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Introduction : diameter computations

Joint work with :
D. Corneil (Toronto), C. Paul (Montpellier), F. Dragan (Kent), V.
Chepoi (Marseille), B. Estrellon (Marseille), Y. Vaxes (Marseille),
Y. Xiang (Kent), C. Magnien (Paris), M. Latapy (Paris), P.
Crescenzi (Firenze), R. Grossi (Pisa), A. Marino (Pisa), M. Borassi
(Firence), W. Kosters, F. Takes, Laurent Viennot (Irif Paris), H.
Alrasheed (Kent), G. Ducoffe (Bucarest)
and many discussions with others . . .
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Introduction : diameter computations

Basics Definitions

Definitions :

Let G be an undirected graph :

I exc(x) = maxy∈G{distance(x , y)} excentricity

I diam(G ) = maxx∈G{exc(x)} diameter

I radius(G ) = minx∈G{exc(x)}
I x ∈ V is a center of G , if exc(x) = radius(G )

First remarks of the definitions

distance computed in # edges
If x and y belong to different connected components d(x , y) =∞.
diameter : Max Max Min
radius : Min Max Min
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Introduction : diameter computations

Trivial bounds

For any graph G :
radius(G ) ≤ diam(G ) ≤ 2radius(G ) and ∀e ∈ G ,
diam(G ) ≤ diam(G − e)

These bounds are tight

I If G is a path of length 2K, then diam(G ) = 2k = 2radius(G ),
and G admits a unique center, i.e. the middle of the path.

I If radius(G ) = diam(G ), then Center(G ) = V . All vertices are
centers (as for example in a cycle).
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First example diam(G ) = 5 = length[a, b]
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If 2.radius(G ) = diam(G ), then *roughly* G has a tree shape (at
least it works for trees).
But there is no nice characterization of this class of graphs.
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Diameter

Applications

1. A graph parameter which measures the quality of services of a
network, in terms of worst cases, when all have a unitary cost.
Find critical edges e s.t. diam(G − e) > diam(G )

2. Many distributed algorithms can be analyzed with this
parameter (when a flooding technique is used to spread
information over the network or to construct routing tables).

3. Verify the small world hypothesis in some large social
networks, using J. Kleinberg’s definition of small world graphs.

4. Compute the diameter of the Internet graph, or some Web
graphs, i.e. massive data.
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1. Examples of diameter searches based on the algorithms
presented in this course :
https://files.inria.fr/gang/road/

2. OpenStreetMap (OSM) : 80 millions of nodes, average degree
3

3. Roadmaps graphs a special domain of research interest
Quasi-planar graph (bridges on the roads)

4. Never forget that computer science has an important
experimental part.

5. Many algorithmic ideas come out some experiment.

https://files.inria.fr/gang/road/
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Frequently Asked Questions (FAQ)

Usual questions on diameter, centers and radius :

I What is the best Program (resp. algorithm) available ?

I What is the complexity of diameter, center and radius
computations ?

I How to compute or approximate the diameter of huge graphs ?

I Find a center (or all centers) in a network, (in order to install
serveurs).
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Some notes

1. I was asked first this problem in 1980 by France Telecom for
the phone network (FT granted a PhD).

2. Marc Lesk obtained his PhD in 1984 with the title :
Couplages maximaux et diamètres de graphes.
Maximum matchings and diameter computations

3. But, with very little practical results for diameter
computations. (Some remarks like : If diam(G ) ≥ 6 then
diam(G ) ≤ 2, but with no algorithmic use)
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I Our aim is to design an algorithm or heuristic to compute the
diameter of very large graphs

I Any algorithm that computes all distances between all pairs of
vertices, complexity O(n3) or O(nm). As for example with |V |
successive Breadth First Searches in O(n(n + m)).

I Best known complexity for an exact algorithm is O( n3

log3n
), in

fact computing all shortest paths.

I But also with at most O(Diam(G )) matrix multiplications.
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Practical aspects

Computing diameter using fewest BFS

I Clemence Magnien and M. Latapy asked me again (2006) this
question about diameter.

I But in the meantime, I met Derek Corneil and Feodor Dragan,
we proved some theorems about diameter and chordals graphs
but above all I had learned many properties of graph searches
from Derek Corneil.

I I answered to Olivier Gascuel’s usual question, how to
compute diameter of phylogenetic trees, using the following
algorithm.
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Practical aspects

Computing diameter using fewest BFS

BFS

Data: a graph G = (V ,E ) and a start vertex s ∈ V

Result: an ordering σ of V

Initialize queue to {s}
for i ← 1 à n do

dequeue v from beginning of queue
σ(i)← v
foreach unnumbered vertex w ∈ N(v) do

if w is not already in queue then
enqueue w to the end of queue

end
end

end

Algorithm 1: Breadth First Search (BFS)
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Practical aspects

Computing diameter using fewest BFS

Property (B)

For an ordering σ on V , if for every triple (a, b, c), such that
a <σ b <σ c and ac ∈ E and ab /∈ E , then there must exist a
vertex d such that d <σ a with db ∈ E

d cba

Theorem Corneil and Krueger 2008

For a graph G = (V ,E ), an ordering σ sur V is a BFS ordering of
G iff σ satisfies property (B).
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Practical aspects

Computing diameter using fewest BFS

1. Let us consider the procedure called : 2 consecutive BFS 1

Data: A graph G = (V ,E )

Result: u, v two vertices

Choose a vertex w ∈ V
u ← BFS(w)
v ← BFS(u)

Where BFS stands for Breadth First Search.
Therefore it is a linear procedure

1. Proposed the first time by Handler 1973
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Computing diameter using fewest BFS

Intuition behind the procedure
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Computing diameter using fewest BFS

I Handler’s classical result 73
If G is a tree, diam(G ) = d(u, v)
Easy using Jordan’s theorem.
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Practical aspects

Computing diameter using fewest BFS

First theorem

Camille Jordan 1869 :

A tree admits one or two centers depending on the parity of its
diameter and furthermore all chains of maximum length starting at
any vertex contain this (resp. these) centers.

And radius(G ) = ddiam(G)
2 e

I Camille Jordan, Sur les assemblages de lignes, Journal für
reine und angewandte Mathematik 70 (1869), 185–190.
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Practical aspects

Computing diameter using fewest BFS

Unfortunately it is not an algorithm !

Figure: BFS1 = x , b, v , a, u, and BFS2 = u, b, v , x , a. But diam(G ) = 3
with [a, b, u, v ], but starting from b the procedure finds the diameter.
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Practical aspects

Computing diameter using fewest BFS

Since the 2-sweep procedure does not give always the right answer,
from every starting vertex. It is not an algorithm, just an heuristics.
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Practical aspects

Computing diameter using fewest BFS

Certificates for the diameter

To give a certificate diam(G ) = k , it is enough to provide :

I two vertices x , y s.t. d(x , y) = k (diam(G ) ≥ k).

I a subgraph H ⊂ G with diam(H) = k (diam(G ) ≤ k).
H may belong to a class of graphs on which diameter
computations can be done in linear time, for example trees.
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Practical aspects

Computing diameter using fewest BFS

Experimental results : M.H., M.Latapy, C. Magnien 2008

Randomized BFS procedure

Data: A graph G = (V ,E )

Result: u, v two vertices

Repeat α times :
Randomly Choose a vertex w ∈ V
u ← BFS(w)
v ← BFS(u)
Select the vertices u0, v0 s.t. distance(u0, v0) is maximal.
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Practical aspects

Computing diameter using fewest BFS

1. This procedure gives a vertex u0 such that :
exc(u0) ≤ diam(G ) i.e. a lower bound of the diameter.

2. Use a spanning tree as a subgraph on the same vertex set to
obtain an upper bound by computing its exact diameter in
linear time (using the trivial bound diam(G ) ≤ diam(G − e)).

3. Spanning trees given by the BFS.
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Computing diameter using fewest BFS

I The Program and some Data on Web graphs or P-2-P
networks can be found

I http://www-rp.lip6.fr/~magnien/Diameter

I 2 millions of vertices, diameter 32 within 1

I Further experimentations by Crescenzi, Grossi, Marino (in
ESA 2010)
which confirm the excellence of the lower bound using
BFS ! ! ! !

http://www-rp.lip6.fr/~magnien/Diameter
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Practical aspects

Computing diameter using fewest BFS

I Since α is a constant (≤ 1000), this method is still in linear
time and works extremely well on huge graphs (Web graphs,
Internet . . .)

I How can we explain the success of such a method ?

I Due to the many counterexamples for the 2 consecutive BFS
procedure. An explanation is necessary !
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Computing diameter using fewest BFS

2 kind of explanations

The method is good or the data used was good.

Partial answer

The method also works on several models of random graphs.
So let us try to prove the first fact

Restriction

First we are going to focus our study on the 2 consecutive BFS.



Diameter computations in graphs, from practice to theory back and forth

Practical aspects

Computing diameter using fewest BFS

2 kind of explanations

The method is good or the data used was good.

Partial answer

The method also works on several models of random graphs.
So let us try to prove the first fact

Restriction

First we are going to focus our study on the 2 consecutive BFS.



Diameter computations in graphs, from practice to theory back and forth

Practical aspects

Computing diameter using fewest BFS

2 kind of explanations

The method is good or the data used was good.

Partial answer

The method also works on several models of random graphs.
So let us try to prove the first fact

Restriction

First we are going to focus our study on the 2 consecutive BFS.



Diameter computations in graphs, from practice to theory back and forth

Practical aspects

Computing diameter using fewest BFS

Chordal graphs

1. A graph is chordal if it has no chordless cycle of length ≥ 4 .

2. If G is a chordal graph, Corneil, Dragan, MH, Paul 2001,
using a variant called 2 consecutive LexBFS
d(u, v) ≤ diam(G ) ≤ d(u, v) + 1

3. Generalized by Corneil, Dragan, Kohler 2003 using 2
consecutive BFS :
d(u, v) ≤ diam(G ) ≤ d(u, v) + 1
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The 4-sweep : Crescenzi, Grossi, MH, Lanzi, Marino 2011

Diam = max{ecc(a1), ecc(a2)} and Rad = min{ecc(r), ecc(m1)}
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Intuition behind the 4-sweep heuristics

I Chepoi and Dragan has proved that for chordal graphs that a
center is at distance at most one of the middle vertex (m1 in
the picture).

I Roughly, we have the same results with 4-sweep than with
1000 2-sweep.
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It is still not al algorithm, even for chordal graph ! !
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it could be hard to be sure
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An exact algorithm !

Compute the excentricity in a bottom up fashion starting from the
leaves of a BFS rooted in m1

with a stoping condition.
Complexity is O(nm) in the worst case, but often linear in practice.
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Simple Lemma

If for some x ∈ Level(i) of the tree, we have ecc(x) > 2(i − 1)
then we can stop the exploration.

Proof

Let us consider y ∈ L(j) with j < i . ∀z ∈ ∪1≤k≤i−1L(k)
dist(z , y) ≤ 2(i − 1)
Therefore ecc(y) ≤ ecc(x) or the extreme vertices from y belong
to lower layers and have already been considered.
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iFub an exact O(mn) algorithm
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Bad example



Diameter computations in graphs, from practice to theory back and forth

Practical aspects

Computing diameter using fewest BFS

Comments

I Diameter of Facebook graph = 41, Average distance 4.74,
Backstrom, Boldi, Rosa, Uganden, Vigna 2011 Boldi and his
group had to parallelize our algorithm and a BFS on the giant
connected component of Facebook would take several hours.
But only 17 BFS’s were needed, so just extra 13 sweeps to
certify the 4-sweep value.

I The 4-sweep method ”always” gives a lower bound of the
diameter not too far from the optimal,
the hard part is to obtain an upper bound with iFUB

I The worst examples are roadmap graphs with big treewidth
and big grids.
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Stanford Large Network Dataset Collection
http ://snap.stanford.edu/data/

I A very practical database for having large graphs to play with.

I Graphs are described that way : number of vertices, number of
edges (arcs), diameter.
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Graph diam SNAP diam 4-Sweep

soc-Epinions1 14 15

soc-pokec-relationships 11 14

soc-Slashdot0811 10 12

soc-Slashdot0902 11 13

com-lj.ungraph 17 21

com-youtube.ungraph 20 24

com-DBLP 21 23

com-amazon 44 47

email-Enron 11 13

wikiTalk 9 11

cit-HepPh 12 14

cit-HepTh 13 15

CA-CondMat 14 15

CA-HepTh 17 18

web-Google 21 24

Figure: 4-sweep versus SNAP
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Graph diam SNAP diam 4-Sweep

amazon0302 32 38

amazon0312 18 20

amazon0505 20 22

amazon0601 21 25

p2p-Gnutella04 9 10

p2p-Gnutella24 10 11

p2p-Gnutella25 10 11

p2p-Gnutella30 10 11

roadNet-CA 849 865

roadNet-TX 1054 1064

Gowalla-edges 14 16

BrightKite-edges 16 18
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How can I certify my results ?

I How can I beat the value of Stanford database ?

I Then some * explains in a little footnote that the SNAP value
is heuristically obtained by 1000 random BFS

I I like the idea that 4 searches totally dependent are better
that 1000 independent searches

I See the example of a long path.

I The last vertex of a BFS is not at all a random vertex
(NP-complete to decide : Charbit, MH, Mamcarz 2014
DMTCS).



Diameter computations in graphs, from practice to theory back and forth

Practical aspects

The Stanford Database

How can I certify my results ?

I How can I beat the value of Stanford database ?

I Then some * explains in a little footnote that the SNAP value
is heuristically obtained by 1000 random BFS

I I like the idea that 4 searches totally dependent are better
that 1000 independent searches

I See the example of a long path.

I The last vertex of a BFS is not at all a random vertex
(NP-complete to decide : Charbit, MH, Mamcarz 2014
DMTCS).



Diameter computations in graphs, from practice to theory back and forth

Practical aspects

The Stanford Database

How can I certify my results ?

I How can I beat the value of Stanford database ?

I Then some * explains in a little footnote that the SNAP value
is heuristically obtained by 1000 random BFS

I I like the idea that 4 searches totally dependent are better
that 1000 independent searches

I See the example of a long path.

I The last vertex of a BFS is not at all a random vertex
(NP-complete to decide : Charbit, MH, Mamcarz 2014
DMTCS).



Diameter computations in graphs, from practice to theory back and forth

Practical aspects

The Stanford Database

How can I certify my results ?

I How can I beat the value of Stanford database ?

I Then some * explains in a little footnote that the SNAP value
is heuristically obtained by 1000 random BFS

I I like the idea that 4 searches totally dependent are better
that 1000 independent searches

I See the example of a long path.

I The last vertex of a BFS is not at all a random vertex
(NP-complete to decide : Charbit, MH, Mamcarz 2014
DMTCS).



Diameter computations in graphs, from practice to theory back and forth

Practical aspects

The Stanford Database

How can I certify my results ?

I How can I beat the value of Stanford database ?

I Then some * explains in a little footnote that the SNAP value
is heuristically obtained by 1000 random BFS

I I like the idea that 4 searches totally dependent are better
that 1000 independent searches

I See the example of a long path.

I The last vertex of a BFS is not at all a random vertex
(NP-complete to decide : Charbit, MH, Mamcarz 2014
DMTCS).



Diameter computations in graphs, from practice to theory back and forth

Practical aspects

The Stanford Database

How can I certify my results ?

I By certifying the longest path [x , y ] (as hard as computing a
BFS ?)

I Using another BFS programmed by others starting at x .

I Certifying that the computed BFS ordering is a legal BFS
ordering, using the 4-points condition. Which can be checked
in linear time for BFS and DFS.
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Graph Name Vertices
Edges

Diameter iFUB Diam. FourSweep

CA-HepTh 0.190 18 18

CA-GrQc 0.181 17 17

CA-CondMat 0.124 15 15

CA-AstroPh 0.047 14 14

roadNet-CA 0.355 865 865

roadNet-PA 0.353 794 780

roadNet-TX 0.359 1064 1064

email-Enron 0.1 13 13

email-EuAll 0.631 14 14

com-amazon 0.361 47 47

Amazon0302 0.212 38 38

Amazon0312 0.125 20 20

Amazon0505 0.122 22 22

Amazon0601 0.119 25 25

Gowalla edges 0.207 25 16

Brightkite edges 0.272 18 18

soc-Epinions1 0.149 15 15

Figure: 4-Sweep Results
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Multisweep of BFS or even LexBFS are not enough

a b c d e

1 2 3 4

LexBFS = 4 e d c b a 3 2 1 = τ
LexBFS+(G , τ) = 1 a b c d e 2 3 4 =θ

LexBFS+(G , θ) = τ . . .
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The example

So in this split graph LexBFS+ will infinitely loop between τ and θ
proposing as extremal vertices 1 and 4 with d(1,4)=2
but the diameter is three with d(2,3)=3. Even a probabilistic
argument does not hold since we could add many twins of vertices
1 and 4.

By the way

We (Pierre, Reza, Lalla and I) have a conjecture that for all split
graphs, LexBFS+ always loops between two permutations.
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I BFS and triangle inequality
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Better practical algorithms

Methods which maintain an interval [ecc−(x), ecc+(x)] for
each vertex

I Starting with [0,∞] for every vertex

I After computing a BFS starting at a vertex u we have
computed not only ecc(u) but also ∀x , d(u, x).

I Since d(x , u) ≤ ecc(x) ≤ ecc(u) + d(u, x)

I We can update ecc−(x) with d(x , u) and ecc+(x) with
ecc(u) + d(u, x).



Diameter computations in graphs, from practice to theory back and forth

Practical aspects

Better practical algorithms

Methods which maintain an interval [ecc−(x), ecc+(x)] for
each vertex

I Starting with [0,∞] for every vertex

I After computing a BFS starting at a vertex u we have
computed not only ecc(u) but also ∀x , d(u, x).

I Since d(x , u) ≤ ecc(x) ≤ ecc(u) + d(u, x)

I We can update ecc−(x) with d(x , u) and ecc+(x) with
ecc(u) + d(u, x).



Diameter computations in graphs, from practice to theory back and forth

Practical aspects

Better practical algorithms

Methods which maintain an interval [ecc−(x), ecc+(x)] for
each vertex

I Starting with [0,∞] for every vertex

I After computing a BFS starting at a vertex u we have
computed not only ecc(u) but also ∀x , d(u, x).

I Since d(x , u) ≤ ecc(x) ≤ ecc(u) + d(u, x)

I We can update ecc−(x) with d(x , u) and ecc+(x) with
ecc(u) + d(u, x).



Diameter computations in graphs, from practice to theory back and forth

Practical aspects

Better practical algorithms

Methods which maintain an interval [ecc−(x), ecc+(x)] for
each vertex

I Starting with [0,∞] for every vertex

I After computing a BFS starting at a vertex u we have
computed not only ecc(u) but also ∀x , d(u, x).

I Since d(x , u) ≤ ecc(x) ≤ ecc(u) + d(u, x)

I We can update ecc−(x) with d(x , u) and ecc+(x) with
ecc(u) + d(u, x).



Diameter computations in graphs, from practice to theory back and forth

Practical aspects

Better practical algorithms

Methods which maintain an interval [ecc−(x), ecc+(x)] for
each vertex

I Starting with [0,∞] for every vertex

I After computing a BFS starting at a vertex u we have
computed not only ecc(u) but also ∀x , d(u, x).

I Since d(x , u) ≤ ecc(x) ≤ ecc(u) + d(u, x)

I We can update ecc−(x) with d(x , u) and ecc+(x) with
ecc(u) + d(u, x).



Diameter computations in graphs, from practice to theory back and forth

Practical aspects

Better practical algorithms

Halting conditions

For all eccentricities Until ∀x , ecc−(x) = ecc+(x)

For diameter After a BFS starting at v such that :
∀x , ecc+(x) ≤ ecc(v)

For radius After a BFS starting at v such that :
∀x , ecc(v) ≤ ecc−(x)
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They are several algorithms within this framework.
The only thing we did not fix yet is the choice of the next vertex to
start a BFS.
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Sumsweep : a symmetric method for computing radius and
diameter

M. Borassi, P. Crescenzi, R. Grossi, MH, W. Kosters, A. Marino
and F. Takes, 2014

I A mixture with our approach and that of W. Kosters and F.
Takes in which a lower bound of the eccentricity of every
vertex is maintained at each BFS.

I It generalizes the 4-sweep method to k-sweep.

I we generalize to maintain k values in each vertex.
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I Given a random vertex v1 and setting i = 1, repeat k times
the following :

1. Perform a BFS from vi and choose the vertex vi+1 as the
vertex x maximizing

∑
i
j=1d(vj , x).

2. Perform a BFS starting at a vertex vi+1, as the vertex w

minimizing
∑k

i=1 d(w , vi ).
3. Increment i .

I The maximum eccentricity found, i.e. maxi=1,...,k exc(vi ), is a
lower bound for the diameter.

I The minimum eccentricity found,
i.e. min{mini=1,...,k exc(vi ), exc(w)}, is an upper bound for
the radius.
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Halting conditions
To compute the exact values of radius and diameter, we use the
next lemmas.

Lemma 1

Let Diam(G ) be the diameter, let x and y be diametral vertices
(that is, d(x , y) = Diam(G )), and let v1, . . . , vk be k other
vertices. Then, Diam(G ) ≤ 2

k

∑k
i=1 d(x , vi ) or

Diam(G ) ≤ 2
k

∑k
i=1 d(y , vi ).

proof

kDiam(G ) =
∑k

i=1 d(x , y) ≤
∑k

i=1 [d(x , vi ) + d(vi , y)] =∑k
i=1 d(x , vi ) +

∑k
i=1 d(y , vi ).

If
∑k

i=1 d(x , vi ) ≤
∑k

i=1 d(y , vi ) then Diam(G ) ≤ 2
k

∑k
i=1 d(y , vi ).

If
∑k

i=1 d(y , vi ) ≤
∑k

i=1 d(x , vi , ) then

Diam(G ) ≤ 2
k

∑k
i=1 d(x , vi ).
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corollary 1

During the algorithm, if for a vertex z there exists a vertex t such
that ecc(t) > 2/k

∑k
i=1 d(z , vi ) then ecc(z) < Diam(G ).

proof

We have Diam(G ) ≥ ecc(t) > 2/k
∑k

i=1 d(z , vi )
But if z was an extremal vertex we would have using the previous
lemma :
2/k

∑k
i=1 d(z , vi ) ≥ Diam(G ), a contradiction.
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Lemma 2

Let x ∈ V be a center and let v1, . . . , vk be k other vertices. Then
Radius(G ) ≥ 1/k

∑k
i=1 d(x , vi )

proof

Let y ∈ V such that : Radius(G ) = d(x , y)
Then kRadius(G ) =

∑k
i=1 d(x , y) ≥

∑k
i=1 d(x , vi ) . Since d(x , y)

is the exccentricity of x , we have : ∀vi d(x , y) ≥ d(x , vi ).
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Better practical algorithms

corollary 2

During the algorithm, if for a vertex z there exists a vertex t such
that ecc(t) < 1/k

∑k
i=1 d(z , vi ) then z cannot be a center of G .

proof

We have
Radius(G ) ≤ ecc(t) < d(x , y) < 1/k

∑k
i=1 d(z , vi ) ≤ ecc(z)

Therefore Radius(G ) < ecc(z).
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I If during the algorithm we maintain two variables Macsofar
and Minsofar (being respectively the maximum and the
minimum computed eccentricity)

I To compute a diameter we can only perform a BFS starting at
x such that Maxsofar ≤ 2

k

∑k
i=1 d(x , vi ) (using corollary 1).

I To compute a radius we can only perform a BFS starting at x
such that : 1/k

∑k
i=1 d(x , y) ≤ Minsofar (using corollary 2).
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I This method generalizes the 4-sweep and seems to better
handle the cases where 1000 BFS was needed to find the
exact value in the previous method.

I For the same examples it never goes further 10-100 BFS.

I Strangely replacing Sum by Max as suggested by some experts
does not change the behavior of the algorithm.
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1. Since we only use a way to compute all distances form a given
source and triangle inequality.

2. To weighted graphs by replacing BFS with Dijkstra’s algorithm

3. To directed graphs with directed eccentricity.
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(Sumsweep) M. Borassi, P. Crescenzi, R. Grossi, M. Habib, W.
Kosters, A. Marino and F. Takes, Fast diameter and radius
BFS-based computation in (weakly connected) real-world graphs :
With an application to the six degrees of separation games, Theor.
Comput. Sci. 586 : 59-80 (2015).
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Real Applications with Sumsweep

With this method we were able to disprove conjectures inspired
from S. Milgram about the 6 degrees of separation

1. Kevin Bacon games on the actors graph

2. Diameter of Wikipedia (the Wiki Game)
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Kevin Bacon

His name was used for a popular TV game in US, The Six Degrees
of Kevin Bacon, in which the goal is to connect an actor to Kevin
Bacon in less than 6 edges.
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Actors graph 2014

I The 2014 graph has 1.797.446 in the biggest connected
component, a few more if we consider the whole graph. The
number of undirected edges in the biggest connected
component is 72.880.156.

I An actor with Bacon number 8 is Shemise Evans, and the
path can be found at http ://oracleofbacon.org/ by writing
Shemise Evans in the box. Even if their graph does not
coincide exactly with our graph, this is a shortest path in both
of them :
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Shemise Evans → Casual Friday (2008) → Deniz Buga
Deniz Buga → Walking While Sleeping (2009)→ Onur Karaoglu
Onur Karaoglu→ Kardesler (2004)→ Fatih Genckal
Fatih Genckal → Hasat (2012) → Mehmet Ünal
Mehmet Ünal→ Kayip özgürlük (2011)→ Aydin Orak
Aydin Orak → The Blue Man (2014)→Alex Dawe
Alex Dawe→ Taken 2 (2012)→ Rade Serbedzija
Rade Serbedzija→ X-Men : First Class (2011) → Kevin Bacon
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Twitter graph (2011)

Directed graph with 500 million vertices and 2,5 billion edges.
We found the exact value of the diameter (150) of the giant
connected component (computed in 2016).
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Radius versus diameter

I Let D, R be respectively two potential values for diam(G ) and
radius(G ).

I To certify these values we need to prove :

I ∀x ∈ V (G ), ∀y ∈ V (G ), we have d(x , y) ≤ D.

I ∀x ∈ V (G ), ∃y ∈ V (G ) such that d(x , y) ≥ R.

I Not exactly the same quantifiers !
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Relationships between diameter and δ-hyperbolicity

δ-Hyperbolic metric spaces have been defined by M. Gromov in
1987 via a simple 4-point condition :
for any four points u, v ,w , x , the two larger of the distance sums
d(u, v) + d(w , x), d(u,w) + d(v , x), d(u, x) + d(v ,w) differ by at
most 2δ.
δ − hyberbolicity(G ) = 0 iff G is a tree.

Nice

Because many real networks have small δ-hyperbolicity.
In fact δ-hyperbolicity captures the distance of a graph to a tree in
a metric way.
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Theorem Chepoi, Dragan, Estellon, M.H., Vaxes 2008

If u is the last vertex of a 2-sweep then :
exc(u) ≥ diam(G )-2.δ(G ) and
radius(G ) ≤ d(d(u, v) + 1)/2e+ 3δ(G )
Furthermore the set of all centers C (G ) of G is contained in the
ball of radius 5δ(G ) + 1 centered at a middle vertex m of any
shortest path connecting u and v in G .

Consequences

The 2-sweep (resp 4-sweep) method error is bounded by the
δ-hyperbolicity of the graph.
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A dichotomy theorem
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Split graphs

Definition

A graph G is a split graph, if its vertex set V (G ) can be
partitioned into a maximal clique K and a stable set S .
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Back to theory

Split graphs

I The diameter of a non-complete split graph can only be either
2 or 3.

I In fact computing diameter, i.e. deciding between 2 or 3, is
already hard for split graphs !

I And for years I have tried to find a linear time algorithm to
compute the exact diameter of split graphs ....

I We immediately noticed the equivalence to the disjoint set
problem
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Disjoint subsets problem

Disjoint sets problem

A finite set X , F a collection {S1, . . . ,Sk} of subsets of X .
∃i , j ∈ [1, k] such that Si ∩ Sj = ∅ ?

Linearity

Can this problem be solved in linear time ?
Size of the problem : |X |+ k +

∑i=k
i=1 |Si |

size of the incidence bipartite graph



Diameter computations in graphs, from practice to theory back and forth

Back to theory

Split graphs

Disjoint subsets problem

Disjoint sets problem

A finite set X , F a collection {S1, . . . ,Sk} of subsets of X .
∃i , j ∈ [1, k] such that Si ∩ Sj = ∅ ?

Linearity

Can this problem be solved in linear time ?
Size of the problem : |X |+ k +

∑i=k
i=1 |Si |

size of the incidence bipartite graph



Diameter computations in graphs, from practice to theory back and forth

Back to theory

Split graphs

a b c d e

1 2 3 4

LexBFS = 4 e d c b a 3 2 1 = τ
LexBFS+(G , τ) = 1 a b c d e 2 3 4 =θ

LexBFS+(G , θ) = τ . . .
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The example

So in this example LexBFS+ will infinitely loop between τ and θ
proposing as extremal vertices 1 and 4 with d(1,4)=2
but the diameter is three with d(2,3)=3.

By the way

We (Pierre, Reza, Lalla and I) have a conjecture that for all split
graphs, LexBFS+ always loops between two permutations.
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SETH : Strong Exponential Time Hypothesis

SETH

I There is no algorithm for solving the k-SAT problem with n
variables in O((2− ε)n) where ε does not depend on k .

I Since it is not true for k = 3, the conjecture must be precised
as follows :

I For every ε > 0, there exists an integer q > 0 such that there
is no algorithm in O((2− ε)n) for q-SAT.
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Related work (1/3) : Lower-bounds

Under SETH (resp., OV) we cannot solve Diameter in truly
subquadratic time (Roditty and V. Williams, STOC’13).

=⇒ hardness results obtained for constant diameter (e.g., 2 vs. 3)

=⇒ also holds for split graphs (Borassi et al., ETCS’16)
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Let us consider an instance I of k − SAT with 2n boolean variables
x1, . . . , x2n, and a set C of m clauses C1, . . .Cm, we build an
instance of Disjoint-set problem as follows :

I The set C is the set of clauses (a vertex per clause) + 2
extras vertices a, b.

I We consider now A,B the sets of all truth assignments of
x1, . . . , xn, and xn+1, . . . x2n, respectively.

I For each truth t assigment in A (resp. in B) we define
St = {C ∈ C such that t does not satisfy C} ∪ {a} (resp.
∪{b}).
St are the neighbours of t in C ∪ {a, b}.

I We add a clique on X ∪ {a, b}. The vertices corresponding to
the partial truth assigments correspond the independent set.
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I The sets S ′s defined with A (resp. B) always intersect
because of a (resp. b).

I If for every u ∈ A and v ∈ B, Su ∩ Sv ⊇ {Cj}, it means that
for every (u, v) there exists a clause Cj which is not satisfiable.

I If there exists Su,Sv that do not intersect. Necessarily u is a
truth assignment in A and v in B (or the converse, but they
cannot be on the same set of variables because of the dummy
vertices a, b).
This means that for each clause Ci of I , if Ci /∈ Su, then the
truth u assignment satisfies Ci .
Similarly if Ci /∈ Sv , then the truth v assignment satisfies Ci .
But Su ∩ Sv = ∅ means that for every clause Ci either :
Ci /∈ Su or Ci /∈ Sv .
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Therefore :
I is satisfiable iff there exist 2 disjoint sets Su,Sv .
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Complexity issues

I Size of the k − SAT instance is bounded by :
K = 2n + m + km

I Size of the Disjoint set instance :
N = 2n+1 + m + 2 vertices
and at most M = m2n+1 edges.

I To compute this instance we need to evaluate the m,
k-clauses for each half-truth assigment.
Can be done in O(K ), so in the whole : O(2n+1K ).

I If there exists an algorithm for the Disjoint set problem in less
than O(NM1−ε)
it would imply an algorithm for k − SAT in less than
O((2− ε)2n) contradicting the SETH.
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k-clauses for each half-truth assigment.
Can be done in O(K ), so in the whole : O(2n+1K ).

I If there exists an algorithm for the Disjoint set problem in less
than O(NM1−ε)
it would imply an algorithm for k − SAT in less than
O((2− ε)2n) contradicting the SETH.
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Consequences

Practically it means that there is less hope to design a linear time
algorithm for :

I Disjoint set problem

I Diameter computations for chordal graphs and split graphs

I And many other related problems . . . such as betweenness
centrality, see Borassi et al 2017.

I but not all O(mn) problems as for example transitive closure,
existence of a triangle . . .
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(Using Sparsification Lemma) ∀ε,∃c s.t. we cannot solve
Diameter in O(n2−ε)-time on split graphs with clique-number
≤ c · log n.
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One can play with the previous construction

Repeat n times the clique of an arbitrary split graph
(matching between every two consecutive copies)

3x 4x 

4x 3x 

3x 4x 

3x 4x 

x 
1 2x 

x 
1 2x 

x 
1 2x 

2x x 
1

.....

.....

.....

.....

.....

∀ε, ∃c s.t. we cannot solve ( 1
c·log n )-Diameter in O(n2−ε)-time.
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Also there are several variations on the SETH (as for example
ETH).
A huge domain called Hardness in P proving lower bounds for
polynomial problems using algorithmic conjectures.
As we have seen, the main tool is reductions between problems.
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There are many interesting subclasses of split graphs

I threshold graphs, comparability split graphs, interval split
graphs, cocomparability split graphs . . .

I Can we found some boarder between linear and non-linear ?
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We start by analyzing the following very simple algorithm on split
graphs :

Require: A split graph G .
1: if G has maximum degree |V (G )| − 1 then
2: /* universal vertex */
3: output “diam(G ) ≤ 2”
4: else
5: output “diam(G ) = 3”.
6: end if
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Lemma

For every G = (V ,E ) and u, v ∈ V such that u is a maximum
neighbour of v , we have diam(G ) ≤ 2 if and only if u is a universal
vertex.

Corollary

It turns out that many well-structured graph classes ensure the
existence of a vertex with a maximum neighbour such as : graphs
with a pendant vertex, threshold graphs, strongly chordal graphs
and interval graphs, or even more generally dually chordal graphs.
For all these classes, the above Algorithm 1 is a linear-time
procedure for diameter computation on the corresponding split
subclass. We can compute the diameter of split graphs with
minimum degree one and dually chordal split graphs in linear time.
In particular, we can compute the diameter of interval split graphs
and strongly chordal split graphs in linear time.
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We say that G is clique-interval if there exists a total ordering over
K such that, for every v ∈ S , the vertices in NG (v) are
consecutive.

1 2 3 4

a b c d

Figure: An interval split graph that is not clique-interval.
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Proposition

A clique-interval split graph has diameter at most two if and only if
it has a universal vertex. In particular, we can compute the
diameter of clique-interval split graphs in linear time.
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I A graph G = (V ,E ) is called k-interval if we can map every
v ∈ V to the union of at most k closed interval on the real
line, denoted I (v), in such a way that
uv ∈ E ⇐⇒ I (u) ∩ I (v) 6= ∅. In particular, 1-interval graphs
are exactly the interval graphs. These definitions apply to any
graph. A k-interval split graph is a split graph that is
k-interval.

I A split graph G = (K ∪S ,E ) is called k-clique-interval if there
exists a total order over the maximal clique K such that, for
every v ∈ S in the stable set, NG (v) is the union of at most k
intervals. In particular, the 1-clique-interval split graphs are
exactly the clique-interval split graphs defined previously.

I We recall that already for k = 1, we observed in the previous
section that clique-interval split graphs and interval split
graphs are two overlapping subclasses.



Diameter computations in graphs, from practice to theory back and forth

Back to theory

A dichotomy theorem

I A graph G = (V ,E ) is called k-interval if we can map every
v ∈ V to the union of at most k closed interval on the real
line, denoted I (v), in such a way that
uv ∈ E ⇐⇒ I (u) ∩ I (v) 6= ∅. In particular, 1-interval graphs
are exactly the interval graphs. These definitions apply to any
graph. A k-interval split graph is a split graph that is
k-interval.

I A split graph G = (K ∪S ,E ) is called k-clique-interval if there
exists a total order over the maximal clique K such that, for
every v ∈ S in the stable set, NG (v) is the union of at most k
intervals. In particular, the 1-clique-interval split graphs are
exactly the clique-interval split graphs defined previously.

I We recall that already for k = 1, we observed in the previous
section that clique-interval split graphs and interval split
graphs are two overlapping subclasses.



Diameter computations in graphs, from practice to theory back and forth

Back to theory

A dichotomy theorem

I A graph G = (V ,E ) is called k-interval if we can map every
v ∈ V to the union of at most k closed interval on the real
line, denoted I (v), in such a way that
uv ∈ E ⇐⇒ I (u) ∩ I (v) 6= ∅. In particular, 1-interval graphs
are exactly the interval graphs. These definitions apply to any
graph. A k-interval split graph is a split graph that is
k-interval.

I A split graph G = (K ∪S ,E ) is called k-clique-interval if there
exists a total order over the maximal clique K such that, for
every v ∈ S in the stable set, NG (v) is the union of at most k
intervals. In particular, the 1-clique-interval split graphs are
exactly the clique-interval split graphs defined previously.

I We recall that already for k = 1, we observed in the previous
section that clique-interval split graphs and interval split
graphs are two overlapping subclasses.



Diameter computations in graphs, from practice to theory back and forth

Back to theory

A dichotomy theorem

A comparability graph is a graph that admits a transitive
orientation.

lemma

For every comparability split graph G = (K ∪ S ,E ), we can
compute in linear time a total order over K such that, for every
v ∈ S , NG (v) is the union of a prefix and a suffix of this order.
In particular, every comparability split graph is 2-clique-interval.
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Main Result.

We study the fine-grained complexity of diameter computations on
split graphs with bounded interval number. Our main finding is the
following dichotomy result :

Theorem

If G = (K ∪ S ,E ) is an n-vertex m-edge k-interval split graph and
a corresponding interval order is given then, we can compute the
diameter of G in time O(k2(m + 2O(k)n1+o(1))). This is quasi
linear-time if k = o(log n).
Conversely, under SETH we cannot compute the diameter of
n-vertex split graphs with interval number ω(log n) in subquadratic
time.
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Additional results

1. For complements of k-clique interval split graphs we can
compute the diameter in O(km)

2. Recognition of clique-interval split graphs can be done in
linear time.
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Open questions

1. Same dichotomy result for k-clique interval ?

2. Recognition of k-interval split graphs, for k > 2 ?

3. Recognition of k-clique-interval split graphs, for k ≥ 2 ?
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New results Soda 2020

Under the Strong Exponential-Time Hypothesis, the diameter of
general unweighted graphs cannot be computed in truly
subquadratic time. Nevertheless there are several graph classes for
which this can be done such as bounded-treewidth graphs, interval
graphs and planar graphs, to name a few.
We propose to study unweighted graphs of constant distance
VC-dimension as a broad generalization of many such classes –
where the distance VC-dimension of a graph G is defined as the
VC-dimension of its ball hypergraph : whose hyperedges are the
balls of all possible radii and centers in G .
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In particular for any fixed H, the class of H-minor free graphs has
distance VC-dimension at most |V (H)| − 1.
In SODA 2020, we show the following.

I Our first main result is a Monte Carlo algorithm that on
graphs of distance VC-dimension at most d , for any fixed k ,
either computes the diameter or concludes that it is larger
than k in time Õ(k ·mn1−εd ), where εd ∈ (0; 1) only depends
on d . We thus obtain a truly subquadratic-time parameterized
algorithm for computing the diameter on such graphs.

I Then as a byproduct of our approach, we get the first truly
subquadratic-time randomized algorithm for constant diameter
computation on all the nowhere dense graph classes. The
latter classes include all proper minor-closed graph classes,
bounded-degree graphs and graphs of bounded expansion.
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I Finally, we show how to remove the dependency on k for any
graph class that excludes a fixed graph H as a minor. More
generally, our techniques apply to any graph with constant
distance VC-dimension and polynomial expansion (or
equivalently having strongly sublinear balanced separators). As
a result for all such graphs one obtains a truly
subquadratic-time randomized algorithm for computing their
diameter.

We note that all our results also hold for radius computation. Our
approach is based on the work of Chazelle and Welzl who proved
the existence of spanning paths with strongly sublinear stabbing
number for every hypergraph of constant VC-dimension. We show
how to compute such paths efficiently by combining known
algorithms for the stabbing number problem with a clever use of
ε-nets, region decomposition and other partition techniques.
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Perspectives

I Improved the Soda results by avoiding the randomized aspects

I Back to practical with these new ideas

I New ! Compute shortest paths for race sailing
boats using the weather forecast (i.e., shortest
paths in huge temporal graphs).
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Algorithmic and experimental aspects

I (2-sweep) C. Magnien, M. Latapy, M. Habib, Fast
computation of empirically tight bounds for the diameter of
massive graphs, Journal of Experimental Algorithmics, 13
(2008).

I (IFub) P. Crescenzi, R. Grossi, M. Habib, L. Lanzi and A.
Marino, On Computing the Diameter of Real-World
Undirected graphs, Theor. Comput. Sci. 514 : 84-95 (2013).

I (Sumsweep) M. Borassi, P. Crescenzi, R. Grossi, M. Habib,
W. Kosters, A. Marino and F. Takes, Fast diameter and radius
BFS-based computation in (weakly connected) real-world
graphs : With an application to the six degrees of separation
games, Theor. Comput. Sci. 586 : 59-80 (2015).
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Algorithmic and experimental aspects II

I A probabilistic analysis of Sumsweep M. Borassi, P. Crescenzi,
L. Trevisan : An Axiomatic and an Average-Case Analysis of
Algorithms and Heuristics for Metric Properties of Graphs.
SODA 2017 : 920-939

I Algorithms with BFS certificates and a deterministic analyze
of Sumsweep F. F. Dragan, M. Habib, L. Viennot : Revisiting
Radius, Diameter, and all Eccentricity Computation in Graphs
through Certificates. CoRR abs/1803.04660 (2018).
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Examples of applications

I Application to computational geometry V. Chepoi, F. Dragan,
B. Estellon, M. Habib and Y. Vaxes : Diameters, centers, and
approximating trees of delta-hyperbolic geodesic spaces and
graphs, ACM Symposium on Computational Geometry, 2008 :
59-68.

I Application of IFUB to Facebook graph Paolo Boldi, Marco
Rosa, Sebastiano Vigna : Robustness of Social Networks :
Comparative Results Based on Distance Distributions. SocInfo
2011 : 8-21

I Application of Sum-sweep A. Naz, B. Piranda, J. Bourgeois,
S. C. Goldstein : Electing an Approximate Center in a Huge
Modular Robot with the k-BFS SumSweep Algorithm,
Conference : 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS 2018)
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Complexity aspects

I M. Borassi, P. Crescenzi, M. Habib, Into the Square : On the
Complexity of Some Quadratic-time Solvable Problems,
Electr. Notes Theor. Comput. Sci. 322 : 51-67 (2016).

I V. Chepoi, F. Dragan, M. Habib, Y. Vaxès and H. Alrasheed,
Fast Approximation of Centrality and Distances in Hyperbolic
Graphs, J. of Graph Algorithms and Applications 23(2) :
393-433 (2019).

I Guillaume Ducoffe, Michel Habib, Laurent Viennot, Fast
Diameter Computation Within Split Graphs, COCOA 2019 :
155-167.

I Guillaume Ducoffe, Michel Habib, Laurent Viennot : Diameter
computation on H-minor free graphs and graphs of bounded
(distance) VC-dimension, SODA 2020.
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Many thanks for your attention ! !
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