Some Computational Aspects of Knot Theory

Clément Maria

INRIA Sophia Antipolis-Méditerranée, FRANCE

CALDAM pre-conference school 2020

What is a "mathematical knot" ?

Knots and Diagrams

- Knot: embedding of $S^1 \to \mathbb{R}^3$.
- Link: embedding of $S^1 \times \ldots \times S^1 \to \mathbb{R}^3$.
- Knot diagram: projection of the knot in the plane.

Two knots K_1 and K_2 are **equivalent** if "one can continuously deform the space" to turn K_1 into K_2 .

Knot theory

Knot theory consists of designing techniques to tell non-equivalentknots apart. \longrightarrow how can a computer help?

Knot theory

Knot theory consists of designing techniques to tell non-equivalentknots apart. \longrightarrow how can a computer help?

Ex: recognising the trivial knot:

The "untangling" approach

Theorem (Reidemeister 1927)

Any two diagrams of the same knot/link can be connected by a sequence of the following three local combinatorial moves, called *Reidemeister moves*:

$$\frac{1}{2} \stackrel{}{=} \frac{1}{2} \stackrel{}{=} \frac{1}$$

For a diagram with *n* crossings of the trivial knot:

Theorem (Lackenby 2015)

Their is a sequence of $O(n^{11})$ moves, adding at most $O(n^2)$ crossings, that undo the diagram.

For a diagram with *n* crossings of the trivial knot:

Theorem (Lackenby 2015)

Their is a sequence of $O(n^{11})$ moves, adding at most $O(n^2)$ crossings, that undo the diagram. $\longrightarrow UNKNOT RECOGNITION \in NP$.

For a diagram with *n* crossings of the trivial knot:

Theorem (Lackenby 2015)

Their is a sequence of $O(n^{11})$ moves, adding at most $O(n^2)$ crossings, that undo the diagram. \longrightarrow UNKNOT RECOGNITION \in NP.

Theorem (de Mesmay, Rieck, Segwick, Tancer 2019)

It is NP-hard to decide whether a diagram of the unknot can be undone in k moves.

The Jones polynomial of a knot *K* is a "polynomial" X(A) in *A* and A^{-1} , that is defined combinatorially on a knot diagram.

- Does not depend on the diagram, i.e., depends only on the knot,

The Jones polynomial of a knot *K* is a "polynomial" X(A) in *A* and A^{-1} , that is defined combinatorially on a knot diagram.

Does not depend on the diagram, i.e., depends only on the knot,
→ just check invariance by Reidemeister moves:

The Jones polynomial of a knot *K* is a "polynomial" X(A) in *A* and A^{-1} , that is defined combinatorially on a knot diagram.

Does not depend on the diagram, i.e., depends only on the knot,
→ just check invariance by Reidemeister moves:

- Powerful at distinguishing non-equivalent knots, i.e., often non-equivalent knots have different *X* polynomials,

The Jones polynomial of a knot *K* is a "polynomial" X(A) in *A* and A^{-1} , that is defined combinatorially on a knot diagram.

Does not depend on the diagram, i.e., depends only on the knot,
→ just check invariance by Reidemeister moves:

- Powerful at distinguishing non-equivalent knots, i.e., often non-equivalent knots have different *X* polynomials,
- Conjectured to recognise the unknot.

The Jones polynomial of a knot *K* is a "polynomial" X(A) in *A* and A^{-1} , that is defined combinatorially on a knot diagram.

Does not depend on the diagram, i.e., depends only on the knot,
→ just check invariance by Reidemeister moves:

- Powerful at distinguishing non-equivalent knots, i.e., often non-equivalent knots have different *X* polynomials,
- Conjectured to recognise the unknot.
- for the trivial knot: X(O) = 1.
- for the trefoil knot: $X(T) = A^{-4} + A^{-12} - A^{-16}.$

Recursive formula using Kauffman bracket

The *Kauffman bracket* of a knot *K*, $\langle K \rangle$:

- value for the unknot:

$$\langle O \rangle = 1$$

- removing separated unknots: $\langle O \cup L \rangle = (-A^2 - A^{-2}) \langle L \rangle$

Recursive formula using Kauffman bracket

 $\langle O \rangle = 1$

 $\left(\sum_{i=1}^{n} A_{i}\right) = A_{i}\left(\sum_{i=1}^{n} A_{i}\right) + A^{-1}\left(\sum_{i=1}^{n} A_{i}\right)$

The *Kauffman bracket* of a knot *K*, $\langle K \rangle$:

- value for the unknot:
- recursive relation:

 $n \text{ crossings} \Rightarrow 2^n$ smoothings of the knot.

 $2^{O(n)}$ time algorithm

Computational complexity

There is a $2^{O(n)}$ times algorithm to compute the Jones polynomial of a knot.

Theorem (Jaeger, Vertigan, Welsh 1990)

Computing the Jones polynomial of a link is **#P-hard**.

Computational complexity

There is a $2^{O(n)}$ times algorithm to compute the Jones polynomial of a knot.

Theorem (Jaeger, Vertigan, Welsh 1990)

Computing the Jones polynomial of a link is **#P-hard**.

Other interesting results:

Theorem (Freedman, Kitaev, Larse, Wang (2002), Aharonov, Jones, Landau 2009)

Computing the Jones polynomial is exactly as hard as quantum computing (i.e., BQP-complete).

approximability, evaluation at certain values, etc...

Fast computation: Parameterised complexity

Bond carving decomposition of planar graphs

- System of Jordan curves, cutting the graph transversally,
- The width is the maximal number of intersections between a Jordan curve and the graph edges.

The smallest possible width is the carving-width cw.

Bond carving decomposition of planar graphs

- System of Jordan curves, cutting the graph transversally,
- The width is the maximal number of intersections between a Jordan curve and the graph edges.

The smallest possible width is the carving-width cw.

Very close to graph *tree-width*.

Bond carving decomposition of planar graphs

- System of Jordan curves, cutting the graph transversally,
- The width is the maximal number of intersections between a Jordan curve and the graph edges.

The smallest possible width is the carving-width cw.

Very close to graph *tree-width*.

It can be computed in polynomial time on planar graphs.

Parameterized algorithm for Jones, intuition

Theorem (Makowsky, Marino 2003, M. 2019)

There is a $2^{O(cw)}$ time algorithm to compute the Jones polynomial and its generalisations (essentially all "quantum knot invariants").

Parameterized algorithm for Jones, intuition

Theorem (Makowsky, Marino 2003, M. 2019)

There is a $2^{O(cw)}$ time algorithm to compute the Jones polynomial and its generalisations (essentially all "quantum knot invariants").

By the planar separation theorem, $cw \in O(\sqrt{n})$ for an *n* node planar graph.

This gives a worst case $2^{O(\sqrt{n})}$ time algorithm for the Jones polynomial, and usually much better.

Parameterized complexity for quantum invariants

 $f: V_1 \otimes \ldots \otimes V_n \to W_1 \otimes \ldots \otimes W_m$

 $f \otimes g: V_1 \otimes \ldots \otimes V_p \to W_1 \otimes \ldots W_q$

 V_p

 $f \otimes g: V_1 \otimes \ldots \otimes V_p \to W_1 \otimes \ldots W_q$

$$V \ \stackrel{\frown}{\Box} \doteq \operatorname{id}_V \colon V \to V \qquad V \ \stackrel{\frown}{\Box} \doteq \operatorname{id}_{V^*}$$

15

$$V \ \ \dot{\Box} \doteq \mathrm{id}_V : V \to V \qquad V \ \ \dot{\Box} \doteq \mathrm{id}_{V^*}$$
$$V \ \ \dot{\Box} \doteq \mathrm{id}_{V^*}$$

 $f \otimes g: V_1 \otimes \ldots \otimes V_p \to W_1 \otimes \ldots W_q$

$$V \ \begin{array}{c} \downarrow \doteq \operatorname{id}_{V} : V \to V \qquad V \ \begin{array}{c} \downarrow \doteq \operatorname{id}_{V^{*}} \\ V \ \begin{array}{c} \downarrow \end{pmatrix} = \operatorname{id}_{V^{*}} \\ V \ \begin{array}{c} \downarrow \end{array} = \operatorname{id}_{V^{*}} \\ V \ \end{array} =$$

Fixed parameter tractable algorithm

Input: A knot diagram, coloured by objects of a ribbon category, with bound carving decomposition.

• Fix a ribbon cat C: Restrict to free *R*-modules ; morphisms are matrices.

Input: A knot diagram, coloured by objects of a ribbon category, with bound carving decomposition.

• Fix a ribbon cat C: Restrict to free *R*-modules ; morphisms are matrices.

Input: A knot diagram, coloured by objects of a ribbon category, with bound carving decomposition.

• Fix a ribbon cat C: Restrict to free *R*-modules ; morphisms are matrices.

<u>Ex</u>: coloured Jones polynomial $J_N(K) \in \mathbb{Z}[q^{\frac{1}{2}}, q^{-\frac{1}{2}}]$ of knot K:

- knot coloured with a free $\mathbb{Z}[q^{\frac{1}{2}}, q^{-\frac{1}{2}}]$ -module of dimension *N*, called *U*,

Input: A knot diagram, coloured by objects of a ribbon category, with bound carving decomposition.

• Fix a ribbon cat C: Restrict to free *R*-modules ; morphisms are matrices.

- knot coloured with a free $\mathbb{Z}[q^{\frac{1}{2}}, q^{-\frac{1}{2}}]$ -module of dimension *N*, called *U*,
- $c_{U,U}^{\pm 1}$: $U \otimes U \to U \otimes U$ is an $(N^2 \times N^2)$ -matrix,

Input: A knot diagram, coloured by objects of a ribbon category, with bound carving decomposition.

• Fix a ribbon cat C: Restrict to free *R*-modules ; morphisms are matrices.

- knot coloured with a free $\mathbb{Z}[q^{\frac{1}{2}}, q^{-\frac{1}{2}}]$ -module of dimension *N*, called *U*,
- $c_{U,U}^{\pm 1}$: $U \otimes U \to U \otimes U$ is an $(N^2 \times N^2)$ -matrix,
- θ_U : $U \rightarrow U$ is an $(N \times N)$ -matrix,

Input: A knot diagram, coloured by objects of a ribbon category, with bound carving decomposition.

• Fix a ribbon cat C: Restrict to free *R*-modules ; morphisms are matrices.

- knot coloured with a free $\mathbb{Z}[q^{\frac{1}{2}}, q^{-\frac{1}{2}}]$ -module of dimension *N*, called *U*,
- $c_{U,U}^{\pm 1}$: $U \otimes U \to U \otimes U$ is an $(N^2 \times N^2)$ -matrix,
- $\theta_U : U \to U$ is an $(N \times N)$ -matrix,
- etc.

Input: A knot diagram, coloured by objects of a ribbon category, with bound carving decomposition.

• Fix a ribbon cat C: Restrict to free *R*-modules ; morphisms are matrices.

<u>Ex</u>: coloured Jones polynomial $J_N(K) \in \mathbb{Z}[q^{\frac{1}{2}}, q^{-\frac{1}{2}}]$ of knot K:

- knot coloured with a free $\mathbb{Z}[q^{\frac{1}{2}}, q^{-\frac{1}{2}}]$ -module of dimension *N*, called *U*,
- $c_{U,U}^{\pm 1}$: $U \otimes U \to U \otimes U$ is an $(N^2 \times N^2)$ -matrix,
- $\theta_U : U \to U$ is an $(N \times N)$ -matrix,
- etc.

• We are allowed ambient isotopies of the knot, as it does not change the invariant.

Leaves of the carving decomposition

Isotope the link to get morphisms $\mathbb{1} \to W$:

- Four possibilities: two crossings, two twists.
- Constant number of matrix multiplications.

Isotope the link to get morphisms $\mathbb{1} \to W$:

Slide strands under by isotopy \longrightarrow factorise with $O(cw^2)$ additional matrices.

-
$$i+j \leq cw$$
,

- can assume $k \leq cw/2$.

-
$$i+j \leq cw$$
,

- can assume $k \leq cw/2$.

Operation (k times):

Next \rightarrow factorise the "U_i-bridge".

Next \rightarrow factorise $d_{U_1 \otimes ... \otimes U_k}$ and g_2 .

Next \rightarrow factorise *h* and *g*₁.

- All op. are sparse matrix multiplications, of type: $id \otimes M \otimes id$.

- All op. are sparse matrix multiplications, of type: $id \otimes M \otimes id$.
- Matrices are all of size $N^{O(cw)} \times N^{O(cw)}$, as morphisms of type

 $U_1 \otimes \ldots \otimes U_{O(\mathrm{cw})} \to V_1 \otimes \ldots \otimes V_{O(\mathrm{cw})}, \text{ with } \dim U_i, \dim V_j \leq N.$

- All op. are sparse matrix multiplications, of type: $id \otimes M \otimes id$.
- Matrices are all of size $N^{O(cw)} \times N^{O(cw)}$, as morphisms of type

 $U_1 \otimes \ldots \otimes U_{O(\mathrm{cw})} \to V_1 \otimes \ldots \otimes V_{O(\mathrm{cw})}, \text{ with } \dim U_i, \dim V_j \leq N.$

- Can control the arithmetic complexity of operations in the ring *R* (e.g., $R = \mathbb{Z}[q^{\frac{1}{2}}, q^{-\frac{1}{2}}]$).

Theorem

Fix a strict ribbon category C of $\mathbb{Z}[X, X^{-1}]$ -modules, and free modules $V_1, \ldots, V_m \in C$ of dimension bounded by N. The problem:

Quantum invariant at C, V_1, \ldots, V_m : **Input**: *m*-components link *L*, presented by a diagram D(L), **Output**: quantum invariant $\int_L^C (V_1, \ldots, V_m)$

can be solved in

- $O(\text{poly}(n) \cdot N^{\frac{3}{2} \text{ cw}})$ machine operations, with
- $O(N^{cw} + n)$ memory words,

where n and cw are respectively the number of crossings and the carving-width of the diagram D(L).

NB: $cw = O(\sqrt{n}) \Rightarrow$ sub-exponential algo.

Theorem

Fix a strict ribbon category C of $\mathbb{Z}[X, X^{-1}]$ -modules, and free modules $V_1, \ldots, V_m \in C$ of dimension bounded by N. The problem:

Quantum invariant at C, V_1, \ldots, V_m : **Input**: *m*-components link *L*, presented by a diagram D(L), **Output**: quantum invariant $\int_L^C (V_1, \ldots, V_m)$

can be solved in

- $O(\text{poly}(n) \cdot N^{\frac{3}{2} \text{ cw}})$ machine operations, with
- $O(N^{cw} + n)$ memory words,

where n and cw are respectively the number of crossings and the carving-width of the diagram D(L).

NB: $cw = O(\sqrt{n}) \Rightarrow$ sub-exponential algo. Thank you!