighton-Sipser, FK01:

Feige-Kilian, ABH15: Abbe-Bandeira-Hall, BS95: Blum-Spencer
ST01: Spielman-Teng, AV06: Arthur-Vassilvitskii, AMR11:

Arthur-Manthey-Roglin
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Planted and Semi-Random Models

Semi-Random Models generate inputs via a combination of
randomness and adversarial changes.

The algorithm designer may know the model of generation of inputs.
However, the adversarial changes will keep things difficult.

In a Planted Model, input graphs are promised to have a solution
planted (e.g., a small cut or bisection). However, the rest of the
graph can be completely adversarial.

Goal: Recover a planted or close-to-optimal solution with high
probability over the input distribution, irrespective of adversarial
changes.

Well-studied problems in such models: (2-way) Edge expansion,
Coloring, Planted Clique. [(BS ’95), (FK ’01), (MMV ’12), (MMV
’14)]

[BS95]:Blum-Spencer, [FK01]:Feige-Kilian,
[MMV*]:Makarychev-Makarychev-Vijayaraghavan.
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The Maximum Clique Problem

The Maximum Clique Problem: Given a undirected graph
G = (V ,E ), find the largest clique present in G .

Extremely Hard to solve: for any ε > 0, getting a n1−ε

approximation is NP-Hard!



The Planted Clique Problem: Model

1 What happens in an Erdős-Rényi graph G (n,
1

2
)?

The size of a maximum clique is 2 log2 n with high probability.

Proof hack: E[No. of cliques of size k in G ] ≈

(
n

k

)
2−k2/2. This is 1

when k ≈ 2 log2 n.

2 Can we find a clique of size 2 log2 n w.h.p?

Can only find one of size ≈ log2 n. Simple heuristics achieve it.
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The Planted Clique Model

1 What if we plant a clique of size k in this graph: Choose a subset
S ⊆ V , and add all edges within S to the graph? Remaining part of
the graph is generated according to G (n, 0.5).

2 If k < 2 log2 n, then S is not the max-clique, so we can not expect
to find it.

3 If k >
√
n log2 n, then can find S w.h.p.

If v /∈ S : deg(v) ∈ [n/2− c
√

n log2 n, n/2 + c
√

n log2 n] , with high
probability.
If v ∈ S , deg(v) ≈ n/2 + k. If k ≥ 4c

√
n lg n, then the highest

degree vertices will contain S w.h.p.
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Planted Clique: k = Θ(
√
n)

1 Above degree counting does not work when k = Θ(
√
n) (why?)

2 We have to resort to more involved techniques: a Spectral
Algorithm.

Use linear algebraic properties of the adjacency matrix of G .

3 Consider the adjacency matrix of G , compute the second eigenvector
v . Let A be the largest k coordinates of v . Return
B = {i ∈ V : |NA(i)| ≥ 3k/4}.

Theorem ([AKS98])

When k ≥
√
n, the above algorithm recovers S exactly w.h.p.

AKS98: Alon-Kriveilevich-Sudakov98



Planted Clique: k = Θ(
√
n): Key Idea

1 Since G is random, its adjacency matrix is random.

2 Key Idea: The expected adjacency matrix of G looks like:

E[A] =


1 1

1
. . .

0.5

0.5 0.5



3 The second eigenvector of this matrix is approximately:
(n − k, n − k, . . . , n − k︸ ︷︷ ︸

k times

,−k,−k, . . .− k).

4 Using random matrix theory, show that the eigenvector of the actual
adjacency matrix is not far from this ideal w.h.p.



Planted Clique: k = Θ(
√
n): Key Idea

1 Since G is random, its adjacency matrix is random.

2 Key Idea: The expected adjacency matrix of G looks like:

E[A] =


1 1

1
. . .

0.5

0.5 0.5


3 The second eigenvector of this matrix is approximately:

(n − k, n − k , . . . , n − k︸ ︷︷ ︸
k times

,−k ,−k , . . .− k).

4 Using random matrix theory, show that the eigenvector of the actual
adjacency matrix is not far from this ideal w.h.p.



Planted Clique: k = Θ(
√
n): Key Idea

1 Since G is random, its adjacency matrix is random.

2 Key Idea: The expected adjacency matrix of G looks like:

E[A] =


1 1

1
. . .

0.5

0.5 0.5


3 The second eigenvector of this matrix is approximately:

(n − k, n − k , . . . , n − k︸ ︷︷ ︸
k times

,−k ,−k , . . .− k).

4 Using random matrix theory, show that the eigenvector of the actual
adjacency matrix is not far from this ideal w.h.p.



Planted Clique: with monotone adversary

1 Suppose an adversary comes along and:

Only deletes some edges that are not completely within S
(adversarially).

2 Intuitively the problem is now easier, as the clique stands out more.

3 However, we cannot use the expected adjacency matrix anymore for
a spectral algorithm!

4 Use Semidefinite Programming Relaxations [FK00]. These are even
more ‘robust’ then spectral algorithms.

FK00: Feige-Krauthgamer
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Planted Bisection (Stochastic Block Model)

Assume: p > q.

When p − q = Ω(1): Degree counting works.

Say p = a log n/n, and q = b log n/n. If (
√
a−
√
b) ≥

√
2, can use

spectral (for purely random) or SDP (for semi-random) algorithms
for recovery. [. . . , ABH14, MNS14, WXH15, Ban15].

Not recoverable if (
√
a−
√
b) ≤

√
2.

ABH14: Abbe-Bandeira-Hall, MNS14:Mossel-Neeman-Sly, WXH15:
Wu-Xu-Hajek, Ban15: Bandeira
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Problems we consider

1 k-way Edge Expansion: Partition an input graph into exactly k
parts, while minimizing the maximum edge-expansion.

2 k-way Vertex Expansion: Partition an input graph into exactly k
parts, while minimizing the maximum vertex-expansion.

Edge and vertex expansion are qualitatively different problems. Less
work on vertex expansion.



Planted Models

Planted Models assume that the input graphs come with a planted
solution:

G is guaranteed to have a k-way partition with low k-way edge (or
vertex) expansion.

Goal: Recover solution guaranteed to be a good approximation of
the planted solution.

This Talk: k-way Vertex-Expansion objective.

(Results mentioned in this section are based on joint work with Anand
Louis, IISc Bangalore)



Sparse Vertex-Cuts

Edge density across a cut alone may not always be the right
indicator of partition sparsity.

Graph communities may interact heavily, but via just a small number
of influential nodes.

For example, these may be hubs in the network.
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The Vertex-Expansion objective

ΦV measures sparsity via the number of vertices on the boundary of
a cut (S ,S)

ΦV (S) = |V |
|N(S)|+

∣∣N(S)
∣∣

|S |
∣∣S∣∣

In the above figure, if |S | = n/2 and |Ti | = εn/2, then ΦV (S) = 4ε.

Vertex Expansion of G :

ΦV (G ) = min
S⊆V

ΦV (S)



k-way Vertex-Expansion objective

ΦV,k(G ) := min
{S1,...,Sk}∈Pk

max
i∈[k]

ΦV (Si )

Above, Pk is the set of all
k-partitions of the vertex set V .

In the figure, if |Ti | = εn/k,
and |S | = n/k, then
ΦV (Si ) = εk/(1− 1/k) ≤ 2εk.



Known Results for Sparse Vertex-Cuts

Vertex Expansion/Cuts less well-understood as compared to Edge
Expansion/Sparsest Cut.

Algorithms:

(k = 2) [FHL ’08] : O(
√

log n)-approximation algorithm, using `1
line embeddings.

(k = 2) [LRV ’13]: O(
√

log d/OPT)-approximation algorithm,
where d is max-degree.

(k ≥ 2) Can infer from [CLTZ ’18, LM ’16]: O(
√

log n ·OPT · f (k)).

Lower bounds (k = 2):

[AMS ’07]: No PTAS unless SAT has sub-exponential time
algorithms.

[LRV ’13]: No constant-factor approximation algorithm, assuming
Small-Set Expansion Hypothesis.

[FHL08]: Feige-Hajiaghayi-Lee, [LRV13]: Louis-Raghavendra-Vempala, [AMS07]:
Ambühl- Mastrolilli-Svensson, [CLTZ18]:Chan-Louis-Tang-Zhang,
[LM16]:Louis-Makarychev.
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Known results for k-way Edge expansion

Φ(G ) = min
S1,...,Sk

max
i∈[k]

∣∣E (Si ,Si )
∣∣

|Si ||Si |

Better-studied

Best known approximations are of the form: O
(

OPT
√

log n · f1(k)
)

or O
(√

OPT · f2(k)
)

.

[LM ’14] f1(k) = poly(k), to get exactly k-partition, if |Si |’s are not
known.

[BFK+ ’11] Bi-criteria guarantee, with f1(k) = O(
√

log k), if the
optimal Si ’s are all of size n/k.

[LRTV ’12, LGT ’14] Spectral guarantees: O(
√
λk · poly(k)).

[LM14]: Louis-Makarychev,
[BFK+11]:Bansal-Feige-Krauthgamer-Nagarajan-Naor-Schwartz,
[LRTV12]:Louis-Raghavendra-Tetali-Vempala, [LGT14]:Lee-Gharan-Trevisan



The model k-Part (vertex)

Motivation: Keep well-connected within every part, only few vertices
connect outside.

Partition V into k sets S1,S2, ...Sk , with |St | = n/k for every
t ∈ [k].

Add edges within each each St to make it a spectral expander of
degree (roughly) d and spectral gap ≥ λ.

For each t ∈ [k]: Choose boundary vertices Tt ⊂ St with
|Tt | ≤ εn/k. Add arbitrary edges across Tt ’s

Monotone adversary: Add edges arbitrarily within every St .
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Main Result

Theorem (Louis-V.19)

For a graph from k-Part satisfying ε ≤ λ/800k , there is a polytime
algorithm that outputs a k-partition P = {P1, . . . ,Pk} of V such that:

1 For each i ∈ [k], |Pi | ≥ Ω(n/k),

2 For each i ∈ [k], ΦV (Pi ) ≤ O(k2)OPT

Above, OPT is the optimal balanced k-partition value.

Due to planted solution, OPT ≤ 2εk.

Final approximation ratio is independent of n.

Algorithm runs in time polynomial in both n, k.

Similar guarantee holds for the edge expansion version.
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The relaxation step is generally well-understood.



General Framework

Rounding step is usually the difficult part. Yields a solution with
ΦALG ≤ C · φ1 ≤ C · ΦOPT, for some C ≥ 1.
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Relaxation for 2-way vertex expansion

ΦV
G = min

S
n
|N(S) ∪ N(S̄)|
|S ||S̄ |

ΦV
G = n min

xi∈{−1,1}

∑
i maxj∈N(i)(xi − xj)

2∑
ij∈V×V (xi − xj)2

Original Objective

Where
xi = 1 if i ∈ S ,
xi = −1 if i ∈ S
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SDP relaxation: 2-way vertex expansion

Relaxation: Assign a vector ui ∈ Rd for every i ∈ V :

ΦV
SDP =

1

n
· min
ui∈Rd

∑
i∈V

max
j∈N(i)

‖ui − uj‖2

subject to:

‖ui‖2 = 1 ∀i ∈ V∑
i∈V

∑
j∈V

‖ui − uj‖2 = n2

Ideal solution is ui ∈ R, with ui = 1, if i ∈ S1, and ui = −1, if
i ∈ V \ S1
This is indeed a relaxation, and therefore ΦV

SDP ≤ 4ε on k-part with
k = 2.
Note: An edge expansion objective would have the numerator as:∑

i∈V

∑
j∈N(i)

‖ui − uj‖2
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Relaxation for k-way expansion

As before, assign one vector ui for each i ∈ V .

In the ideal solution, each vector is k-dimensional.

If i ∈ St , the intended solution is ui = et , the unit vector along the
t-th coordinate.

The constraints are adjusted accordingly. We also add in additional
`22 triangle inequality constraints.
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SDP Relaxation for k-way vertex expansion

ΦV,k
SDP := min

U

∑
i∈V

ηi

s.t.

ηi ≥ ‖ui − uj‖2 ∀i ,∀j ∈ N(i)

‖ui‖2 = 1 ∀i ∈ V

uTi uj ≥ 0 ∀i , j ∈ V∑
j

uTi uj = n/k ∀i ∈ V

‖ui − uj‖2 + ‖uj − uk‖2 ≥ ‖ui − uj‖2 ∀i , j , k ∈ V

ΦV,k
SDP ≤ 2εn

.



Main Structure Lemma

The actual solution is “close” to the ideal solution for k-part instances



Main Structure Lemma

Lemma

Let {ui}i∈V be the optimal solution to the SDP for an instance G from
k-Part-vertex, with ε ≤ λ/800k . For each t ∈ [k], let µt = Ei∈St [ui ].
The following holds:

(a) ∀t ∈ [k] : Ej∈St [‖µt − uj‖2] ≤ 1/800

(b) ∀t ∈ [k] : 1 ≥ ‖µt‖2 ≥ Ω(1)

(c) ∀t 6= t ′ µT
t µt′ ≤ 1/800

Above, µt is the centroid of the vectors corresponding to St .

The centroids are far apart, and almost orthonormal.

Can greedily extract out k disjoint sets of size n/k using line
embeddings.
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Key: Local-Global Correlation on λ-expanders

Associate a vector g : V → Rd with
every vertex.

Expansion: Ee:{i∼j}[‖gi − gj‖2] ≤ δ

=⇒

Eij [‖gi − gj‖2] ≤ O(δ/λ)

.

λ is the second smallest eigenvalue of
the Laplacian:

LG = I − A/d

Here, d is the degree of the expander. .
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Main lemma: Proof that St ’s are clustered

Ignore edges added by monotone adversary. The following (still) holds:

Fix any t ∈ [k]. Since the SDP objective is
∑
i∈V

ηi ≤ 2εn, we have:

∑
i∈St

ηi ≤ 2εn

∑
i∈St

max
j∈N(i)

‖ui − uj‖2 ≤ 2εn

=⇒
∑
i∈St

1

d

∑
j∈N(i)∩St

‖ui − uj‖2 ≤ 2εn . . . since average ≤ max

=⇒ E{i,j}∈E(St) ‖ui − uj‖2 ≤ εk

=⇒ Ei,j∈St ‖ui − uj‖2 ≤
εk

λ
. . . using expansion within St
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Remaining steps in the proof

Following from the Main Lemma, we show:

There are k disjoint, well-separated sets of vectors (corresponding to
subsets of St ’s), each having small diameter and small vertex
expansion.

Given this structure, we can repeatedly (in a greedy fashion) find a
Ω(n/k)-sized set of small (O(k · OPT)) vertex expansion using line
embeddings.

This does not give a true partition yet. However, we can move from
k disjoint sets to a k -partition of vertices while incurring a further
O(k) approximation factor loss.

Thus, we get a O(k2)-approximation.
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Summary and Further Directions

Going beyond worst-case analysis: semi-random and planted models,
inspired from practical scenarios.

An O(k2)-approximate recovery result for vertex and edge-expansion.

Immediate open questions from expansion objectives:

O(poly log(k)) guarantee? Relaxing expansion criterion?

Many other problems too can be explored in this framework

Densest k-subgraph, Clustering variants, etc.
ML applications also provide a rich source of relevant questions

Do higher order SDP or LP constraints help?

Other settings such as Online or Streaming algorithms?
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Thank You.
Questions?
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