Fundamentals of Vehicle Dynamics

ME5670

Lecture 1-2

Thomas Gillespie, “Fundamentals of Vehicle Dynamics”, SAE, 1992,
http://www.me.utexas.edu/~longoria/\VVSDC/clog.html

http://www.slideshare.net/NirbhayAqgarwal/four-wheel-steering-system

Class timing
Monday: 14:30 Hrs — 16:00 Hrs
Thursday: 16:30 Hrs —17:30 Hrs


http://www.me.utexas.edu/~longoria/VSDC/clog.html

A two-axle vehicle in acc;cle_r:ltion
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Free Body Diagram

. Instantaneous Velocity
‘ Heading Angl " x Projected
. Course Angl

{Positive) Vehicle Path
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1. Vehicle fixed co-ordinate system: 1. Earth fixed co-ordinate system:
It is defined with reference to a Vehicle altitude and trajectory
right-hand orthogonal coordinate through the course of a maneuver
system which originates at CG are defined with respect to a right-
and travels with the vehicle hand orthogonal axis system fixed
on the earth.
X — forward
y- lateral X — Forward travel
7- downward Y - Travel to the right
p- roll velocity Z - \ertical travel (+ downward)
g- pitch velocity i) - Heading angle
R — yaw velocity v - Course angle

S — Sideslip angle



Physical Quantities

1. Euler angles:

The vehicle fixed co-ordinate system is related to the earth fixed co-ordinate system
through the Euler angles.

Euler angles are defined the by the sequence of three angular rotations

- Beginning with the earth fixed system,
the axis system is first rotated about the z axis (yaw)

- It then rotates about the y-axis (pitch)

- Finally, it rotate about the x-axis (roll) to line up with the vehicle fixed co-ordinate
system.

The order of the rotation is strictly adhered to get the resultant altitude

2. Forces and moments: ﬁwx
E
Z Ty

Forces and moments are normally defined as they act on the vehicle.
The positive sign of longitudinal, vertical and moment in that plane is given by

3. Equilibrium condition:

- Translational systems: ). E, = Ma,; ). F, = Ma,
- Rotational systems: > T, = I,ya,,



Dynamic Axle Loads

1. Dynamic axle loads on a vehicle under arbitrary condition

It is an important step in analysis of acceleration and braking performance because
the axle loads determine the tractive effort obtainable at each axle.

- acceleration
- gradeability
- maximum speed

Forces:

W=mg =weight @ C.G.
We= Weight @front wheel
W,.= Weight @rear wheel
F,s=Traction force at front
E..=Traction force at rear
R, r=Rolling resistance at front

R,.-= Rolling resistance at rear

D= Aerodynamic load acting on the body at h,
R, ,=\ertical load under towing condition
R;,,= Longitudnal load under towing condition




Computing Dynamic Axle Loads

Load carried on each axle will consist of a static component, plus load transferred from
front to rear due to the other forces acting on the vehicle.

Load on the front axle is found by taking net moment about the point A under the rear tires

Under no acceleration in pitch and taking clockwise direction as positive:

w
W¢L + Dyhg + ?axh + Ry, hyp + Ry, dp + Whsin® — Wccos® =0

For uphill altitude: © = +ve
For downhill altitude: ©® = -ve

W, can be obtained by solving the above equation
Similarly, W,. can be obtained by taking the moment about B under the front wheel.

W= (W ¢ cos © - Rhy i - Rpzdp - % axh - Dy hy- Whisin ©)/L

wr=(wbcosmnhxhﬂﬁhz(dh+L)+%axh+naha+wmna)n



AxXxle Load under Different Conditions

1. Static loads on Level Ground: When the vehicle sits statically on level ground.
=> G):O, th:O; ha = 0; a, = O; DA =0

Axle loads: WfS=WE Wrﬁ“’%

2. Loads on Grades: The influence of grade on axle loads.

Grade is defined as the “rise” over the “run”.
The ratio of rise over the run is the tangent of the grade angle ©

The common grades on interstate highways are limited to 4%
On primary and secondary roads, they are limited to 10-12 %

For small grade angle: sin ®~0 and cos ©~1
We=WE-1oy=wg-whe
Axle loads: =W L =W Wi

We=WP+ P o)=w+wheo

Positive grade causes load to be transferred from the front to the rear axle.



Absolute Motion of a Particle

» Consider two frames of reference, a fixed frame XY and a rotating frame Oxy with
angular velocity w

« Let P be a particle moving the plane of the figure and having position vector r w.r.t.
both the frames, however, its rate of change will depend on the selected frame of
reference.

o POSition Fp =Tp+r

* \elocity Vp=TFg+TF=vg+r

[ = Vo] + @ % T

Vp, = Vg + @ X T+ Vg

* Acceleration ay =Fp+t=ay+r
x} F=Vel +@®@XT+®XT
« For any vector A expressed w.r.t. a using Viel = arel + @ X Vrel
rotating frame, its absolute change we get
IS given by F =l L0 X Ve @ XT+@ % (Ve +@XT)

—@Xr+wx(@xr)+ 20X Ve + gl
dA aA

E=a-]rﬂ+mxﬁ

a,=a9+® X T+ x (W xT)+ 20 X V| + A




Example

Example: Karnopp and Margolis P1.11

(cf. Karnopp & Margolis,

Figure P1.11 shows the top view of a vehicle that has mass m and ¢.g. moment  egs. 1.18)

of inertia about the axis out of the page, [,. The center of gravity is located a7 _7 L 5 R

distance @ from the front axle and a distance b from the rear axle. The half- " "

width of the vehicle is w/2. The front wheels can be stieered, indicated by the A, =A, +Qx R+ﬁ><(f_l>< ﬁ]

steer angle 3. A body-fixed coordinate frame is artached o the vehicle at its

center of gravity and aligned as shown. The bady-fixed velocity components

ot the center of gravity and the yaw angular velocity are indicated.

(a) Using arrows and symbols, transfer the ¢.g. velocity 1o bedy-hixed direc-
tions at the four whaels.

(b) If each wheel is constrained to have no velocity perpendicular to the plane
of the wheel, state the kinematic constraints for cach wheel.

Vehicle has mass, s oand ¢.g.

maament of mertia, _|"z
L
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Example

Velocity diagram at different wheels of a given configuration

T
o

X

Under the condition of no side forces on the wheels

- W . - .
(v, +aw)coso—(v, +?ml.~:m o =0 at the front/right

(v, +aw)coso—(v, — %m_min o =0 at the front/left

—

v, —bw=0 at the rear/right
v, —bw=0 at the rear/left




Example

* If the given velocities are prescribed w.r.t. the earth co-ordinate system

aw

W

* Under the condition of no side forces on the wheels

- - N - “‘ a - = &
vy COS(B+ ) +awcosd —v, sin(f+0)— — @sin 0 =0 at the front/right

—_—

v, COS(6+ )+ awcosd —v, sin(f +0) + %wsin O =0 at the front/left

v, COS @—bw—v, sinf =0 at the rear/right
v, Cos @—bw—v, sinf =0 at the rear/left



Practice Problem

Find out the velocity components at each wheel. Also mention the condition for no
sideways force on each wheel for the following vehicle carrying a trailer. Assume
required physical quantity.

i
¥

Yehicle has mass, moand ¢.g.
moment of inerta, [,

Trailer has mass, m,
and c.g. moment of
imerti, [

W



Equation of Motion

* For arigid body as shown in figure below, lets define the body fixed co-ordinate as

shown below

Q (Axes)

w (Body)

Define: p=mv (translational momentum)

Then: (d—pJ =(@J +QXp
\df Xyz dt Xz

With v relative to rotating frame.

Newton’s law: (d_p) -F
dt )y

Equation of motion for 6 DOF (3 trans. And 3 rot.)

+QXp T:@ +Qxh

dt

F=<P

Cdt

xyz xyz
T.=h +Qh —Qh,
T,=h,+Qh —Qnh

T.=h + Q.h,—Q h,

Fo=p+Q,p.—Qp,
F,=p,+Q. p —Q p,
F.=p,+Q . p,—Q p

xy yIx



Equation of Motion

» State space for of the equations  Example: Reduce the 6 DOF
system to 1 DOF for the following
problem

) =F.—-Q p.+Q_p, _ LTI
AR —

pt X y A B e
_ &
p .

-z = FZ_QIP_\’ +Q}‘pr I % ‘ L ]

X
>

}:'!.r = Tr o Q}h” + szz)-‘
h =T,-Qh +Qh
h, =T —Q.h +Q h

The terms which are not eligible can
be neglected



Solution

Assuming no pitch, no roll, no yaw

F-2p.+8.p, h=0=T,—h +,fi;'h},

0= _gp +9/P . }%}3:0:?}_%&1{ +}th3‘
OZFE_xPF_F%px h=0=T -~ h +QJi

About CG:

]

|I

-1

LD F =0=-W, -W +W

N CJFZT;: =0=-W1,+W I, +uW, h

1 1 W, W [,—uh [,
fl= = W, = 2 M Wand W = W
=, L—uh||W 0 L—uh L—uh

These two equations give two equations, two unknowns. Solve for the unknown forces, then

apply to x-direction translational equation to find rate of change of forward velocity
(acceleration).




Example

Find the weight distribution in a three-wheeled vehicle on level ground under static condition

Front of vehicle
Top view —

. Taking moment about R-R axis

| !

! -~ _ 9

: +CCW’ZTR =0 =F,L-WI, = F, _EW
Taking moment about C-C axis

reew > T, =0 =+We+F,d—Fpd

‘ e
:’{.FRR_FLR):EW

Taking moment about F-F axis

+cew D> T =0 =+ Wl —(Fpp + Fip )L

‘ ) [
jtFHR—i_FLH):ElW
FBD 2 1

< L —> Solving for the rear axle forces
G
( W (L e \W
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Example

Find the deceleration which would cause the tipping condition about the front wheel A?

Solution: Tipping at the front wheel Ng, Fg ——> 0

ZMA=ma><d

mg (25 cos 10° — 36 sin 10°) = ma (36)

[ | .
& \ TERE
\

a =0.510g

Deceleration of more than 0.510g will lead to
Tipping condition




Practice Problem 2

Generate the animation for the path of a moving vehicle?




Importance of Sliding and Rolling Friction




Sliding and Rolling Friction

Sliding: Concept of static and kinetic (sliding friction)
1. Dry friction occurs between the contacting surfaces of bodies when
there is no lubricating fluid.
2. Assumptions
* Rough horizontal surface which is no n-rigid or deformable
« Moving block having weight W is considered to be rigid
» Block is pulled by a horizontal pulling load P

W
e l Microscopic observation!

!’ -5 — AF, AF,  AF,

-------

AN, AN, AR. AR

Block weight =W Normal force=AN,, Normal force and
Frictional force are
Pulling load =P Frictional force=AF, non-uniform



Friction in a Nutshell

« Fisastatic frictional force if equilibrium is maintained.

« Fis a limiting static frictional force F, when it reaches a
maximum value needed to maintain static equilibrium,

» Fisakinetic frictional force F, when sliding occurs at
the contacting surfaces.

¥
I NO motion Mouon
|

A

!
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Force Analysis of Rolling Body

* Resultant of distributed normal force

» To keep the cylinder in equilibrium, all the forces must be concurrent.

» Resultant force will pass through the center and making an angle
W of e with vertical

« Taking a moment about A, we get

Wa = Prcos @
Assuming small e, cos (e) = 1

Waq~ pr ) P~—

The distance a is termed as the coefficients of rolling resistance
having the dimension of length.

Resisting torque: T = Na



Examples

Example: Wheel being pulled in pure roll

A homogeneous wheel of radius R and mass m is initially at rest on a rough horizontal
surface. An external force F is applied at the top rim of the wheel as shown. Assuming the
wheel rolls without sliding, find the magnitude and direction of the static friction force

Solution: Assuming static force, we get

<
r p.=mv =mx=F—-F,
X p.=mv_=N-W=0
h,=J@,=J8=FR+FR
m,J - : |

Since the cylinder rolls without sliding
x=R6 (or,v_=R6)
RO=F-F .
" : smR”
J8=R(F+F) mR

(F-F) =R(F+F,)

(F-F) =2(F+F,) :>F_¢:—11F

Since, Fis less than Fs, slip condition is valid. However, the sign should be opposite




Examples

Example: Wheel rolling down the incline with friction

A homogeneous wheel of radius R and mass m moves down an incline with inclination a.
Find the angle a for which the wheel moves without sliding (or skidding).

_tz Solution: When the wheel rolls without sliding (or slip),
m,J / ;i\
.' Hﬁ\- \ F <u,N = u,mgcosa
2 | R jﬁ"'““-n.r Equations of motion are:

p,=mv.=mx=mgsina—F
p.=mv.=mz=N-W=N-mgcosa=0

h,=Jo,=J6=FR

If the wheel rolls without slip, we also have x=R&

B . |- .2
:.mrzmgmna—;mr :>.r=;g:~:.1na

1
l * —l Yy = — 1 ra = CO5
;“""a‘:ﬁﬁ < 1, = .~ F= Mk =2 mgsing <y N = [,mgcosd

Defines the no-slip condition for o.

)




Practice Problem

Example: Wheel rolling down the incline with friction

A homogeneous wheel of radius R and mass m moves down an incline with inclination a.
Find the angle a for which the wheel moves without sliding (or skidding).

m,J .- /H_f\
& R TN

4 -
oy
\

Defines the no-slip condition for o.

1
—%mn o<l < U,

F<uN=(,mgcosa
Equations of motion are:
p,=mv.=mx=mgsina—F
p.=mv.=mz=N-W=N-mgcosa=0
h,=Jo, =J6=FR

If the wheel rolls without slip, we also have

l 7

CLMX = mg 5ina—;n1f —X :%g sina

) =~

| : e
oF=—mi =—mgsina <y N =,mgcosdc
2 3

Solution: When the wheel rolls without sliding (or slip),

x=R¢#



Practice Problem

Example : Show that when the wheel rolls down the incline with sliding, x >re

Example: finding reaction forces for two-axle vehicle in maximum acceleration

A two-axle vehicle with mass, m,, at center G. is In maximum T

acceleration state. Find expressions for the total normal forces 3
at the front and rear pairs of wheels, N and N, respectively. G, _I )
. AT

Assume the mass of the wheels is small compared with the
2 i l,—>—1I,
between the road and the rear driving wheels 1s g

total mass of the car. and that the coefficient of static friction

Example Solving for acceleration of powered mower for a given friction

The rear-wheel-drive lawn mower, when placed
into gear while at rest, is observed to momentar-
ily spin its rear tires as it accelerates. If the co-
efficients of friction between the rear tires and
the ground are p, = 0.7 and p, = 0.5, determine
the forward acceleration a of the mower. The
mass of the mower and attached bag is 50 kg with
center of mass at (. Assume that the operator
does not push on the handle, so that P = 0.

} 215 mm




