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Abstract

Microelectromechanical systems (MEMS) based cantilever beams have been widely used
in various sensing applications. Previous studies have aimed at increasing the sensitivity
of biosensors by reducing the size of cantilever beams to nanoscale. However, the influence
of non-uniform cantilever beams on mass sensitivity has rarely been investigated. In this
paper, we discuss the mass sensitivity with respect to linear and nonlinear response of non-
uniform cantilever beam with linear and quartic variation in width. To do the analysis, we
use the nonlinear Euler-Bernouli beam equation with harmonic forcing. Subsequently, we
derive the mode-shape corresponding to linear, undamped, free vibration case for different
types of beams with a tip mass at the end. After applying the boundary conditions, we
obtain the resonance frequencies corresponding to various magnitude of tip mass for differ-
ent kinds of beams. To do the nonlinear analysis, we use the Galerkin approximation and
the Method of Multiple Scales (MMS). Analysis of linear response indicates that the non-
dimensional mass sensitivity increases considerably by changing the planar geometry of the
beam as compared to uniform beam. At the same time sensitivity further increases when
the non-uniform beam is actuated in higher modes. Similarly, the frequency shift of peak
amplitude of nonlinear response for a given non-dimensional tip mass increases exponen-
tially and decreases quadratically with tapering parameter, α, for diverging and converging
non-uniform beam with quartic variation in width respectively. For the converging beam,
we also found an interesting monotonically decreasing and increasing behavior of mass sen-
sitivity with tapering parameter α giving an extremum point at α = 0.5. Overall analysis
indicates a potential application of the non-uniform beams with quartic converging width
for biomass sensor.

1 Introduction

Performance of most of the microelectromechanical systems (MEMS) and nanoelectromechanical
systems (NEMS) based resonant sensors and actuators are dependent on their linear and nonlin-
ear dynamic characteristics near their resonance frequency [1, 2, 3, 4, 5, 6, 7, 8]. To detect the
presence of bio-molecules, cantilever based resonant MEMS mass sensors are extensively used.
To increase the sensitivity and resonance frequency, previous attempts have resorted to reducing
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the dimension of beams. At the same time, most of the resonators proposed till date employ
either uniform cantilever beam or uniform clamped-clamped beam as the vibrating element. In
this paper, we propose another class of beams with non-uniform section which has a tremendous
ability to increase the resonance frequency.

There have been several studies associated with the linear and nonlinear studies of uniform
beams [6, 7, 9, 10, 11] as well as non-uniform beams [12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22]
for various application in vibrations and acoustics. Mabie and Roger [13] studied the vibrations
of cantilever beams with linearly tapered thickness by obtaining the solution in terms of known
Bessel functions and linearly tapered width using numerical integration. At the same time double
tapered cantilever beams have been studied by Mabie et al. [14] and Lau [15] with tip mass,
again by obtaining the mode shape in terms of known Bessel functions. Additionally, beam
with special cases of tapering have been studied by obtaining the solution in terms of the Bessel
Function by Auciello et al. [16], and hypergeometric functions by Wang [17]. William et al. [18]
has studied the influence of symmetrically linear and parabolic tapered sections on the resonance
frequency of axially loaded beams. Abrate [19] solved the linear governing equation for special
type of non-uniform width which can be transformed into equivalent equation of uniform beam.
Recently, Wang [20] has numerically obtained the frequency of a tapered cantilever beam of
constant thickness and linearly tapered width. Anderson et al. [9] carried out an experimental
and theoretical investigation of nonlinear planar responses of parametrically excited cantilever
beams. The same authors also studied experimentally both transverse and planar nonlinear
responses of cantilever beams [10]. These studies were however without any tip masses. To
further improve the performance of cantilever based mass sensor, Kim et al [6] analyzed the
nonlinear response of a uniform cantilever beam based mass sensor with added mass considering
both geometrical as well as inertial nonlinearities. A close examination of the above studies reveal
that many of them include the investigation of linear frequency of beam with tapered thickness
[13] and the beam with both linearly tapered thickness and width [14, 15]. However, analytical
solutions of beams with varying width alone are limited, perhaps, due to the difficulties in
obtaining the exact form of the solution in this case. Moreover, nonlinear analysis corresponding
to non-uniform beams with tip masses has not been investigated. Recently, we have developed
an analytical model to analyze the influence of non-uniformity on the pull-in voltage and linear
frequency at different DC bias of non-uniform cantilever beam without any tip mass [21].

In this paper, we deal with the linear and nonlinear frequency characteristics of non-uniform
cantilever beam with tip mass as shown in Fig. 1. To perform nonlinear analysis, we use the
Method of Multiple Scales (MMS) to obtain the approximate solution. To analyze the influence
of tapering on the mass sensitivity corresponding to linear and nonlinear response of non-uniform
beam with different types of tapering, we use generalized governing equation for non-uniform
beam from our previous work Ref. [21] with tip mass condition. To validate the analytical model
with tip mass, we compare results with the available models and the finite element model using
ABAQUS. The analysis presented in the paper can prove to be a step forward towards employing
non-uniform beams in order to achieve high sensitivity in MEMS sensors.
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2 Mathematical Theory

2.1 Governing Equation and Linear Frequency

To develop the analytical model, we use the nonlinear Euler beam equation governing the trans-
verse vibration of a non-uniform cantilever beam with sinusoidal forcing given by [21].

ρA(x)ẅ − EI(x)(w
′′
)3 + w

′
ρA(x)

∫ x

0

(w′ẅ′ + ˙(w
′
)2)dx

+w′(EI(x)w′′w′)′′ + (EI(x)w′′)′′ + cẇ = Q(t) (1)

where, c is the viscous damping coefficient, Q(t) = F sin(Ωt) is the uniformly applied load as
shown in Fig. 1, and over-dots and over-dash refer to differentiation with respect to time and
space, respectively. Using the non-dimensional parameters

x∗ =
x

L
, w∗ =

w

L
, t∗ =

t

(L2

√
ρA0

EI0
)
, f1(x) =

EĨ(x)

EI0

, f2(x) =
ρÃ(x)

ρA0

, (2)

such that EI(x) = EI0 + EĨ(x) = (1 + f1(x))EI0, ρA(x) = ρA0 + ρÃ(x) = (1 + f2(x))ρA0,
where, I0 and A0 are the area moment of inertia and cross sectional area at the fixed end of the
cantilever beam respectively, we get the equivalent non-dimensional governing equation as (after
dropping ∗ for convenience)

(1 + f2(x))ẅ + ((1 + f1(x))w
′′
)
′′ − (1 + f1(x))(w

′′
)3 + (1 + f2(x))w

′ ×∫ x

0

((ẇ
′
)2 + w

′
ẅ

′
)dx+ c1ẇ + w

′
((1 + f1(x))w

′′
w

′
)
′′ − L3F

EI0

sin(Ωt) = 0. (3)

The corresponding boundary conditions with added tip mass can be written as

w(0, t) =
∂w(x, t)

∂x

∣∣∣∣∣
x=0

= 0,
∂2w(x, t)

∂x2

∣∣∣∣∣
x=1

= 0,
∂

∂x

(
1 + f1(x)

∂2w(x, t)

∂x2

)∣∣∣∣∣
x=1

= µ
∂2w(1, t)

∂t2
(4)

where, µ = m
ρA0L

, m is the added tip mass and c1 = cL2
√
ρA0EI0

.

In order to find the linear undamped mode shape, we remove the nonlinear and damping terms
of Eqn. (3) to obtain the linear governing equation for transverse vibrations, wnu, of non-uniform
beams. Since, the exact analytical solution of the resulting equation for a beam with tapered
width is difficult to obtain, we introduce a function σ(x) and convert equation for non-uniform
equation to an equivalent equation for a uniform beam in terms of wu = σwnu as described in [19,
21]. By equating the coefficients of non-uniform and uniform equations, we find the expression
of σ(x), where, the higher derivative terms of σ such as σ

′′′′
, σ

′′′
, are either zero or negligible.

We use the single mode approximation as wu(x, t) = φu(x)η(t) and wnu(x, t) = φnu(x)η(t), where
φu and φnu are the mode shapes for uniform and non-uniform beams, respectively to obtain
the resulting equation. The solution of this equation gives the modeshape which is solved with
boundary condition from Eqn. (4) to obtain the modal frequencies and mode shapes for different
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types of beams. For a uniform beam, (σ(x) = 1) the modeshape after applying the boundary
conditions is

φu(x) = A1

[
Λ

(
(2 cos(β) cosh(β)βµ+ cos(β) sinh(β) + sin(β) cosh(β)) sin(βx)

+(2 cos(β) sinh(β)βµ+ 1 + cos(β) cosh(β) + sinh(β) sin(β)) cosh(βx)

−(2 cos(β) cosh(β)βµ+ cos(β) sinh(β) + sin(β))

× cosh(β) sinh(βx)

)
+ cos(βx)

]
(5)

where, Λ =
[
− sin(β)

(
2βµ cosh(β) + sinh(β)

)
+ cos(β) cosh(β) + 1

]−1

and µ is the tip mass

parameter. The modeshape is dependent on the tip mass µ. The value of constant A1 can be
found by normalizing the modeshape using the relation

∫ 1

0
φ2dx = 1.

Using similar methodology, we obtain the modeshape for non-uniform beams which effectively
becomes φnu = φu(x)

σ(x)
, where, σ(x) is a function which captures the non-uniform effect in mode

shape [21]. For a beam with linear variation in width, σ(x) =
√

1 + αx and for quartic variation
in width, σ(x) = (1 + αx)2. The boundary conditions given in Eqn. (4) are applied on the
modeshape φnu(x) to obtain the corresponding frequency equations. Subsequently, the frequency
equation is solved numerically to obtain the different frequencies of the beams. Tables 1, 2 and
3 present the first three frequencies of uniform and non-uniform beams.

2.2 Modal Dynamic Equation

After obtaining the mode shapes corresponding to different tapered beams, we obtain the modal
dynamic equation from Eqn. (3) to analyse the tapering effect on the nonlinear frequency re-
sponse. Approximate the transverse deflection w(x, t) by a single mode as w(x, t) = φ(x)η(t),
where φ(x) is the linear undamped modeshape and η(t) is time dependent variable. After sub-
stituting assumed solution, w, in Eqn. (3), and then applying the Galerkin method, we get the
following form of generalized modal dynamic equation

η̈ + S1η + S2η
3 + S3η

2η̈ + S4ηη̇
2 + S5η̇ + S6 sin(Ωt) = 0, (6)

where, S1, S2, S3, S4, S5, S6, S7, S8 are the constants given by

S0 =
∫ 1

0
(1 + f2(x))φ(x)2dx

S1 = 1
S0

∫ 1

0
φ(x)

(
f1(x)

′′
φ(x)

′′
+ 2f1(x)

′
φ(x)

′′′
+ (1 + f1(x))φ(x)

′′′′
)
dx

S2 = 1
S0

∫ 1

0

(
φ(x)φ(x)

′(
f1(x)

′′
φ(x)

′′
φ(x)

′
+ 2f1(x)

′
φ(x)

′′′
φ(x)

′

+ 2f1(x)
′
(φ(x)

′′
)2 + (1 + f1(x))φ(x)

′′′′
φ(x)

′

+ (3 + 3f1(x))φ(x)
′′′
φ(x)

′′)− (1 + f1(x)(φ(x)
′′
)3φ(x)

)
dx

S3 = 1
S0

∫ 1

0
(1 + f2(x))φ(x)φ(x)

′ ∫ x
0

(φ(x)
′
)2dx

S4 = 1
S0

∫ 1

0
(1 + f2(x))φ(x)φ(x)

′ ∫ x
0

(φ(x)
′
)2dx

S5 = 1
S0

∫ 1

0
ω
Qf
φ(x)2dx
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S6 = − 1
S0

∫ 1

0
L3F
EI0

φ(x)dx.

The above coefficients changes with the tip mass quantity, µ and the non-uniformity of the

cantilever beam which is captured by f1(x) = EĨ(x)
EI0

and f2(x) = ρÃ(x)
ρA0

.

To obtain the solution of above equation, we apply the method of multiple scales [5]. Rescaling
the nonlinear terms in nonlinear modal dynamic equation given by Eqn. (3) with small quantity
ε, the resulting dynamic equation with weak nonlinearity can be written as

η̈ + S1η + εS2η
3 + +εS3η

2η̈ + εS4ηη̇
2 + εS5η̇ + εS6 sin(Ωt) = 0. (7)

To obtain the modulation equation, we approximate the solution using multiple time scales,

T0 = t, T1 = εt, as η = η1(T0, T1)+ ε1η2(T0, T1), where, η̈ =
(
D2

0 +2εD0D1

)
η; η̇ =

(
D0 + εD1

)
η

and Dm
n = dm

dTm
n

. Substituting the approximate solution in the governing equation given by

Eqn. (7) and comparing the coefficient of ε0 and ε1, we obtain linear homogenous equation in
η1(T0, T1) and non-homogenous linear equation in η2(T0, T1) with frequency ω. Assuming the
solution of of homogenous equation as η1 = A(T1)e(ιωT0) + A(T1)e(−ιωT0) and then substituting
it in non-homogenous equation with Ω = ω + εσ, where, σ is the detuning parameter, we
obtain the modified form of non-homogenous equation. Eliminating the secular terms from
the modified equation and we obtain the real and autonomous evolution equation by assuming
A(T1) = 1

2
a(T1)eiωφ(T1). Taking θ = σT1 − φ and θ̇ = dθ

dT1
, we get the following modulation

equations

aθ̇ = σ +
3

8
ωS3a

3 − 1

8
ωS4a

3 − 3

8ω
S2a

3 − 1

2ω
S6 sin(θ) (8)

ȧ = −1

2
S5a+

1

2ω
S6 cos(θ). (9)

The above equations can be solved to obtain stable and unstable nonlinear response using the
continuation software, MATCONT, in MATLAB. Readers can refer to Appendix A for detailed
mathematical discussion on obtaining the modulation equations.

3 Results and Discussions

In this section, we study the linear and nonlinear frequency response of uniform as well as
non-uniform cantilever beam. We first discuss the variation in linear frequencies of different
non-uniform beams with tip mass of different magnitudes. Subsequently, we study the effect of
tapering and added mass on the nonlinear frequency response. It is important to note that the
linear and nonlinear analysis carried out in this work is pertaining to applications in MEMS.
However, since the analysis is presented in non-dimensional quantities, it can be applied to
cantilever beams of different length scales for application even in the macro domain.

3.1 Linear Frequency Analysis

In this section, we discuss the effect of tip mass and the non-uniformity parameter on the linear
frequency of different types of cantilever beams. Utilizing the mode shapes obtained in the
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previous section for various non-uniform cantilever beams, we determine the eigenvalues by
solving the corresponding frequency equation. To compare the results with numerical values,
we take beam of length, L = 100 µm, width at fixed end as, b0 = 40 µm, and beam thickness as
h = 0.8 µm. The width at free end is varied for different values of taper parameter. The Young’s
modulus, density and Poisson ratio of the beam are taken as E = 160 GPa, ρ = 2300kg/m3,
ν = 0.22, respectively. Based on the finite element analysis with sufficient number of elements,
we numerically compute non-dimensional resonance frequencies of first three modes of uniform
and non-uniform beams.

For uniform beam, the mode shape is given by Eqn. (5) with σ = 1. The corresponding
frequencies for first three modes for various non-dimensional tip mass, µ, are mentioned in
Table 1. It also compares results at various tip masses, with the results obtained by Kim et
al. [20] for the first mode and with FEM results for higher mode frequencies with µ = 0.0 and
µ = 0.2, respectively. The results are found to be in good agreement. To study the influence of
non-uniform beams on frequency, we consider beams with linear and quartic variation in width.
For decreasing cross section from the fixed end, i.e., converging beams, α is taken as negative.
For increasing cross section from the fixed end, i.e., diverging beams, α is taken as positive. For
α and tip mass µ, we solve the frequency equation to find the frequencies and the corresponding
modeshape.

Table 2 presents the first three non-dimensional frequencies for converging beams with linear
variation. The computed frequencies are compared with the frequency obtained by Mabie and
Rodger [13] and with the FEA results using ABAQUS for different α’s corresponding to µ = 0.0
and µ = 0.2. In Tables 3 and 4, we present the frequencies for converging and diverging beams
respectively, with α = 0.2 and α = 0.4 at different µ. We observed that the results obtained using
the proposed method agrees well with the FEA results as well as that of Mabie and Rodger [13]
till certain α. We noticed that the frequency deviates from that of FEA results as alpha goes
beyond ±0.4. It is due to the approximation involved in neglecting higher order terms σ

′′′′
and

σ
′′′

. For tip mass µ = 0.0, the relative error as compared to the FEA results is 3.5% when
α = −0.4 and 22.5% when α = −0.6. Similarly, for tip mass µ = 0.2, the relative error as
compared to the FEA results is 3.7% when α = −0.4 and 24.6% when α = −0.6. As a result the
proposed method works well in case of linearly tapered beam only for smaller values of α. The
variation of fundamental frequency of linearly tapered beams with taper parameter at tip mass
µ = 0.0, 0.05 and 0.1 are also shown in Figures 2(a) and (b).

Similarly, Table 5 presents the first three frequencies of quartic beams with different α for
µ = 0.0 and µ = 0.2. The results obtained by the proposed method is then compared with the
FEA results obtained from ABAQUS for µ = 0.0 and µ = 0.2. Both the results are found to be in
good agreement. Tables 6 and 7 lists the frequencies for both negative and positive α at different
µ corresponding to |α| = 0.2 and |α| = 0.4. Figures 2(c) and (d) show the variation of frequency
with α for µ = 0.0, 0.05, 0.1. Like the beam with linear variation in width, we see that for a
diverging beam, the frequency decreases with an increase in α, while for a converging beam it
increases with an increase in the magnitude of α. For a diverging beam, the shift in the frequency
for a cantilever beam without added mass (µ = 0.0) and with added mass gradually reduces with
increasing non-uniform parameter. However, for a converging beam, this shift increases sharply
with the non-uniform parameter.

Figure 2(e) shows the variation of non-dimensional mass sensitivity, S = ∆f
∆µ

, where, ∆f = δf0
f0
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is the non-dimensional frequency shift and ∆µ = δm
ρA0L

is the non-dimensional added mass. On
comparing the variation of mass sensitivity, S, for converging and diverging tapered beam with
linear and quartic variation in width in Fig. (2)(e), we found that S increases for converging
beam, but it decreases for diverging beam. For a quartic converging beam, we found that
the non-dimensional mass sensitivity, S, drastically increases by an order of magnitude higher
as compared to that for uniform beam when α varies from 0 to 0.6 as shown in Fig. (2)(e).
Moreover, the variation in the frequency of higher modes as shown in Fig. (2)(f) shows that S
increases by around 5 times, if the non-uniform beam with quartic tapering at tapering ratio
α = 0.6 operates in its 5th mode. This makes a converging beam with quartic variation, a better
and suitable design for an effective mass sensor as compared to beam with uniform as well as
linearly tapered width. Now, we investigate the influence of tapering parameter on the non-linear
response under different tip masses.

3.2 Nonlinear Frequency Analysis

The evolution equations given by Eqns.(8) and (9) are obtained from the method of multiple
scales (MMS) to do the non-linear analysis of different beams. The quality factor used in the
analysis is 50 and as the damping term S5 depends on the frequency of the beam, we have
optimized the forcing in order to get nonlinear response. To validate the approximate solution
obtained using MMS, we solve the governing equation given by Eqn.(6) using the Runge-Kutta
method and compare its result with that of approximate solution. Figures 3(a)-(c) show the
comparative results for uniform beam, converging beam with linear variation and converging
beam with quartic variation in width. The results show that the modulation equation can be
used to do further analysis of non-uniform beam. Figure 3(d) shows the nonlinear response and
the shift in frequency corresponding to the peak due to the addition of mass. Figures 3(e)-(h)
show the frequency shifts due to addition of non-dimensional mass, ∆µ = 0.1, for different taper
ratios. For converging beam with linear variation in width as shown in Fig. 3(e), we observed
that the frequency shift corresponding to the peak, ∆f , of nonlinear response decreases with an
increase in tapering. On the other hand, for a diverging beam with linear variation in width as
shown in Fig. 3(f), ∆f with increase in tapering parameter. For a converging beam with quartic
variation in width as shown in Fig. 3(g), ∆f first decreases and then starts increasing thereby
attaining a minimum variation at α = 0.5. The corresponding frequency shift, ∆f , for diverging
beam with linear and quartic variation in width increases linearly and exponential with tapering
parameter α. Based on the above analysis, we found that the shift in frequency corresponding to
the peak of non-linear response due to addition of tip mass decreases in converging beams and
increases in diverging beams. We have also found in the previous section that the shift in linear
frequency due to change in tip mass increases with tapering in converging beams and decreases
with tapering in diverging beams.

Finally, we state that we have analyzed the mass sensitivity based on the linear and nonlinear
response of uniform and non-uniform cantilever beams with different types of tapering. We have
noticed that both linear frequency as well as nonlinear frequency response show higher degree of
mass sensitivity for non-uniform converging beams with quartic variation in width at α = −0.6.
The analysis presented in this work can form the basis for future design of non-uniform cantilever
beams in the development of many sensors and actuators.
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4 Conclusions

In this paper, we have presented the mass sensitivity on linear frequency and nonlinear frequency
response of uniform and non-uniform cantilever beams with different tapering. To do the analysis,
we used the nonlinear governing equation for non-uniform beam including the nonlinear curvature
effect. We then obtain the exact form of the mode shape for uniform and non-uniform beam with
linear and quartic variation in width of the beam with and without tip mass. After obtaining
the exact mode shape, we first obtain the linear frequencies of first three modes of beam with
different types of tapering. Subsequently, using the first mode shape approximation, we derive
the nonlinear modal dynamic equation. The nonlinear frequency response is obtained by solving
nonlinear dynamical equation using the method of multiple scales for different types of beams. On
analyzing the influence of tip mass µ as well as tapering parameter, α, on the linear frequency and
nonlinear frequency response, we found that the converging tapered beam with quartic variation
in width can be used to increase the mass sensitivity remarkably.
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A Appendix

A.1 Method of Multiple Scales to obtain Modulation Equation

The re-scaled governing equation is given by

η̈ + S1η + εS2η
3 + εS3η

2η̈ + εS4ηη̇
2 + εS5η̇ + εS6 sin(Ωt) = 0. (A.1)

To obtain the modulation equation, we approximate the solution as

η = η1(T0, T1) + ε1η2(T0, T1) (A.2)

where multiple time scales, T0 = t, T1 = εt are used. Using the relations, η̈ =
(
D2

0 +

2εD0D1

)
η; η̇ =

(
D0 + εD1

)
η, we substitute the approximate solution given by Eqn. (A.2)

in the governing equation given by Eqn. (A.1). The coefficient of ε0 and ε1 are then compared
to get the following two equations

O(ε0) : D2
0η1 + ω2η1 = 0, (A.3)

O(ε1) : D2
0η2 + ω2η2 = −

(
2D0D1η1 + S2η

3 + S3η
2(D2

0η)

+S4η1(D0η1)2 + S5D0η + S6 sin(Ωt)
)
, (A.4)

where, Dj
i = ∂j

∂T j
i

, ω2 = S1.

Assuming the solution of Eqn. (A.3) of the form

η1 = A(T1)e(ιωT0) + A(T1)e(−ιωT0) (A.5)

and then substituting it in Eqn. (A.4) with Ω = ω + εσ, where, σ is the detuning parameter, we
get

D2
0η2 + ω2η2 =

(
S3A(T1)3ω2 + S4A(T1)3ω2 − S2A(T1)3

)(
e(iωT0)

)3

+
(
− 2iȦ(T1)ω − 3S3A(T1)2A(T1) + 3S3A(T1)2A(T1)ω2

−S4A(T1)2A(T1)ω2 − iS5A(T1)ω +
1

2
iS6e

iσT1
)
eiωT0 + cc, (A.6)

where, cc represents the complex conjugate part of the equation. To get the converged solution,
we eliminate the secular terms from Eqn. (A.6) which gives complex modulation equation as(

− 2iȦ(T1)ω − 3S3A(T1)2A(T1) + 3S3A(T1)2A(T1)ω2

−S4A(T1)2A(T1)ω2 − iS5A(T1)ω +
1

2
iS6e

iσT1
)

= 0. (A.7)
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To obtain the real and autonomous form of Eqn. (A.7), we substitute A(T1) = 1
2
a(T1)eiωφ(T1) in

Eqn. (A.7) and then equate the real and imaginary parts, separately. Taking θ = σT1 − φ and
θ̇ = dθ

dT1
, we get the following modulation equations

aθ̇ = σ +
3

8
ωS3a

3 − 1

8
ωS4a

3 − 3

8ω
S2a

3 − 1

2ω
S6 sin(θ) (A.8)

ȧ = −1

2
S5a+

1

2ω
S6 cos(θ). (A.9)

The above equations are the modulation equations which can be solved to obtain stable and
unstable nonlinear response using the continuation software, MATCONT in MATLAB.
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Figure 1: (a) Transverse vibration and axial stretching of a cantilever beam under uniformly
distributed load. (b) The beam geometry used in our analysis. α = 0 corresponds to a uniform
beam, α > 0 corresponds to diverging beam and α < 0 corresponds to converging beams.
Furthermore, n = 1 implies beam with linear variation in width and n = 4 implies beam with
quartic variation in width.
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Figure 2: (a) Variation of non-dimensional mass sensitivity with tapering ratio for different types
of tapering; (b) Variation of non-dimensional mass sensitivity versus mode number for uniform,
µ = 0.0, and non-uniform beam with quartic converging beams, α = −0.3 and α = −0.6.

Pandey VIB-16-1056 13

Journal of Vibration and Acoustics. Received January 28, 2016; 
Accepted manuscript posted July 7, 2016. doi:10.1115/1.4034079 
Copyright (c) 2016 by ASME

Acc
ep

te
d 

Man
us

cr
ip

t N
ot

 C
op

ye
di

te
d

Downloaded From: http://vibrationacoustics.asmedigitalcollection.asme.org/ on 07/08/2016 Terms of Use: http://www.asme.org/about-asme/terms-of-use



0

     |α|
0.2 0.4 0.6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
(h)

 

 

∆f = 0.027e 
5.25|α|

a

1.0110.990.980.97

0.1

0.2

0.3

0.4

0.5

     Ω/ω

µ=0

µ=0.05

µ=0.1 (d)

 

0.03

0.025

0.02

0.015

0.01

0.005

0
0

     |α|
0.2 0.4 0.6

  
  

∆
f

(e)

 

 

∆f = -0.04|α|+0.027 

 

0.06

0.05

0.04

0.03

0.02
0

     |α|
0.2 0.4 0.6

(f)

 

∆f = -0.04|α|+0.025 

0

     |α|
0.2 0.4 0.6

0.8

1.2

1.6

0.4

(g)

 

 

∆f = 7.38α -7.10|α|+2.15 
2

0.98 1 1.01
Ω/ ω 

MMS (Stable) MMS (Unstable) Num Sol. (Stable) Num Sol. (Unstable)

(a) (b)
0.3

0.2

0.1

0

(c)      b(x)=(1-0.3x) 
4

b0
 b=(1-0.1x)b

0

0.99 1 1.01
Ω / ω 

0

0.1

0.3

0.4

0.2a

0.99 1 1.01

0

0.2

0.3

0.4

0.5

Ω/ ω 

a

0.1

 b=b0

a

∆f

  
  

∆
f

  
  

∆
f

  
  

∆
f

Figure 3: (a) Numerical and approximate solution for uniform beam, (b) converging beam with
linear tapering, and (c) converging beam with quartic tapering. (d) Nonlinear response showing
the shift in frequency due to added mass. (e) The frequency shift due to added mass at various
α for converging beam with linear variation in width, (f) diverging beam with linear variation in
width, (g) converging beam with quartic variation in width and (h) diverging beam with quartic
variation in width.
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µ Mode Present Kim et al. [6] ABAQUS
0.0 1 3.5160 3.516 3.5292

2 22.0345 - 22.0637
3 61.6972 - 61.8717

0.1 1 2.9678 2.968 -
2 19.3558 - -
3 55.5183 - -

0.2 1 2.6127 2.613 2.6189
2 18.2078 - 18.081
3 53.5586 - 51.7742

0.3 1 2.3597 2.356 -
2 17.5756 - -
3 52.6156 - -

0.4 1 2.1679 2.168 -
2 17.1763 - -
3 52.0632 - -

Table 1: The nondimensional fundamental frequency of uniform beam with added mass.
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α Mode
Present
Model

ABAQUS Ref. [13] α Mode
Present
Model

ABAQUS Ref. [13]

0
1 3.516 3.529 3.516

0
1 2.613 2.619 2.613

2 22.035 22.063 22.035 2 18.208 18.081 18.208
3 61.697 61.872 61.700 3 53.559 51.7749 53.550

-0.1
1 3.628 3.642 -

-0.1
1 2.641 2.647 -

2 22.258 22.230 - 2 18.213 18.094 -
3 61.915 62.082 - 3 53.451 51.999 -

-0.2
1 3.747 3.771 3.717

-0.2
1 2.662 2.677 2.720

2 22.523 22.516 22.415 2 18.228 18.102 18.348
3 62.180 62.280 62.060 3 53.354 52.146 53.580

-0.3
1 3.865 3.922 -

-0.3
1 2.667 2.708 -

2 22.835 22.791 - 2 18.260 18.102 -
3 62.504 62.536 - 3 53.275 52.228 -

-0.4
1 3.954 4.098 3.892

-0.4
1 2.633 2.740 2.810

2 23.207 23.105 22.743 2 18.314 18.095 18.451
3 62.910 62.811 62.390 3 53.227 52.255 53.580

-0.5
1 3.940 4.312 -

-0.5
1 2.506 2.772 -

2 23.645 23.487 - 2 18.402 18.077 -
3 63.429 63.172 - 3 53.231 52.232 -

-0.6
1 3.5400 4.578 4.049

-0.6
1 2.114 2.805 2.886

2 24.129 23.967 23.030 2 18.542 18.046 18.530
3 64.101 63.653 62.680 3 53.329 52.158 53.570

Table 2: The nondimensional frequency for beam with linear variation in width. (Left) When
there is no tip mass i.e. µ = 0. (Right) When tip mass µ = 0.2.
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µ Mode Present Ref. [13]

0.0 1 3.7475 3.7168
2 22.5225 22.415
3 62.1796 62.06

0.2 1 2.6621 2.7202
2 18.2282 18.348
3 53.3539 53.58

0.4 1 2.1729 2.2440
2 17.2344 17.312
3 52.0000 52.13

0.6 1 1.8809 1.9527
2 16.7964 16.844
3 51.4600 51.54

0.8 1 1.6816 1.7517
2 16.5500 16.576
3 51.1701 51.21

µ Mode Present Ref. [13]

0.0 1 3.9542 3.8923
2 23.2068 22.743
3 62.9099 62.39

0.2 1 2.6329 2.8100
2 18.3137 18.451
3 53.2266 53.58

0.4 1 2.1060 2.3061
2 17.3891 17.414
3 52.0544 52.17

0.6 1 1.8052 2.0017
2 17.0016 16.951
3 51.6045 51.60

0.8 1 1.6047 1.7924
2 16.7888 16.690
3 51.3669 51.29

Table 3: The frequency of converging beam (α = −0.2 and α = −0.4) with linear variation in
width.

α = 0.2 µ Mode Freq.

0.0 1 3.3205
2 21.6746
3 61.3568

0.2 1 2.5523
2 18.2185
3 18.2185

0.4 1 2.1471
2 17.1679
3 52.1812

0.6 1 1.8881
2 16.6637
3 51.4948

0.8 1 1.7046
2 16.3680
3 51.1148

α = 0.4 µ Mode Freq.

0.0 1 3.1626
2 21.3998
3 61.1044

0.2 1 2.4963
2 18.2446
3 54.0184

0.4 1 2.1248
2 17.1866
3 52.3258

0.6 1 1.8809
2 16.6605
3 51.5796

0.8 1 1.7051
2 16.3461
3 51.1605

Table 4: The frequency of diverging beam (α = 0.2 and α = 0.4) with linear variation in width.
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α Mode
Present
Model

ABAQUS α Mode
Present
Model

ABAQUS

0
1 3.516 3.529

0
1 2.613 2.619

2 22.0345 22.064 2 18.208 18.081
3 61.697 61.872 3 53.559 51.774

-0.1
1 3.994 3.902

-0.1
1 2.717 2.714

2 22.925 22.374 2 18.200 18.094
3 62.569 61.147 3 53.160 52.072

-0.2
1 4.587 4.466

-0.2
1 2.780 2.768

2 23.960 23.330 2 18.197 18.091
3 63.620 62.006 3 52.898 52.204

-0.3
1 5.336 5.178

-0.3
1 2.787 2.767

2 25.194 24.468 2 18.242 18.112
3 64.914 63.088 3 52.835 52.247

-0.4
1 6.298 6.240

-0.4
1 2.726 2.699

2 26.709 26.504 2 18.382 18.214
3 66.554 66.081 3 53.022 52.394

-0.5
1 7.558 7.466

-0.5
1 2.591 2.560

2 28.651 28.364 2 18.655 18.439
3 68.715 68.066 3 53.491 52.748

-0.6
1 9.235 9.096

-0.6
1 2.380 2.349

2 31.282 30.901 2 19.084 18.808
3 71.728 70.902 3 54.271 53.338

Table 5: The nondimensional frequency for beam with quartic variation in width. (Left) When
there is no tip mass i.e. µ = 0. (Right) When tip mass µ = 0.2.
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α = −0.2 µ Mode Frequency

0.0 1 4.5877
2 23.9601
3 63.6203

0.2 1 2.7796
2 18.1968
3 52.8975

0.4 1 2.1695
2 17.3885
3 51.9706

0.6 1 1.8391
2 17.0694
3 51.6293

0.8 1 1.6245
2 16.8987
3 51.4520

α = −0.4 µ Mode Frequency

0.0 1 6.2980
2 26.7090
3 66.5539

0.2 1 2.7257
2 18.3821
3 53.0215

0.4 1 2.018
2 17.9269
3 52.6062

0.6 1 1.6746
2 17.7655
3 52.4631

0.8 1 1.4623
2 17.6830
3 52.3906

Table 6: The frequency of converging beam (α = −0.2 and α = −0.4) with quartic variation in
width.

α = 0.2 µ Mode Frequency

0.0 1 2.7993
2 20.5644
3 60.3289

0.2 1 2.3414
2 18.1209
3 54.4955

0.4 1 2.0517
2 17.0953
3 52.6543

0.6 1 1.8478
2 16.5345
3 51.7674

0.8 1 1.6945
2 16.1814
3 51.2473

α = 0.4 µ Mode Frequency

0.0 1 2.2943
2 19.3823
3 59.3020

0.2 1 2.0539
2 17.8439
3 55.2865

0.4 1 1.8754
2 16.9797
3 53.4432

0.6 1 1.7363
2 16.4284
3 52.4000

0.8 1 1.6241
2 16.0465
3 51.7317

Table 7: The frequency of diverging beam (α = 0.2 and α = 0.4) with quartic variation in width.
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