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What is a “mathematical knot” ?



Knots and Diagrams

- Knot: embedding of S — R3.
- Link: embedding of S* x ... x St — R3.

- Knot diagram: projection of the knot in the plane.

Two knots K7 and Ko are equivalent if “one can continuously deform the
space” to turn Kj into Ka.



Knot theory

Knot theory consists of designing techniques to tell non-equivalent
knots apart. — how can a computer help?



Knot theory

Knot theory consists of designing techniques to tell non-equivalent
knots apart. — how can a computer help?

Ex: recognising the trivial knot:




The “untangling” approach

Theorem (Reidemeister 1927)

Any two diagrams of the same knot/link can be connected by a
sequence of the following three | local || combinatorial | moves, called
Reidemeister moves:
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For a diagram with n crossings of the trivial knot:
Theorem (Lackenby 2015)

Their is a sequence of O(n'!) moves, adding at most O(n?) crossings,
that undo the diagram.
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For a diagram with n crossings of the trivial knot:

Theorem (Lackenby 2015)

Their is a sequence of O(n'!) moves, adding at most O(n?) crossings,
that undo the diagram. — UNKNOT RECOCNITION € NP.
Theorem (de Mesmay, Rieck, Segwick, Tancer 2019)

It is NP-hard to decide whether a diagram of the unknot can be undone
in k moves.
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The Jones polynomial of a knot K is a “polynomial” X(A) in A and A~%,
that is defined combinatorially on a knot diagram.
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The Jones polynomial

The Jones polynomial of a knot K is a “polynomial” X(A) in A and A~%,
that is defined combinatorially on a knot diagram.

- Does not depend on the diagram, i.e., depends only on the knot,
— just check invariance by Reidemeister moves:

\\/;\ Ii \i
XXt o

- Powerful at distinguishing non-equivalent knots, i.e., often
non-equivalent knots have different X polynomials,
- Conjectured to recognise the unknot.

- for the trivial knot: X(O) = 1. /)
- for the trefoil knot:

X(T)=A"* 4 A712 - 4716,




Recursive formula using Kauffman bracket

The Kauffman bracket of a knot K, (K):
- value for the unknot: (0) =1

'\/i‘/;/\, = 4 v\/>/:/<\/\, +a7 '\;\i\'

- recursive relation: D

- removing separated unknots: (O U L) = (=A% — A=2)(L)



Recursive formula using Kauffman bracket

The Kauffman bracket of a knot K, (K):
- value for the unknot: (0) =1

IX) = A v> </\’ + A1 v/\) |
. . \
- recursive relation: i KD REDY

- removing separated unknots: (O U L) = (=A% — A=2)(L)

(@ ) n crossings = 2"

N smoothings of the

knot.
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picture from [Li et al. 2016]
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Computational complexity

There is a 2°) times algorithm to compute the Jones polynomial of a
knot.

Theorem (Jaeger, Vertigan, Welsh 1990)

Computing the Jones polynomial of a link is #P-hard.



Computational complexity

There is a 2°) times algorithm to compute the Jones polynomial of a
knot.

Theorem (Jaeger, Vertigan, Welsh 1990)

Computing the Jones polynomial of a link is #P-hard.
Other interesting results:

Theorem (Freedman, Kitaev, Larse, Wang (2002), Aharonoyv,
Jones, Landau 2009)

Computing the Jones polynomial is exactly as hard as quantum
computing (i.e., BOP-complete).

approximability, evaluation at certain values, etc...
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Fast computation: Parameterised complexity



Bond carving decomposition of planar graphs

- System of Jordan curves, cutting the graph transversally,

- The width is the maximal number of intersections between a
Jordan curve and the graph edges.

The smallest possible width is the carving-width cw.
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Bond carving decomposition of planar graphs

- System of Jordan curves, cutting the graph transversally,

- The width is the maximal number of intersections between a
Jordan curve and the graph edges.

The smallest possible width is the carving-width cw.
Very close to graph tree-width.

[t can be computed in polynomial time on planar graphs.



Parameterized algorithm for Jones, intuition

Theorem (Makowsky, Marino 2003, M. 2019)

There is a 2°(") time algorithm to compute the Jones polynomial and
its generalisations (essentially all “quantum knot invariants”).

K Ko

k strands



Parameterized algorithm for Jones, intuition

Theorem (Makowsky, Marino 2003, M. 2019)

There is a 2°(") time algorithm to compute the Jones polynomial and
its generalisations (essentially all “quantum knot invariants”).

K Ko

k strands

By the planar separation theorem, cw & O(/n) for an n node planar
graph.
This gives a worst case 2°(V") time algorithm for the Jones polynomial,

and usually much better.



Parameterized complexity for quantum
invariants
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Penrose functor: Diagram — invariant
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Penrose functor: Diagram — invariant
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Penrose functor: Diagram — invariant
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Penrose functor: Diagram — invariant
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Penrose functor: Diagram — invariant
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Penrose functor: Diagram — invariant
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Penrose functor: Diagram — invariant
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Fixed parameter tractable algorithm



Hypothesis and degrees of freedom

Input: A knot diagram, coloured by objects of a ribbon category, with
bound carving decomposition.

e Fix a ribbon cat C: Restrict to free R-modules ; morphisms are matrices.
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Hypothesis and degrees of freedom

Input: A knot diagram, coloured by objects of a ribbon category, with
bound carving decomposition.

e Fix a ribbon cat C: Restrict to free R-modules ; morphisms are matrices.

[q% %] of knot K:

)

(K)ez
- knot coloured with a free Z[q% q %] module of dimension N,
called U,

- CUU U® U — U® Uisan (N* x N?)-matrix,
- Oy: U — Uisan (N x N)-matrix,

- etc.

Ex: coloured Jones polynomial Jy

e We are allowed ambient isotopies of the knot, as it does not change
the invariant.



Leaves of the carving decomposition

Isotope the link to get morphisms 1 — W

V. u vV U Voo
cvu v +\ ov , S
[
by« by by« by by = by«

- Four possibilities: two crossings, two twists.

- Constant number of matrix multiplications.



Merging morphisms at tree nodes |

Isotope the link to get morphisms 1 — W
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Merging morphisms at tree nodes Il

o Id , a . 5| 2 0 c b ~
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Slide strands under by isotopy — factorise with O(cw?) additional
matrices. [20]
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-it+j<cw,

- can assume k < cw /2.



Merging morphisms at tree nodes Il

-i+j<cw,

m - can assume k < cw /2.

‘ ‘ Operation (k times):

g1 v

Next — factorise the “U;-bridge”.
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Merging morphisms at tree nodes Il

iV W W
di ..U,
Ulv,,,ka UkAmAUl
g2
g1

Next — factorise dy, @...gu, and ga.

Operation:




Merging morphisms at tree nodes Il

U:Y ... YU

g1




Merging morphisms at tree nodes Il

<
=
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0¥ ... YU,

g1

Next — factorise h and g;.

Operation:

U

W




Merging morphisms at tree nodes Il
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Complexity

wW;

-i+j<cw,

- can assume k < cw /2.

- All op. are sparse matrix multiplications, of type: id ® M ® id.
- Matrices are all of size NO(%) x NO(W) a5 morphisms of type

Ui®.. -®UO(CW) - Vi®.. '®VO(CW)> with dim Ui,dim\/j <N.

- Can control the arithmetic complexity of operations in the ring R

(e.g. R =2[q%,q" ).



Complexity

Theorem

Fix a strict ribbon category C of Z[X, X~ ']-modules, and free modules
Vi,...,Vm € C of dimension bounded by N. The problem:

Quantum invariant at C, Vq, ..., Vp:
Input: m-components link L, presented by a diagram D(L),
Output: quantum invariant JS (V1,. .., Vi)

can be solved in
- O(poly(n) - N2 “") machine operations, with
- O(N“Y 4 n) memory words,

where n and cw are respectively the number of crossings and the
carving-width of the diagram D(L).

NB: cw = O(y/n) = sub-exponential algo.



Complexity

Theorem

Fix a strict ribbon category C of Z[X, X~ ']-modules, and free modules
Vi,...,Vm € C of dimension bounded by N. The problem:

Quantum invariant at C, Vq, ..., Vp:
Input: m-components link L, presented by a diagram D(L),
Output: quantum invariant JS (V1,. .., Vi)

can be solved in
- O(poly(n) - N2 “") machine operations, with
- O(N“Y 4 n) memory words,

where n and cw are respectively the number of crossings and the
carving-width of the diagram D(L).

NB: cw = O(y/n) = sub-exponential algo. Thank you!



