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Abstract

Microelectromechanical system, MEMS, based arrays have been employed to increase
the bandwidth and sensitivity of many sensors and actuators. In this paper, we present
an approximate model to demonstrate the tuning of in-plane and out-of-plane frequencies
of MEMS arrays consisting of fixed-fixed beams. Subsequently, we apply the Galerkin’s
method with single approximate mode to obtain the reduced order static and dynamic
equations. Corresponding to a given DC voltage, we first solve the static equations and
then obtain corresponding frequencies from the dynamic equation for single beam and arrays
of multibeams. We compare the model with available experimental results. Later, we show
the influence of different frequency tuning parameters such as the initial tensions, fringing
field coefficients and the variable inter beam gaps between the microbeam and electrodes
to control the coupling region and different modal freqencies of the beam. Finally, we
obtain a compact model which can be used in optimizing the bandwidth and sensitivity of
microbeams array.

1 Introduction

Microelectromechanical (MEMS) or nanoelectromechanical system (NEMS) based arrays have
gained increased interest for their potential applications as sensors and actuators due to high
sensitivity and high bandwidth. Recent studies reveal that the sensitivity as well as frequency
bandwidth of a resonant sensor or an actuator can be improved using different frequency tuning
mechanisms [1, 2, 3, 4, 5, 6, 7, 8]. Among these, the most commonly used techniques are tuning
by electrostatic dc biasing, thermal stressing, structural hardening, etc. In this paper, we deal
with frequency tuning due to dc bias in an array of microbeams.

There have been many experimental and theoretical studies in the literature which describe
the tuning of coupled modes and coupling regions. Suzuki et al. [1] have proposed a method
of electrostatic frequency tuning in a fish bone shaped MEMS resonator to study the coupling
of first five modes. Spletzer et al. [2] studied vibration localization of mechanically coupled
identical microcantilevers in large arrays for ultrasensitive mass detection and identification.
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Verbridge et al. [4] employed chip-bending method to control tensile stress in doubly clamped
nanomechanical beam resonators. They showed that this technique provides the ability to tune
both frequency and quality factor. Pandey et al. [5] tuned tension of the beam due to temperature
change to induce the variation in linear frequency. Remtema and Lin [6] have adopted the
frequency tuning using localized thermal stressing effect on comb shaped micro resonator. Buks
and Roukes [7] have applied the method of electrostatic tuning to an array of 67 fixed-fixed
microbeam resonators made of Au and described the significance of collective response of inplane
modes. Later, Kozinsky et al. [8] have used the electrostatic frequency tuning mechanism to
tune nonlinear and linear frequency of inplane and out-of-plane motion in order to increase the
dynamic range of a NEMS resonator consists of a single fixed-fixed beam which is separated
from a side electrode and a bottom electrode, respectively. Solanki et al. [9] experimentally
showed the existence of mode mixing region in nanowire resonator. Zalalutdinov et al. [12]
studied collective modes in two dimensional arrays using a double laser setup with independent
positioning of the point laser drive and interferometric motion detector. Krylov et al. [13]
demonstrated the coupling effect of out-of-plane modes in an array of cantilever beams due to
parametric excitation. Thijssen et al. [14] demonstrated the frequency tuning of in-plane modes
of an array of nanobeams under the optical excitation by varing the width of each beam. Kambali
and Pandey [15] demonstrated tunning of nonlinear frequency response of electrostatically excited
microbeam subjected to direct and fringing fields. Gutschmidt and Gottlieb [17, 16] investigated
internal resonance and bifurcations in an array of nonlinearly coupled microbeams subjected
to parametric excitation. Pandey [18] theoretically modeled the frequency tuning of in-plane
and out-of-plane modes and their coupled effect of NEMS device and compared the result with
experiments from Kozinsky et al. [8]. However, he did not consider the fringing effects in the
electrostatic forces which resulted in the mismatching of theoretical results with experimental
values. Furthuremore, he also showed that the mode mixing of two or more modes plays very
important role in increasing the operating frequency range. In this paper, we present frequency
analysis of an array of multibeam.

Recently, we have presented the experimental analysis of the coupling of in-plane as well as out-
of-plane modes of single and multibeam arrays [19]. Using the exact mode shape, we have also
presented the theoretical prediction of intermodal coupling. However, the theoretical analysis
presented in [19] is very complex (see supplementary material [19]), hence, it is difficult to be
used as an effective design tool for optimizing the various parameters associated with arrays such
as the gap between the beams, distance between the beams and bottom electrode, tension in the
beams, fringing effects, etc. Therefore, in this paper, we present theoretical model of frequency
tuning based on approximate mode shapes of in-plane and out-of-plane modes of microbeam
arrays. Unlike the previous model, the resultant theoretical model clearly shows the coupled
and non-coupled terms of the modes of same beam or neighboring beams. After validating the
developed model based on approximate modes with the experimental results from [19] for single
beam and array of three beams, we discuss different cases of the coupling of three-beams array
due to changes in side gaps, bottom gap, fringing coefficients and initial tensions, respectively.
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2 Governing Equations

To develop the mathematical model based on the approximate modes of in-plane and out-of-
plane motions for N clamped−clamped beams, we consider the array configuration as shown in
Figure 1. Figure 1 shows an array of N clamped-clamped beams each having length L, width B
and thickness H, which are separated from each other by air gaps of g0,g1,g3 ,...,gn with two fixed
side electrodes E1 and E2 on either side of the array, respectively. The beams are also separated
from the bottom electrode Eg by a gap of d. Taking the deflection of the beam along in-plane and
out-of-plane direction as y(x, t) and z(x, t), respectively, as shown in Figure 2(a), the equation of
motion for two modes of each beam after considering residual tension and mid-plane stretching
[20] can be written as

EIz̄ȳ
′′′′

n + ρA¨̄yn −

[
Nn0 +

EA

2L

∫ L

0

(
z̄
′2
n + ȳ

′2
n

)
dx̄n

]
ȳ
′′

n = Qnȳ(ȳ, z̄, t̄) (1)

EIȳz̄
′′′′

n + ρA¨̄zn −

[
Nn0 +

EA

2L

∫ L

0

(
z̄
′2
n + ȳ

′2
n

)
dx̄n

]
z̄
′′

n = Qnz̄(ȳ, z̄, t̄) (2)

where, subscript prime and dot represent differentiation with respect to x and t, respectively,
Nn0 is the initial tension induced in each beam by fabrication processes [10, 11], heating [5, 19],
etc., with n = 1, 2, ..., N , E is the Young’s modulus of the beam, EI is the bending rigidity,
Iz = HB3/12, Iy = BH3/12 are area moment of inertia about z and y-axes, and ρ is the
material density. The boundary conditions for the fixed-fixed beam are taken as

ȳn(0, t) = ȳn(L, t) = 0, z̄n(0, t) = z̄n(L, t) = 0, ȳ
′

n(0, t) = ȳ
′

n(L, t) = 0z̄
′

n(0, t) = z̄
′

n(L, t) = 0. (3)

The forcing Qy and Qz are the effective electrostatic forces per unit length along y and z directions
for single beam configuration as shown in Figure 2. Similarly, Qny and Qnz are the corresponding
effective electrostatic forces per unit length along y and z directions for nth beam. The forcing
are based on parallel plate capacitor assumptions which consider direct as well as fringing field
effects in both y and z directions [19]. The expressions for the forcing are given by

Qnȳ(ȳ, z̄, t̄) =
1

2
k1ε0H

[ (
V(n)(n−1) + v(t)

)2(
g(n−1) + ȳ(n−1) − ȳ(n)

)2 −
(
V(n)(n+1) + v(t)

)2(
gn + ȳn − ȳ(n+1)

)2

]
(4)

Qn̄z(ȳ, z̄, t̄) =
1

2

V(n)(g)
2ε0

B2 (d− z̄n)2

[
4.32 b3 + 0.0182 b

(
d− z̄n

)2 − k20.00068 (d− z̄n)3 ]
−1

2

ε0H

gB2

(
k30.156z̄n + 0.0049B

)[ (
V(n)(n−1) + v(t)

)2
+
(
V(n)(n+1) + v(t)

)2 ]
(5)

where, ε0 = 8.85 × 10−12 F/m is the vacuum permittivity. Here, k1 contributes for the net
effect of fringing and direct fields in y-direction, k2 and k3 represent the strength of the fringing
field effects from the bottom electrode and two side electrodes on the z-direction deflection.
Vij = Vi − Vj is the difference in the DC voltage applied between the beam and electrodes.
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2.1 Non-Dimensional Equation

Taking the ratio of the beam and side electrode gaps as rn = (gn/g0), we rescale the equations of
motion using the variables xn = x̄n/L, yn = ȳn/g, zn = z̄n/d, t = t̄/T , where, T =

√
ρAL4/EIz.

Thus, the non-dimensional equation of motion for two modes of each beam in an array can be
written as

y
′′′′

n + ÿn − [Nn + α1Γ(yn, yn) + α2Γ(zn, zn)]y
′′

n = βs

[
(V(n)(n−1) + v(t))2

(rn−1 + yn−1 − yn)2
−

(V(n)(n+1) + v(t))2

(rn + yn − yn+1)2

]
(6)

z
′′′′

n + α3z̈n − α3[Nn + α1Γ(yn, yn) + α2Γ(zn, zn)]z
′′

n = (βg + β2g(1− zn)2 − β3g(1− zn)3)

(V(n)(g) + v(t))2

(1− zn)2
− (αg + α2gzn)[(V(n)(n−1) + v(t))2 + (V(n)(n+1) + v(t))2]. (7)

where, the terms associated with the above equations are defined as

Γ(p(xn, t), q(xn, t)) =

∫ 1

0

∂p

∂xn

∂q

∂xn
dxn, Nn =

Nn0L
2

EIz
, α1 =

6g2

B2
, α2 =

6d2

B2
, α3 =

(
Iz
Iy

)
,

βs =
6k1σ1

B3g3
, βg =

25.92σ1

H3d3
, β2g =

0.1092σ1

B2H3d
, β3g =

k24.08× 10−3σ1

H3B3
, αg =

0.0294σ1

gB2H2d
,

α2g =
k39.36× 10−1σ1

gB3H2
, σ1 =

ε0L
4

E
. (8)

The nondimensional boundary conditions can also be written as subjected to following sets of
boundary conditions

yn(0, t) = yn(1, t) = 0, zn(0, t) = zn(1, t) = 0, y
′

n(0, t) = y
′

n(1, t) = 0, z
′

n(0, t) = z
′

n(1, t) = 0 (9)

2.2 Static and Dynamic Equation

The net beam deflection under electrical force is composed of a static deflection due to the DC
voltage and a dynamic deflection due to the AC voltage. Therefore, the deflection in the y and
z directions due to static and dynamic components of the electrical force are given by

yn(x, t) = uns(x) + un(x, t),

zn(x, t) = wns(x) + wn(x, t). (10)

The static deflections uns(x) and wns(x) are obtained by substituting Eqn. (10) in Eqns. (6)
and (7) and subsequently setting the time derivatives and dynamic displacements un(x, t) and
wn(x, t) equal to zero. The resulting static equations are found as

u
′′′′

ns − [Nn + α1Γ(uns, uns) + α2Γ(wns, wns)]u
′′

ns = βs

[
(V(n)(n−1))

2

(rn−1 + u(n−1)s−uns)
2

−
(V(n)(n+1))

2

(rn + uns − u(n+1)s)2

]
(11)

w
′′′′

ns − α3 [Nn + α1Γ(uns, uns) + α2Γ(wns, wns)]w
′′

ns = (βg + β2g(1− wns)
2 − β3g(1− wns)

3)

(V(n)g)
2

(1− wns)2
− αg[(V(n)(n−1))

2 + (V(n)(n+1))
2] + α2g[(V(n)(n−1))

2(w(n−1)s − wns)

+(V(n)(n+1))
2(w(n+1)s − wns)] (12)
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The corresponding dynamic deflections un(x, t) and wn(x, t) are obtained by substituting Eqn. (10)
in Eqns. (6) and (7). Using u

′′′′
ns and w

′′′′
ns from Eqns. (11) and (12) and expanding the forcing

terms about un = 0 and wn = 0 upto the first order, we get nonlinear dynamic equations. In
order to get the linear dynamic equations, we neglect the nonlinear terms and dynamic forcing
terms from resulting nonlinear dynamic equations. Hence, the linear dynamic equations can be
written as

u
′′′′

n + ün −

[
2α1Γ(uns, un) + 2α2Γ(ws,w)

]
u
′′

ns −

[
Nn + α1Γ(uns, uns) + α2Γ(wns, wns)

]
u
′′

n =

2βs

[
(V(n)(n−1))

2 un − un−1

(rn−1 + u(n−1)s − uns)3
− (V(n)(n+1))

2 un+1 − un
(rn + uns − u(n+1)s)2

]
(13)

w
′′′′

n + α3ẅn − α3

[
2α1Γ(uns, un) + 2α2Γ(wns, wn)

]
w
′′

ns − α3

[
Nn + α1Γ(uns, uns) +

α2Γ(wns, wns)

]
w
′′

n = (2βg + β3g(1− wns)
3)wn

(V(n)g)
2

(1− wns)3
+ α2g[(V(n)(n−1))

2

(w(n−1) − wn) + (V(n)(n+1))
2(w(n+1) − wn)] (14)

2.3 Reduced-Order Model

In order to obtain reduced order model equations, we apply Galerkin method to Eqns. (11), (12),
(13) and (14). Considering single mode approximation, the static and dynamic deflection of the
beam along both the directions can be assumed as:

uns(x) = qn1(y, z)φ(x), u(n−1)s(x) = q(n−1)1(y, z)φ(x), u(n+1)s(x) = q(n+1)1(y, z)φ(x),

wns(x) = qn2(y, z)φ(x), w(n−1)s(x) = q(n−1)2(y, z)φ(x), w(n+1)s(x) = q(n+1)2(y, z)φ(x),

un(x, t) = Pn1(t)φ(x), un−1(x, t) = P(n−1)1(t)φ(x), un+1(x, t) = P(n+1)1(t)φ(x),

wn(x, t) = Pn2(t)φ(x), wn−1(x, t) = P(n−1)2(t)φ(x), wn+1(x, t) = P(n+1)2(t)φ(x).

where, φ(x) is the linear undamped approximate mode shape for the fixed-fixed beam, q is
the static deflection and P (t) is the non-dimensional modal co-ordinate. Assuming the linear

undamped approximate mode shape for fixed-fixed beam as φ(x) =
√

(2
3
)
(

1 − cos(2πx)
)

such

that
∫ 1

0
(φ1(x))2dx = 1 [18]. Substituting it into static equations given by Eqns. (11) and(12)

and then applying Galerkin method, the static equations reduced to a set of non-linear algebraic
equations as

16

9
π4α1q

3
n1 +

(
16

3
π4 +

16

9
π4α2q

2
n2 +

4

3
π2Nn

)
qn1 − βs

[
V 2

(n−1)(n)

r2
n−1

√√√√ 2/3

(1 + 2
√

2
3

(q(n−1)1−q(n)1)

rn−1
)3

−
V 2

(n)(n+1)

r2
n

√√√√ 2/3

(1 + 2
√

2
3

(qn1−q(n+1)1)

rn
)3

]
= 0 (15)

Pandey VIB-15-1384 5

Journal of Vibration and Acoustics. Received September 14, 2015; 
Accepted manuscript posted January 21, 2016. doi:10.1115/1.4032517 
Copyright (c) 2016 by ASME

Acc
ep

te
d 

Man
us

cr
ip

t N
ot

 C
op

ye
di

te
d

Downloaded From: http://vibrationacoustics.asmedigitalcollection.asme.org/ on 01/28/2016 Terms of Use: http://www.asme.org/about-asme/terms-of-use



16

9
π4α2q

3
n2 +

(
16

3

π4

α4

+
16

9
π4α1q

2
n1 +

4

3
π2Nn

)
qn2 −

βg
α3

V 2
(n)(g)

√√√√ 2/3

(1− 2
√

2
3
qn2)3

−
√

6

3

β2g

α3

V 2
(n)(g) +

√
6

3

β3g

α3

V 2
(n)(g) +

β3g

α3

V 2
(n)(g)qn2 +

√
6

3

αg

α3

[V 2
(n)(n−1) + V 2

(n+1)(n)] +
α2g

α3(
V 2

(n)(n−1)q(n−1)2 − [V 2
(n)(n−1) + V 2

(n+1)(n)]qn2 + V 2
(n+1)(n)q(n+1)2

)
= 0. (16)

On solving the above equations, we get static deflections qn. Similarly, after substituting the
assumed form of static and dynamic deflections from Eqns. (13) and (14) and then applying
Galerkin method, we get the reduced form of modal dynamic equation as:

P̈n1(t) + λn1Pn1(t) + cn(n+1)iP(n+1)1(t) + cn(n−1)iP(n−1)1(t) + cnioPn2(t) = 0 (17)

P̈n2(t) + λn2Pn2(t) + cn(n+1)oP(n+1)2(t) + cn(n−1)oP(n−1)2(t) + cnoiPn1(t) = 0. (18)

Rewriting the equation in the matrix form, as P̈ + [M ]P = 0, we obtain a generalized equation
for N-beam system, where, P is given by [P ] = [P11, P12, ..., Pk1, Pk2, ..., PN1, PN2]T and matrix
M is given by

M =



λ11 c1io c12i 0 ... . . . . . 0 0

c1oi λ12 0 c12o ... . . . . . 0 0

. . .

. . .

. ... cn(n−1)i 0 λn1 cnio cn(n+1)i ... . .

. ... c(n−1)no cnoi λn2 0 c(n+1)no ... . .

. . .

. . .

0 . . . . . . ... cN(N−1)i 0 λN1 cNio

0 . . . . . . ... 0 c(N−1)No cNoi λN2



. (19)

where, n = 1, 2, ...., N and λn1, λn2, cnio, cn(n−1)i, cn(n+1)i, cnoi, cn(n−1)o, and cn(n+1)o are
uncoupled and coupled coefficients which are given by Eqn. (20) to Eqn. (23)

λn1 =

[
16

3
π4 +

16

9
π4α2q

2
n2 +

16

3
π4α1q

2
n1 +

4

3
π2Nn − 2βs

(
V 2

(n)(n−1)

r3
n−1(1− 2

√
2
3

(qn1−q(n−1)1)

rn−1
)
5
2

+
V 2

(n)(n+1)

r3
n(1− 2

√
2
3

(q(n+1)1−qn1

rn
)
5
2

)]
, (20)

λn2 =

[
16

3

π4

α4

+
16

9
π4α1q

2
n1 +

16

3
π4α2q

2
n2 +

4

3
π2Nn − 2

βg
α3

V 2
(n)(g)(1− 2

√
2

3
qn2)−

5
2

−β3g

α3

V 2
(n)(g) +

α2g

α3

(V 2
(n)(n−1) + V 2

(n+1)(n))

]
, (21)
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cn(n−1)i = 2βs

(
V 2

(n−1)n

r3
n−1(1− 2

√
2
3

(qn1−a(n−1)1

rn−1
)
5
2

)
, cn(n+1)i = 2βs

(
V 2

(n)(n+1)

r3
n(1− 2

√
2
3

(q(n+1)1−qn1

rn
)
5
2

)
, (22)

cnio =
32

9
α2qn1qn2π

4, cn(n−1)o =
α2g

α3

V 2
(n)(n−1), cnoi =

32

9
α1qn1qn2π

4, cn(n+1)o =
α2g

α3

V 2
(n+1)(n). (23)

Here, i and o denote two different modes, say, in-plane and out-of-plane modes, λn1 and λn2

correspond to the unperturbed natural frequencies of the nth beam of i and o modes,respectively.
cnio denotes modal coupling of i and o modes of nth beam, cn(n−1)i and cn(n+1)i denote interaction
of i mode adjacent beams. Similarly, cn(n−1)o and cn(n+1)o denote interaction of o mode of adjacent
beams. Finally, the frequencies corresponding to different modes for each beam can be found
from the square root of the eigenvalues of matrix [M ]. Consequently, for N beams, there are 2N
modes and the frequencies of 2N modes of an array of N beams can be tuned using different
initial tensions N , fringing coefficients and variable gaps between beams and electrodes .

3 Results and Discussion

In this section, we first validate our mathematical model with the experimental results for single
beam and an array of three beams from [19]. The beams are fabricated on a bulk-micromachined
silicon die with suspended membrane of size 500µm×500µm using standard micromachining
process [7]. It involves many substeps such as deposition of photoresist from spinning process,
tranfer of pattern using e-beam lithography and its development, thermal deposition of AuPd
alloy, and finally, dry etching to get suspended structure of single beam or multibeams array.
The dimensions of fabrication structure can be measured using surface profiler. However, due to
variation in current and voltage of e-beam under a given magnification, beam width as well as
interbeam gaps may also change. Additionally, the plane of suspended beams may also found
to be little different from the top surface of substrate due to twisting or bending of some of the
beams subjected to thermal stresses. Therefore, to account such variation, we identify geometric
(interbeam gaps) and electric field parameters (k1, k2, and k3) by comparing the results from
developed model with measured frequencies at different DC voltages. Since the ac voltage is in
the range of 1-40 mV corresponding to DC bias of 0-90 V, the response is considered to be in
the linear regime [19].

In this paper, we take the same dimension of all the beams in an array. Here, each beam is
having a length of L = 500 µm, width, B = 4 µm, height, H = 200 nm and is separated from the
bottom electrode by a gap of d = 500 µm. A possible variation in beam width and gap between
the beams are captured by taking effective gap between the beams, gi, in the range of 1 µm to
7 µm. Since the elastic modulus, E, and density, ρ, of beam are dependent on the composition
of AuPd alloy, and initial tension, N0, in the beam depends on the thermal deposition process
as well as heating due to laser, we compute these properties by comparing the experimental and
theoretical results corresponding to frequencies at zero DC voltage, i.e., Vdc = 0, and the values
corresponding to crossing region.
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3.1 Single Beam

In this case, a fixed-fixed beam is separated from two side electrodes and bottom electrode.
Consequently, since the side neighbours of the single beam is fixed, the coupling of either modes
of the beam with the side electrode are zero, i.e., cn(n−1)i = cn(n+1)i = cn(n−1)o = cn(n+1)o = 0.
For N = 1, the size of P and M are 2× 1 and 2× 2. The coefficients λn1,, λn2, cnio, and cnoi are
the only non-zero terms in matrix M as given by Eqn. (19). On comparing the analytical model
with experimental results [19], for E = 2.484× 1010N/m2, ρ = 3227.4 kg/m3, N0 = 35.86 µN/m,
we obtain the forcing coefficients of k1 = 0.97, k2 = 2.2 and k3 = 1.5 when the gaps between
the beam and the side electrodes are given by g0 = 4.5 µm and g1 = 7 µm, respectively. Taking
the corresponding values of non-dimensional gap ratio r0 = 1 and r1 = 1.55, we show the
comparison of analytical and experimental values of the in-plane and out-of-plane frequencies
at different dc voltages for single beam in Figure 3(a). As the dc voltage increases from 0
to 90V between side electrode and the beam, in-plane frequency decreases with the dc voltage
and, thus, showing the softening effect. Due to large dc voltage along in-plane direction, the
beam undergoes large deflection which leads to mid-plane stretching of the beam. Since, the gap
d = 500 µm between the beam and bottom electrode is more than 100 times the gap between the
beam and side electrode, g0, the influence of direct forcing between beam and bottom electrode
is negligible. It is found that the motion corresponding to out-of-plane mode is mostly influenced
by fringing forces. Therefore, the tension induced due to mid-plane stretching of beam along in-
plane direction dominates over the electrostatic forces in out-of-plane direction. Consequently,
the frequency corresponding to out-of-plane mode increases as dc voltage increases. Due to
decrease in the frequency of in-plane mode and increase in the frequency of out-of-plane mode,
both modes cross over at around dc voltage of 81 V and show coupling. The coupling of modes
are identified by the non-zero width of coupled region. However, the mode coupling at frequency
crossing disappears when the gaps between the beam and the side electrodes are the same due to
equal and opposite forces acting on the beam along the in-plane direction. We also noticed that
the frequency crossing can be tuned by fringing forces from the side electrodes in z-direction.
Although, the frequency tuning of in-plane and out-of-plane mode can be further achieved beyond
the coupling region by increasing the DC voltage as shown in Figure 4(a), it is limited by the
pull-in instability corresponding to in-plane mode. The theoretical value of pull-in voltage is
found to be around 205 V. Now,we study the frequency tuning of three beams array.

3.2 An Array of Three Beams

To validate the model developed in the paper for multibeams array and present further analysis,
we take an array of three beams. In this case, N = 3 and the size of P and M become 6× 1 and
6×6. We compare the frequencies obtained from the resulting matrixM with experimental results
[19] by tunning with initial tension, gap thickness, fringing forces, etc., for E = 3.183 × 1010,
N/m2, ρ = 3234.2 kg/m3, N0 = 43.81 µN/m. Figure 3(b) shows the comparison of in-plane and
out-of-plane frequencies with DC voltage for three different beams with experimental results. The
results are obtained by, first, tuning the initial tensions N1 = N0, N2 = 1.06N0, N3 = 1.13N0

at zero DC voltage, and, then, the fringing field parameters at large dc voltage corresponding to
crossing region as k1 = 0.132, 0.45, 1, k2 = 1, 1, 1 and k3 = 2.5, 3, 2.5 for the three beams
which are separated from each other as g0 = 2 µm, g1 = 2.7 µm, g2 = 4.9 µm, and g3 = 4.5 µm,
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respectively. Unlike the single beam, we also observe frequency crossings between the modes of
adjacent beams and those of non-adjacent beams. While the frequency crossing between non-
adjacent beams does not show any coupling, the frequency crossing between adjacent beam shows
coupling. We also noticed that the coupling strength of the modes of side beams is very low as
compared to that of the middle beam, probably, due to a non-uniform gap between the middle
beam and the two side beams.

It is also observed that by changing the initial tension from N0 to 1.06N0 and 1.13N0, the
frequency shift of about 5 kHz and 10 kHz can be obtained corresponding to out-of-plane modes
of three beams array at zero DC voltage. Such tuning in initial tension increases the frequency
bandwidth by 18.5 kHz due to frequency tuning of in-plane and out-of plane corresponding to
DC bias of 80 V. Thus, the given array is found to be very sensitive to initial tension. Although,
the frequency tuning of different modes can be achieved beyond the crossing region by increasing
the DC voltage as shown in Figure 4(b), it is limited by pull-in effect corresponding to in-plane
mode of first beam of the array. In the present case, we found the theoretical pull-in voltage
corresponding to in-plane motion of first beam in three beam array as 149 V. It is also noticed
that the pull-in voltage would have been around 120 V if the first beam would have been operated
as a single entity. Therefore, the modal coupling of different modes of three beams array increases
the stable response as well as frequency bandwidth by increasing the pull-in voltage. Now, we
study the influence of various factors such as interbeam gap, electric field parameters, and initial
tension on the frequency tuning of an array of three beams.

3.3 Tuning of Modal Frequencies and Coupling Regions

In this section, we demonstrate the tuning of modal frequencies and coupling regions by varying
initial tensions, gap between the beams and bottom electrode, gaps between the beam and side
electrodes, and the fringing force coefficients in an array of three beams. To distinguish different
modes of same beam, we label in-plane mode as I and out-of-plane mode as O. Three beams in
array are marked by B1, B2, and B3. To identify in-plane mode of first beam and out-of-plane
mode of second beam, notations IB1 and OB2 can be used. We also state that the coupling
strength of two modes can be identified by width of crossing or anti-crossing regions of two
modes.

Taking the same physical properties as mentioned in the previous section, we first show the
influence of direct forces between the beams and bottom electrode by taking the gap between
beams and bottom electrode as d = 15µm. Figure 5(a) shows the tunning of modal frequencies
and coupling regions under this condition when the initial tension of the beams are N1 = N0,
N2 = 1.04N0, and N3 = 1.05N0, the interbeam gaps as g0 = 2µm, g1 = 2.7µm, g2 = 4.9µm,
g3 = 4.5µm, and the fringing coefficients as k1 = 0.135, 0.45, 1 , k2 = 1, 1, 1 k3 = 2.5, 4, 2.5.
The variation of the frequencies shows a wider coupling region between modes OB1 and OB2 at
around DC voltage 35 V. We can observed different coupling of same beam as well as adjacent
beams. Additionally, we also found that the coupling between the two modes of non-adjacent
beams is very weak due non-uniform gaps between the beam and side electrodes. When we
consider the same tension in all beams, i.e., N1 = N2 = N3 = N0, we get less numbers of
coupling regions as shown in Figure 5(b).

We show the variation of modal frequencies with DC voltage when the fringing field forces
are dominant corresponding to large values of gap between the beam and bottom electrodes.
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Taking d = 5000µm and all other parameters same as the previous case, the fringing field effects
dominate the direct field effects. Figure 6(a) shows such variation for the beams with different
initial tension as N1 = N0, N2 = 1.04N0, N3 = 1.05N0. Figure 6(b) shows the variation when the
initial tensions are equal, i.e., N1 = N2 = N3 = N0. Comparison of results show that the mid-
plane stretching effect dominates over electrostatic effects when the gap between bottom electrode
and beams increases. Similarly, to show the effect of airgaps between interbeam spacing and side
electrodes on frequency tuning, we take g0 = 2.2µm, g1 = 3µm, g2 = 5µm, g3 = 5.5µm so as
to have unequal gaps on either side of each beams. Taking k1 = 0.1, 0.6, 1, k2 = 1, 1, 1 and
k3 = 4, 4, 3 and the gap between beams and bottom electrode as d = 20µm, Figure 7(a) and
(b) show tuning of modal frequencies of three beams with different initial tensions N1 = N0,
N2 = 1.06N0, N3 = 1.07N0 and same initial tensions, N1 = N2 = N3 = N0, respectively.

Finally, to show the effect of initial tension and number of elements in an array, we consider
arrays of 10 beams, 20 beams and 39 beams. In all the cases, the side gap gn varies from 4
to 5 µm, k1 = 1, k2 = 2.5, k3 = 3, d = 500 µm, L = 500 µm, B = 4 µm, H = 200 nm,
E = 3.183× 1010, N/m2, ρ = 3234.2 kg/m3, N0 = 43.81 µN/m, respectively. Figure 8(a) shows
the variation of in-plane and out-of-plane modal frequencies for an array of 10 beams with initial
tension, Nn. When Nn vary from N0 to 1.019N0, we get frequency bandwidth of around 13.8 kHz
at DC voltage of 80 V. Figure 8(b) shows the frequency variation of modal frequencies for an
array of 20 beams with the initial tension Nn varying from N0 to 1.039N0. It shows a frequency
bandwidth of around 15.2 kHz at 80 V DC bias. Similarly, Figure 8(c) shows the frequency
tuning of two modes of 39 beams in an array with the initial tension Nn varying from 1.08N0 to
1.11N0. In this case, a frequency bandwidth of 17.5 kHz is observed at DC bias of 80 V.

In short, at a given DC voltage of 80 V, the frequency bandwidth of 13.8 kHz, 15.2 kHz, and
17.5 kHz can be obtained in arrays of 10, 20 and 39 beams when the initial tension vary over the
range of N0 − 1.019N0, N0 − 1.039N0, and 1.08N0 − 1.11N0, respectively. Additionally, further
increase in the bandwidth can also be observed by increasing DC bias beyond 80 V, however, they
are also limited by pull-in effect corresponding to a particular mode of the beam in an array. In
the present case, the pull-in voltage is found to be much away from the coupling region. We have
also observed that the frequency resolution as well as sensitivity can be increased corresponding
to a given DC voltage by increasing the number of beams over a given range of initial tension.
For example, for the given range of initial tension N0 to 1.019N0 and frequency range of 1.4 kHz
at zero DC voltage, an uniform frequency distribution of 10 or 20 beams in an array may give a
frequency resolution of about 0.14 kHz or 0.07 kHz. In addition to sensitivity and bandwidth, by
increasing the coupling strength of beam, noise level can also be suppressed due to noise squeeze
phenomena. Thus, it can increase the dynamic range of the such devices.

4 Conclusions

In this paper, we have presented the tuning of in-plane and out-of-plane modal frequencies and
their coupling regions in arrays of fixed-fixed beams by varying side gaps, bottom gap, fringing
forces and initial tensions. To do the analysis, first, we obtained the static and dynamic partial
differential equations of in-plane and out-of-plane motions of N fixed-fixed beams separated
from the side electrodes and bottom electrode under the influence of direct and fringing field
electrostatic forces. Taking the transverse deflection of the beam in in-plane and out-of-plane
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modes as single mode approximation, we employ Galerkin’s method to get nonlinear reduced
order static equations and linear dynamic equations. Later, we validate our mathematical model
with the experimental results for a single beam and an array of three beams. Finally, we show
that by varying the side gaps, bottom gap, fringing coefficients and initial tensions in an array
of three beams, we can control the frequency tuning and coupling regions, effectively. Since the
arrays are very sensitive to initial tension, the sensitivity of arrays can be increased by increasing
the number of elements for a given bandwidth. The bandwidth can be increased by tuning due
to DC voltage. However, the range of frequency tuning is limited by the pull-voltage. The pull-in
voltage also increases due to modal coupling of different beams of an array.
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Figure 1: (a) Side view of N fixed-fixed beams of width B, thickness H are separated from the
side electrodes, E1 and E2, and the ground electrode Eg by distance d; (b) Top view of N beams
and each having a length of L. Here, ith beam is separated from its neighboring beams by gaps
of gi−1 and gi, respectively.

Pandey VIB-15-1384 14

Journal of Vibration and Acoustics. Received September 14, 2015; 
Accepted manuscript posted January 21, 2016. doi:10.1115/1.4032517 
Copyright (c) 2016 by ASME

Acc
ep

te
d 

Man
us

cr
ip

t N
ot

 C
op

ye
di

te
d

Downloaded From: http://vibrationacoustics.asmedigitalcollection.asme.org/ on 01/28/2016 Terms of Use: http://www.asme.org/about-asme/terms-of-use



Figure 2: (a) Displacement of the beam in two different directions are represented by y and z;
(b) The corresponding forces are represented by Qz and Qy.
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Figure 3: Comparison of experimental and analytical results for (a) single beam with gap ratios
r0 = 1 and r1 = 1.55 and (b) three beam arrays with gap ratios r0 = 1, r1 = 1.35, r2 = 2.45, and
r3 = 2.25. Here, rn = gn

g0
, n = 0...N .
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Figure 4: Variation of in-plane and out-of-plane frequencies with DC bias beyond crossing region
of (a) single beam and (b) an array of three beams.
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Figure 5: Tuning of frequencies of two modes and coupling regions in an array of three beams with
g0 = 2µm, g1 = 2.7µm, g2 = 4.9µm, g3 = 4.5µm, k1 = 0.135, 0.45, 1 , k2 = 1, 1, 1 k3 = 2.5, 4, 2.5
(a) for N1 = N0,N2 = 1.04N0, N3 = 1.05N0 and d = 15µm. (b) for N1 = N2 = N3 = N0 and
d = 15µm. In both the cases, L = 500 µm, B = 4 µm, H = 200 nm, E = 3.183 × 1010, N/m2,
ρ = 3234.2 kg/m3, N0 = 43.81 µN/m.
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Figure 6: Tuning of frequencies of two modes and coupling regions in an array of three beams with
g0 = 2µm, g1 = 2.7µm, g2 = 4.9µm, g3 = 4.5µm, k1 = 0.135, 0.45, 1 , k2 = 1, 1, 1 k3 = 2.5, 4, 2.5.
(a) for N1 = N0,N2 = 1.04N0, N3 = 1.05N0 and d = 5000µm. (b) for N1 = N2 = N3 = N0 and
d = 5000µm. In both the cases, L = 500 µm, B = 4 µm, H = 200 nm, E = 3.183× 1010, N/m2,
ρ = 3234.2 kg/m3, N0 = 43.81 µN/m.
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Figure 7: Tuning of frequencies of two modes and coupling regions in an array of three beams
with g0 = 2.2µm, g1 = 3µm, g2 = 5µm, g3 = 5.5µm, k1 = 0.1, 0.6, 1 , k2 = 1, 1, 1 k3 = 4, 4, 3,
d = 20µm (e) for N1 = N0,N2 = 1.06N0, N3 = 1.07N0 . (f) for N1 = N2 = N3 = N0 . In bothl
the cases, L = 500 µm, B = 4 µm, H = 200 nm, E = 3.183 × 1010, N/m2, ρ = 3234.2 kg/m3,
N0 = 43.81 µN/m.
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Figure 8: Tuning of frequencies of two modes and coupling regions with gn varying from 4 to
5µm, k1 = 1 , k2 = 2.5 k3 = 3, d = 500µm (a) for an array of 10 beam, with initial tension Nn

varying N0 to1.019N0, (b) for an array of 20 beam, with initial tension Nn varying N0 to1.039N0,
and (c) for an array of 39 beam,with initial tension Nn varying 1.08N0 to1.11N0 .In all the
cases, L = 500 µm, B = 4 µm, H = 200 nm, E = 3.183 × 1010, N/m2, ρ = 3234.2 kg/m3,
N0 = 43.81 µN/m.
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