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Cantilever beams under the influence of electrostatic force form an important subclass of microelectromechan-
ical (MEMS) and nanoelectromechanical (NEMS) systems. Most of the studies concerning these micro-nano
resonators are centered around uniform cantilever beams. In this paper, we have investigated another class of
micro-resonators consisting of non-uniform cantilever beams. The study is focused around investigating pull-
in voltage and resonance frequency of non-uniform cantilever beams when they operate in the linear regime
about different static equilibriums. In this paper, we term this frequency as ‘linear frequency’. Calculation of
the linear frequency is done at different static equilibriums corresponding to different DC voltages. We have
studied two classes of beams, one with increasing cross sectional area from the clamped edge (diverging beam)
and other with decreasing cross sectional area from the clamped edge (converging beam). Within each class,
we have investigated beams with linear as well as quartic variation in width. We start by obtaining Euler
beam equation for non-uniform cantilever beams considering large deflection and their corresponding exact
mode shapes from the linear equation. Subsequently, using the Galerkin method based on single mode approx-
imation, we obtain static and dynamic modal equations for finding pull-in voltage and resonance frequency
as a function of DC voltage, respectively. We found that linear frequency of converging beams increases with
increase in non-uniform parameter (α) while those of diverging beams decreases with α. A similar trend is
observed for pull-in voltage. Within the converging class, beams with quartic variation in width show signif-
icant increase in both frequency and pull-in voltage as compared to corresponding linearly tapered beams.
In quantitative terms, converging beams with quartic variation in width and α = −0.6 showed an increase
in linear frequency by a factor of 2.5 times, and pull-in voltage by 2 times as compared to commonly used
uniform beams. Our investigation can prove to be a step forward in designing highly sensitive MEMS sensors
and actuators.

Keywords: Frequency, Non-uniform cantilever, Pull-in analysis

I. INTRODUCTION

Electrostatically actuated MEMS cantilever beams
form an excellent class of resonator for various devices.
Most of these resonant MEMS/NEMS devices such as
mass sensor, temperature sensor, pressure sensor, etc.,1–3

operate at resonance frequency of the structure. In order
to improve performance of MEMS devices, tuning of the
resonance frequency has caught attention of researchers
in the past4–7. Attempts have been made to tune fre-
quency of cantilever beams by reducing the dimensions
to nano scale8, using nonlinear effect to soften or harden
the system5–7,9. Therefore, it is vital to compute an
accurate resonance frequency of such resonators during
their design phase. Apart from computing resonance fre-
quency, knowledge of pull-in voltage is also important to
achieve stable operating range5. A system of cantilever
beam separated from the bottom electrode by a gap d0
forms a parallel plate capacitance system as shown in
Fig. 1(a). On application of voltage, the electrostatic
force tends to attract cantilever towards fixed electrode,

a)Electronic mail: ashok@iith.ac.in
This is the authors’ copy of the accepted manuscript. The
copyright belongs to AIP Journal of Applied Physics.

however, the spring force (stiffness) of cantilever resists
this force. With further increase in voltage, electrostatic
force dominates and the beam is pulled towards fixed
electrode. This voltage at which restoring force could no
longer balance attractive electrostatic force is known as
pull-in voltage. Thus, determination of pull-in voltage is
extremely important before designing and operating the
device.

Researchers in the past have modeled resonators
and obtained pull-in parameters by accounting various
effects10–16. However, these models are limited to uni-
form cantilever beams. At the same time a few stud-
ies performed computation of frequencies of non uniform
cantilever beams as well18–20. Mabie et al18 and Lau19

obtained linear frequency of double tapered beam with
tip mass by expressing the mode shape in terms of Bessel
functions. In yet another study, Mabie and Roger20 an-
alyzed beam with constant width and linearly tapered
thickness using same methodology. At the same time,
special cases of tapering were also studied by William
et al21 on axially loaded beams, Auciello et al22 by ob-
taining solution in terms of Bessel Function, and Wang23

with the help of hypergeometric functions. For MEMS
and NEMS applications, tapering in width (rather than
thickness) is of interest as it is pertinent to microfabri-
cation techniques where arbitrary planar geometry (with
constant thickness) can be fabricated with existing meth-
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ods. In this regard, Mabie et al20 and Wang24 numer-
ically integrated the differential equation corresponding
to beam with varying width alone and obtained the fre-
quency for various taper parameters. Abrate25 proposed
a method to transform the linear governing equation for
special type of nonuniform width to that of a uniform
beam by introducing a function. In this paper, we fo-
cus on non-uniform cantilever beam and investigate the
effect of non-uniformity on frequency as well as pull-in
voltage of non-uniform cantilever based resonators. In
present study, we have used the transformation proposed
by Abrate to find mode shape based on linear equation,
however, we use this mode shape to study influence of
nonlinear curvature effect due to large DC voltage on
linear frequency of non-uniform cantilever beam using
Galerkin approach.

To compute pull-in voltage in MEMS, several authors
have worked towards obtaining its closed form expres-
sion. Nathonson et al10 obtained simplest form of pull-in
voltage expression by modeling the cantilever beam as a
lumped spring-mass system considering uniform gap. To
include the effect of non-uniform gap between beams due
to deflection with respect to fixed electrode, Pamidighan-
tam et al11 included the effects of partial electrodes, axial
stress, non-linear stiffening, charge-redistribution, fring-
ing fields etc., to obtain closed form expression for pull-
in voltage. Osterberg et al12 proposed another closed
form expression for pull-in voltage including the correc-
tions based on finite element simulations. Chowdhury et
al26 obtained a closed form model for calculating the pull
in voltage based on capacitance formula given by Mejji
and Fokkema27. Later, Kalaiarasi et al28 found that the
model obtained by Chowdhury et al26 is limited to a
range of selective dimensions. Consequently, they pro-
posed closed form models based on different capacitance
models available in literature to calculate pull-in voltage.
After validating the models with Finite Element Analy-
sis (FEA) based software, they concluded that different
capacitance models have to be used for different ranges
of beam dimensions. Later Tilman et al13 used minimum
energy principle to discuss pull in instability of clamped-
clamped beam. To include the effect of large deforma-
tion, Chaterjee et al29 numerically studied variation of
pull-in instability for uniform cantilever beam consider-
ing the effect of large deflection. Li et al30 performed
pull-in analysis in the linear, nonlinear and mixed regime
of MEMS fixed-fixed as well as cantilever beams. Based
on their analysis, they concluded that different theo-
ries should be used for beams with different configura-
tions and dimensions. A similar study was performed by
Rasekh et al31 to do pull-in analysis of carbon nanotube
based cantilever beams. Rahaeifard et al32 used modified
coupled stress theory to capture the size effect on pull-in
voltage of a nanoscaled beam. Subsequently, Baghani33

included nonlinear geometric effects along with size effect
to obtain the pull in voltage. However, most of the above
studies were limited to uniform beams. To capture fring-
ing effect due to non-uniform shape of the fixed electrode,

Cheng et al34 studied pull-in parameters of rectangular
cantilever torsion actuator due to electrostatic actuation
with respect to elliptical, hyperbolic and parabolic elec-
trodes. Similarly, Lemaire et al35, Raulli et al36 and Ab-
dalla et al37 worked towards optimizing geometry and
studied its effect on pull-in parameters. Najar et al38,39

employed differential quadrature method to study pull-
in parameters of beam with varying thickness, width and
distance from the fixed bottom electrode. Another study
by Joglekar and Pawaskar40 focused on the dynamic and
static pull-in analysis of linearly tapered cantilever beams
using numerical technique. Almost all studies concern-
ing non-uniform beams (fixed-fixed and cantilever) have
resorted to using numerical techniques or other transfor-
mation methods to find the pull-in voltage. In this paper,
we present pull-in voltage and frequency analysis of non-
uniform cantilever beams with varying widths and non-
linear curvature effect by using Galerkin method based
on the exact mode shape of linear non-uniform cantilever
beam.

To do the analysis, we first derived governing equa-
tion of motion of electrostatically excited non-uniform
cantilever beam considering large deflection effect us-
ing Hamilton’s Principle based on approach described
by Chaterjee and Pohit29 for a uniform beam. Subse-
quently, we obtained mode shapes from linear governing
equation for non-uniform cantilever beams with linear
and quartic varying widths. To obtain the correspond-
ing frequency and mode shape, we transformed linear
equation for a non-uniform beam into the equations of
equivalent uniform beam using method as described by
Abrate25. However, such transformations exist for quar-
tic tapered beam without any approximation and linearly
tapered beam with some approximation. Using the ap-
propriate boundary conditions, we finally obtained the
corresponding frequency equations and mode shapes of
non-uniform beams with linear and quartic variation in
width. Using mode shape of linear equation, we applied
Galerkin method based on single mode approximation
to obtain nonlinear static and dynamic modal equations.
Subsequently, we obtained the pull-in voltage as well as
frequency of non-uniform beam with different types of
tapering. After validating the model with available re-
sults, we discuss the effects of tapering on pull-in voltage
as well as linear frequency of non-uniform beams.

II. EQUATION OF MOTION

In this section, we derive governing equation of trans-
verse motion w(x, t) along z direction considering large
deflection for nonuniform cantilever beam under the in-
fluence of electrostatic force Qs as shown in Fig. 1. To
derive the equation, we consider a cantilever beam of
length L, width b(x), thickness h, area moment of inertia

I(x), density ρ and effective modulus E = E′

(1−v2) , where

E′ is the Young’s modulus and v is the Poisson’s ratio. If
u(x, t) is an axial extension under large deflection, then
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FIG. 1. (a) Transverse vibration of a cantilever beam sub-
jected to electrostatic excitation. (b) Variation of width of
a non-uniform cantilever beam with tapering parameter α as
b(x) = b0(1 + αx)n, where, n = 1 and 4 imply beam with
linear and quartic taper in width, respectively. Here, α < 0
corresponds to converging beam, α > 0 corresponds to di-
verging beams and α = 0 implies uniform beam. Given figure
depicts a quartic converging beam with α < 0 and n=4.

the axial strain ζxx at neutral axis can be written as41

ζxx =

√(
1 +

∂u(x, t)

dx

)2

+

(
∂w(x, t)

dx

)2

− 1 (1)

and the curvature k as42

k =

(
1 +

∂u

∂x

)
∂2w

∂x2
− ∂2u

∂x2
∂w

∂x
. (2)

Writing the kinetic energy KE and bending strain energy
Us as

KE =
1

2

∫ L

0

ρA(x){u̇2 + ẇ2}dx

Us =
1

2

∫ L

0

EI(x)k2dx.

and then using the virtual work done by external force
such that δQ = Qs, we apply Hamilton’s principle∫ t2

t1

(δKE − δUs − δQ)dt = 0, (3)

to obtain the governing equation. After substituting the
energy expression and using an approximate expression of
u′ = −w′2/2 under inextensibility condition, i.e., ζxx = 0,
the governing equation with non-linear terms upto O(ε3)
for undamped forced vibration can be written as

ρA(x)ẅ − EI(x)(w
′′
)3 + w

′
ρA(x)

×
∫ x

0

(w′ẅ′ + ˙(w
′
)2)dx+ w′(EI(x)w′′w′)′′

+(EI(x)w′′)′′ = Qs(t) (4)

where, Qs(t) is the electrostatic force considering fringing
field effect which is given by40

Qs(t) =
1

2

ε0b(x)(V + v(t))2

(d0 − w)2

(
1 +

2(d0 − w)

πb(x)

)
. (5)

where, ε0 = 8.854×10−12 F/m is the permittivity of free
space, V is DC voltage and v(t) is AC voltage.

The boundary conditions for non-uniform cantilever
beam can be written as

w(0) =
∂w

∂x
|x=0 = 0,

∂2w

∂x2
|x=L = 0,

∂

∂x

(
EI(x)

∂2w

∂x2

)
|x=L = 0. (6)

A. Non-dimensionalisation

To obtain non-dimensional form of governing equation
given by Eqn. (4) and boundary conditions given by
Eqn. (6), we define following non-dimensional parame-
ters,

x∗ =
x

L
, w∗ =

w

d0
, t∗ =

t

(L2
√

ρA0

EI0
)
, γ =

d0
L

f1(x) =
EĨ(x)

EI0
, f2(x) =

ρÃ(x)

ρA0
, (7)

where, EI(x) = EI0 + EĨ(x) = (1 + f1(x))EI0 and

ρA(x) = ρA0 + ρÃ(x) = (1 + f2(x))ρA0, I0 and A0 are
the area moment of inertia and cross-sectional area at the
fixed end of cantilever beam, respectively. We substitute
nondimensional parameters in Eqns. (4) and (6) rear-
range the terms to get the equivalent non-dimensional
governing equation as (after dropping the superscript ∗
for convenience)

(1 + f2(x))ẅ + ((1 + f1(x))w
′′
)
′′
− γ2(1 + f1(x))

×(w
′′
)3 + γ2(1 + f3(x))w

′
∫ x

0

((ẇ
′
)2 + w

′
ẅ

′
)dx

+γ2w
′
× ((1 + f1(x))w

′′
w

′
)
′′
−

1

2

ε0b(x)(V + v(t))2L

γ3EI0(1− w)2
− ε0(V + v(t))2L2

πγ2EI0(1− w)
= 0 (8)

and the boundary condition as

w(0) =
∂w

∂x
|x=0 = 0,

∂2w

∂x2
|x=1 = 0,

∂

∂x
(1 + f1(x))

∂2w

∂x2
|x=1 = 0 (9)

In the following section, we obtain exact mode shape
from linear undamped equation under free vibration cor-
responding to uniform as well as non-uniform beams.

B. Derivation of linear mode shape

In this section, we obtain exact mode shape of can-
tilever beam with uniform as well as linear and quartic
tapering in width. To obtain the mode shape, we consider
governing equation under linear, undamped and free vi-
bration conditions, thus, neglecting the nonlinear, damp-
ing and forcing terms. After substituting the expressions
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for f1 and f2 in Eqn. (8), the resulting linear equation
for non-uniform beam can be written as

∂2

∂x2

((
EI(x)

)∂2w
∂x2

)
+
EI0
ρA0

(ρA(x))
∂2w

∂t2
= 0. (10)

To obtain mode shape, we convert the equation for
non-uniform beam into an equivalent governing equa-
tion of uniform beam by following the approach as pro-
posed by Abrate26. Taking a function σ(x) such that
v(x) = σ(x)w(x), the equation for uniform beam can be
written as

∂4(σw)

∂x4
+
∂2(σw)

∂t2
= 0. (11)

Writing the expanded form of Eqns. (10) and (11) as

(I
′′
w

′′
+ Iw

′′′′
+ 2I

′
w

′′′
) +

I0
A0

A(x)ẅ = 0 (12)

and

(σ
′′′′
w + 4σ

′′′
w

′
+ 6σ

′′
w

′′
+ 4σ

′
w

′′′
+ σw

′′′′
)

+σẅ = 0, (13)

and then comparing the terms on left hand side of
Eqns. (12) and (13), we get following relationship

6σ
′′

I ′′ =
4σ

′

2I ′ =
σ

I
=

A0σ

I0A(x)
. (14)

Taking σ(x) such that σ
′′′′

and σ
′′′

are either zero or
negligible, and satisfying Eqn. (14), we find σ, I(x) and
A(x) corresponding to each type of tapered beam, sepa-
rately. Consequently, for computed form of σ, I(x) and
A(x), Eqn. (10) for non-uniform beam and Eqn. (11) for
uniform beam with v(x) = σw become equivalent. Based
on equivalent uniform beam, the exact mode shape for
Eqn. (11) is readily available as43

v(x) = A1 sin(λx) +A2 cos(λx) +A3e
λx +A4e

−λx.(15)

Using boundary conditions for cantilever beam, the form
of mode shape can be rewritten as

v(x) = σ(x)w(x) = A1[sin(λx)− sinh(λx)

− sin(λL) + sinh(λL)

cos(λL) + cosh(λL)
(cos(λx)− cosh(λx))]. (16)

Finally, mode shape of non-uniform beam with given ta-

pering can be found from the relation w(x) = v(x)
σ(x) . In

the following section, we apply above concept in comput-
ing mode shapes of uniform and non-unform beams with
different types of tapering and mention the frequency
equation to obtain corresponding frequency parameter,
λ.

1. Uniform beam: For uniform cantilever beam, we
get σ(x) = 1, A(x) = A0, and I(x) = I0. Con-
sequently, for v(x) = w(x), mode shape is given

by Eqn. (16). Using appropriate boundary condi-
tions, value of frequency parameter λ can be nu-
merically obtained by solving the following tran-
scedental equation

2λ6(2 + eλ cos(λ) + e−λ cos(λ)) = 0. (17)

2. Non-uniform beam with linear tapering: For a
non-uniform cantilever beam with linearly tapered
width, b(x) = b0(1 + αx), where, −1 < α < 0
corresponds to converging type and α > 0 corre-
sponds to diverging case. The area moment of iner-
tia and area can be written as I(x) = I0(1+αx) and
A(x) = A0(1 + αx), respectively. The correspond-
ing expression of σ can be obtained from Eqn. (14)

as σ(x) =
√

(1 + αx), thus, A(x) = A0σ(x)2 and
I(x) = I0σ(x)2. Since, the above relationship of
σ and α in case of linearly tapered width is ob-
tained by neglecting higher order differential terms
σ

′′′′
and σ

′′′
, the error associated with such assump-

tions grows rapidly as |α| > 0.5. For given bound-
ary condition, frequency parameter λ can be found
from the frequency equation

λ2

8(1 + α)4
(
16 cos(λ)eλα4λ4 + 64 cos(λ)e−λ

×αλ4 + 12 cos(λ)e−λα4λ+ 64 cos(λ)eλαλ4

−12 cos(λ)eλα4λ− 48 sin(λ)e−λα2λ3

+12 sin(λ)e−λα4λ+ 64 cos(λ)e−λα3λ4

+96 cos(λ)eλα2λ4 + 16 cos(λ)e−λα4λ4 + 32λ4

−6α4 + 192α2λ4 + 32α4λ4 + 128α3λ4

+128αλ4 + 64 cos(λ)eλα3λ4 + 48 cos(λ)e−λα2

×λ3 + 16 cos(λ)e−λα4λ3 + 48α3λ3e−λ cos(λ)

−48 cos(λ)eλα2λ3 − 16 cos(λ)eλα4λ3 − 48

cos(λ)eλα3λ3 + 12eλ sin(λ)α3λ+ 16e−λαλ3

× cos(λ) + 12e−λ sin(λ)α3λ− 16eλ cos(λ)αλ3

+96 cos(λ)e−λα2λ4 − 12eλ cos(λ)α3λ− 16eλαλ3

× sin(λ) + 12 cos(λ)e−λα3λ− 16e−λ sin(λ)αλ3

+16eλλ4 cos(λ) + 3eλα4 cos(λ) + e−λ16 cos(λ)λ4

+3e−λα4 cos(λ)− 48 sin(λ)eλα2λ3 + 12 sin(λ)

×eλα4λ− 48 sin(λ)eλα3λ3 − 48 sin(λ)λ3e−λα3

−16eλ sin(λ)α4λ3 − 16 sin(λ)e−λα4λ3
)

= 0(18)

Finally, for given λ and σ, mode shape can be ob-

tained from w(x) = v(x)
σ(x) , where, v(x) is given by

Eqn. (16).

3. Non-uniform beam with quartic tapering: For a
non-uniform cantilever beam with quartic varia-
tion in width, we take b(x) = b0(1 + αx)4, where,
−1 < α < 0 corresponds to converging type and
α > 0 corresponds to diverging case. Although,
there is no restriction over validity of Eqn. (14)
in this case, we restrict the value of α to 0.6 for
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quartic tapered beam. The area moment of iner-
tia and area can be written as I(x) = I0(1 + αx)4

and A(x) = A0(1+αx)4, respectively. Correspond-
ing expression of σ can be obtained from Eqn. (14)
as σ(x) = (1 + αx)2, thus, A(x) = A0σ(x)2 and
I(x) = I0σ(x)2. Frequency parameter λ can be
found from the frequency equation

2λ2

(1 + α)4

(
− 12 sin(λ)e−λα4λ− 4eλ cos(λ)

×αλ3 − 12eλ sin(λ)α3λ+ 4e−λ cos(λ)αλ3

+24eλ sin(λ)α3λ2 − 12eλ sin(λ)α2λ3 − 24

×e−λ sin(λ)α3λ2 − 12e−λ sin(λ)α2λ3 + 12eλ

× cos(λ)α4λ− 12eλ cos(λ)α2λ3 + 4eλ cos(λ)

×αλ4 − 12e−λ cos(λ)α4λ+ 12e−λ cos(λ)

×α2λ3 + 4e−λ cos(λ)αλ4 + eλ cos(λ)α4λ4

+e−λ cos(λ)α4λ4 − 4eλ sin(λ)α4λ3 − 4e−λα4

× sin(λ)λ3 − 4eλ cos(λ)α4λ3 + 4eλ cos(λ)α3λ4

+4e−λ cos(λ)α4λ3 + 4e−λ cos(λ)α3λ4 + 12eλ

× sin(λ)α4λ2 − 12eλ sin(λ)α3λ3 − 12e−λ sin(λ)

×α4λ2 − 12e−λ sin(λ)α3λ3 − 12eλ cos(λ)

×α3λ3 + 6eλ cos(λ)α2λ4 + 12e−λ cos(λ)

×α3λ3 + 6e−λ cos(λ)α2λ4 − 12eλ sin(λ)α4λ

+12eλ cos(λ)α3λ+ 12eλ sin(λ)α2λ2 − 4eλ

× sin(λ)αλ3 − 12e−λ cos(λ)α3λ− 12e−λ

× sin(λ)α2λ2 − 4e−λ sin(λ)αλ3 + 24α4 − 12α3

×e−λ sin(λ)λ− 12e−λ cos(λ)α4 + eλ cos(λ)λ4

+e−λ cos(λ)λ4 − 12eλ cos(λ)α4 + 8αλ4

+2α4λ4 + 8α3λ4 + 12α2λ4 + 2λ4
))

= 0 (19)

Like linearly tapered beam, for given λ and σ, the

mode shape can be obtained from w(x) = v(x)
σ(x) ,

where, v(x) is given by Eqn. (16).

C. Static and Dynamic Equations

To determine pull-in voltage and frequency at different
DC voltages, we first obtain static and dynamic deflection
equations for non-uniform cantilever beams with differ-
ent tapers. Since the net transverse deflection, w(x, t),
is composed of a static deflection zs(x) due to applica-
tion of DC bias and dynamic deflection z(x, t) due to AC
voltage, w(x, t) becomes

w(x, t) = zs(x) + z(x, t). (20)

Substituting the assumed deflection in nondimensional
governing equation as given by Eqn. (8) and setting the
time-varying dynamic terms as zero, we obtain equation

governing static deflection as

f
′′

1 z
′′

s + 2f
′

1z
′′′

s + (1 + f1)z
′′′′

s − γ2(1 + f1)(z
′′

s )3

+γ2z
′

s

(
f

′′

1 z
′′

s z
′

s + 2f
′

1z
′′′

s z
′

s + 2f
′

1(z
′′

s )2

+(1 + f1)z
′′′′

s z
′

s + 3(1 + f1)z
′′′

s z
′′

s

)
−1

2

ε0b(x)V 2L

γ3EI0(1− zs)2
− ε0V

2L2

πγ2EI0(1− zs)
= 0. (21)

Similarly, the dynamic equation is obtained by substitut-
ing Eqn.(20) in Eqn.(8), where, the static deflection zs
is obtained from Eqn.(21). Expanding the forcing term
about z = 0 and retaining terms upto first order, we ob-
tain corresponding linear dynamic equation by neglecting
the nonlinear terms, dissipation terms and forcing terms
as

(1 + f2)z̈ + (1 + f1)z
′′′′

+
(
4z

′

sz
′′
f

′

1γ
2

+3γ2z
′

sf1z
′′′

+ 2γ2z
′

sf
′′

1 z
′
+ 3γ2z

′
f1z

′′′

s

+3γ2z
′

sz
′′′

+ 3γ2z
′
z

′′′

s

)
z

′′

s +
(
(−3γ2f1

−3γ2)(z
′′

s )2 + γ2(z
′

s)
2f

′′

1 + 3γ2z
′

sf1z
′′′

s

+3γ2z
′

sz
′′′

s + f
′′

1

)
z

′′
+
(
2γ2z

′

sf1z
′′′′

s

+4γ2z
′

sf
′

1z
′′′

s + 2γ2f
′

1(z
′′

s )2 + 2γ2z
′

sz
′′′′

s

)
z

′

+
(
γ2f1z

′′′′
+ 2γ2f

′

1z
′′′

+ γ2z
′′′′)

(z
′

s)
2

+
(
γ2
∫ x

0

(
z

′′′
z

′

sf2 + z
′′′
z

′

s

)
dx
)
z

′

s + 2f
′

1z
′′′

−ε0V
2L

γ2EI0

(
b(x)

γ(1− zs)3
+

L

π(1− zs)2

)
z = 0 (22)

III. REDUCED ORDER MODEL

In order to find reduced order equations, we approxi-
mate static and dynamic deflections based on first trans-
verse mode as z(x, t) = P (t)φ(x) and zs = Aφ(x), re-
spectively, where, φ(x) is mode shape of non-uniform
cantilever beam with different tapering as obtained in
Section III. However, it is to be noted that for the first
flexural mode, static deflection due to applied DC is not
very different from mode shape. As a result, static deflec-
tion is assumed in terms of the mode shape. However,
this approximation is valid only for the first resonance
mode. At higher modes, shape of static deflection will
no longer be equal to dynamic deflection, i.e., the mode
shape. Here, we carried out further analysis only for
first resonance mode. Subsequently, we apply Galerkin
method to reduce static and dynamic equations given by
Eqns. (21) and (22), respectively, to reduced order form.
The reduced form of static equation governing amplitude
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of static deflection A is given by(∫ 1

0

(
f

′′

1 φ(x)
′′
φ(x) + 2f

′

1φ(x)
′′′
φ(x) + (1 +

f1)φ(x)φ(x)
′′′′)

dx
)
A+

(∫ 1

0

(
− γ2(1 + f1)

×(φ(x)
′′
)3φ(x) + γ2(φ(x)

′
)2f

′′

1 φ(x)
′′
φ(x)

+γ2φ(x)
′
2f

′

1φ(x)
′′′
φ(x)

′
φ(x) + 2γ2f

′

1(φ(x)
′′
)2

×φ(x)φ(x)
′
+ (1 + f1)γ2(φ(x)

′
)2φ(x)

′′′′
φ(x)

+3(1 + f1)γ2φ(x)
′
φ(x)φ(x)

′′′
φ(x)

′′)
dx
)
A3 −

1

2

ε0V
2L

γ3EI0

∫ 1

0

( b(x)φ(x)

(1−Aφ(x))2

)
dx− ε0V

2L2

πγ2EI0

×
∫ 1

0

(
φ(x)

(1−Aφ(x))

)
dx = 0 (23)

and the dynamic equation becomes[∫ 1

0

(1 + f2)(φ(x))2dx

]
P̈ +

[∫ 1

0

[
(1 + f1)

×φ(x)
′′′′

+

((
4φ(x)

′
φ(x)

′′
f

′

1γ
2 + 3γ2φ(x)

′

×f1φ(x)
′′′

+ 2γ2φ(x)
′
f

′′

1 φ(x)
′
+ 3γ2φ(x)

′

×f1φ(x)
′′′

+ 3γ2φ(x)
′
φ(x)

′′′
+ 3γ2φ(x)

′

×φ(x)
′′′
)
φ(x)

′′
+
(

(−3γ2f1 − 3γ2)(φ(x)
′′
)2

+γ2(φ(x)
′
)2f

′′

1 + 3γ2φ(x)
′
f1φ(x)

′′′
+ 3γ2φ(x)

′

×φ(x)
′′′

+ f
′′

1

)
φ(x)

′′
+
(
γ2
∫ x

0

φ(x)
′′′
φ(x)

′
f2

+φ(x)
′′′
φ(x)

′)
dx
)
φ(x)

′
+
((

2γ2φ(x)
′
f1φ(x)

′′′′

+4γ2φ(x)
′
f

′

1φ(x)
′′′

+ 2γ2f
′

1(φ(x)
′′
)2 + 2γ2

×φ(x)
′
φ(x)

′′′′)
φ(x)

′
+
(
γ2f1φ(x)

′′′′
+ 2γ2f

′

1

×φ(x)
′′′

+ γ2φ(x)
′′′′)

(φ(x)
′
)2
))

A2 + 2f
′

1φ(x)
′′′

−ε0V
2L

γ2EI0

(
b(x)φ(x)

γ(1−Aφ(x))3

+
L

π

φ(x)

(1−Aφ(x))2

)]
φ(x)dx

]
P = 0. (24)

In subsequent sections, we obtain pull-in voltage and fre-
quency variation of first transverse mode of non-uniform
beams.

A. Pull-in Voltage

Pull-in voltage is the DC voltage at which electrostatic
force becomes equal to elastic force. Consequently, static

deflection of beam approaches to infinite when the volt-
age increases beyond pull-in voltage, i.e., dAdV |V=VPI

→∞
or dV

dA |V=VPI = 0. Therefore, in order to obtain pull-in
voltage, we differentiate the reduced form of static equa-
tion given by Eqn.(23) with respect to A to get(∫ 1

0

(
f

′′

1 φ(x)
′′
φ(x) + 2f

′

1φ(x)
′′′
φ(x) + (1 + f1)

×φ(x)
)
φ(x)

′′′′
dx
)

+ 3
(∫ 1

0

(
− γ2(1 + f1)φ(x)

×(φ(x)
′′
)3 + γ2(φ(x)

′
)2f

′′

1 φ(x)
′′
φ(x) + γ2

×φ(x)
′
2f

′

1φ(x)
′′′
φ(x)

′
φ(x) + 2γ2φ(x)

′
f

′

1

×(φ(x)
′′
)2φ(x) + (1 + f1)γ2(φ(x)

′
)2φ(x)

×φ(x)
′′′′

+ 3(1 + f1)γ2φ(x)φ(x)
′
φ(x)

′′
φ(x)

′′′)
×dx

)
A2 − ε0L

γ2EI0

[
V

γ

dV

dA

∫ 1

0

( b(x)φ(x)

(1−Aφ(x))2

)
dx

+
V 2

γ

∫ 1

0

( b(x)φ(x)2

(1−Aφ(x))3

)
dx

+
2LV

π

dV

dA

∫ 1

0

( φ(x)

(1−Aφ(x))

)
dx+

LV 2

π

×
∫ 1

0

( φ(x)2

(1−Aφ(x))2

)
dx

]
= 0.(25)

After substituting dV
dA |V=VPI = 0 for the condition at pull-

in, we obtain the following expression of pull-in voltage

VPI =

[
γ2EI0
ε0L

S

E

] 1
2

, (26)

where,

E =

[
1

γ

∫ 1

0

( b(x)φ(x)2

(1−APIφ(x))3

)
dx+

L

π

∫ 1

0

( φ(x)2

(1−APIφ(x))2

)
dx

]

and

S =

∫ 1

0

[
f

′′

1 φ(x)
′′
φ(x) + 2f

′

1φ(x)
′′′
φ(x)

+(1 + f1)φ(x)φ(x)
′′′′
]
dx+ 3A2

PI

×
∫ 1

0

[
− γ2(1 + f1)(φ(x)

′′
)3φ(x) + γ2

(φ(x)
′
)2f

′′

1 φ(x)
′′
φ(x) + γ2φ(x)

′
2f

′

1φ(x)
′′′

×φ(x)
′
φ(x) + 2γ2φ(x)

′
f

′

1(φ(x)
′′
)2φ(x) +

(1 + f1)γ2(φ(x)
′
)2φ(x)

′′′′
φ(x) + 3(1 + f1)×

γ2φ(x)
′
φ(x)φ(x)

′′′
φ(x)

′′
]
dx,

where, API is the static deflection at pull-in voltage.
Static deflection from Eqn. (23) at pull-in parameters is
solved along with Eqn. (26) to obtain the pull-in voltage.
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B. Normal Mode Frequency

To find frequency of first transverse mode of the sys-
tem, we re-write Eqn.(24) of dynamic deflection in fol-
lowing form,

MP̈ +KP = 0. (27)

Consequently, the frequency ω of oscillating cantilever
beam about statically deflected position due to applied
DC is given by

ω =

√
K

M
. (28)

On comparing Eqns. (24) and (27), we get the expression
for M and K in terms of amplitude of static deflection
A, DC Voltage V , beam dimensions and properties as

M =

∫ 1

0

(1 + f2)(φ(x))2dx

and

K =

∫ 1

0

[
(1 + f1)φ(x)

′′′′
+

((
4φ(x)

′
φ(x)

′′
f

′

1γ
2 +

3γ2φ(x)
′
f1φ(x)

′′′
+ 2γ2φ(x)

′
f

′′

1 φ(x)
′
+ 3γ2φ(x)

′

×f1φ(x)
′′′

+ 3γ2φ(x)
′
φ(x)

′′′
+ 3γ2φ(x)

′
φ(x)

′′′
)
φ(x)

′′

+
(

(−3γ2f1 − 3γ2)(φ(x)
′′
)2 + γ2(φ(x)

′
)2f

′′

1 + 3γ2

×φ(x)
′
f1φ(x)

′′′
+ 3γ2φ(x)

′
φ(x)

′′′
+ f

′′

1

)
φ(x)

′′

+
(
γ2
∫ x

0

φ(x)
′′′
φ(x)

′
f2 + φ(x)

′′′
φ(x)

′)
dx
)
φ(x)

′

+
((

2γ2φ(x)
′
f1φ(x)

′′′′
+ 4γ2φ(x)

′
f

′

1φ(x)
′′′

+ 2γ2f
′

1

×(φ(x)
′′
)2 + 2γ2φ(x)

′
φ(x)

′′′′)
φ(x)

′
+
(
γ2f1φ(x)

′′′′

+2γ2f
′

1φ(x)
′′′

+ γ2φ(x)
′′′′)

(φ(x)
′
)2
))

A2 + 2f
′

1φ(x)
′′′

−ε0V
2L

γ2EI0

(
b(x)φ(x)

γ(1−Aφ(x))3
+
L

π

φ(x)

(1−Aφ(x))2

)]
φ(x)dx.

Finally, it is important to note that frequency equation
considers nonlinear curvature effect which becomes im-
portant at large static deflection under large DC volt-
age. Any nonlinearity in the motion amplitude of AC
component, leading to so-called Duffing resonance, is not
considered in this paper.

IV. RESULTS AND DISCUSSIONS

In this section, we discuss the effect of non-uniformity
parameter, α, on above mentioned phenomenon for the
uniform beam as well as beams with linear and quartic
taper in width. Again, we mention that α > 0 and −1 <

α < 0 correspond to diverging and converging beams,
respectively. The uniform beam corresponds to the case
when α = 0. In first subsection, we discuss the effect of
taper parameter on linear frequency at zero DC voltage,
when nonlinear curvature effect is negligible for different
beams. Subsequently, we use the linear mode of different
tapered beams to obtain pull-in voltage and frequency
of non-uniform cantilever beam with nonlinear curvature
effects. Finally, we compare results with available values
in literature for some cases and then discuss about the
importance of tapering.

A. Frequency Analysis at Zero DC Voltage

The transcendental Eqns. (17), (18), and (19) corre-
sponding to the uniform beam, beams with linear ta-
pers and beams with quartic tapers, respectively, can
be solved numerically to obtain resonance frequencies
for different α. Although, these equations can be used
to obtain frequencies for higher modes as well, here, we
compute the frequency of only first flexural mode. Fre-
quencies for all the three cases for various α are tabulated
in Tables I and II, where, α = 0 corresponds to uniform
beam. Results for uniform and linearly converging beams
are also compared with that of Mabie et al14 in which
linear frequency is obtained using numerical integration
without finding the mode shape. As previously men-
tioned in section II B, transformation of linearly tapered
beam into equivalent uniform beam is done with some
approximation. The effect of this approximation can be
observed from Table I. By comparing the computed re-
sults with available results, we get percentage errors of
1.5% and 12.5% correponding to taper parameter, α, -0.4
and -0.6, respectively. Additionally, we have found that
for alpha = −0.5, percentage error in computing pull-
in voltage from the proposed method is less than 1% or
2% when compared with FEM or semianalytical solution
as mentioned by Joglekar and Pawaskar40 in Table IV.
Therefore, the approximation considered in non-uniform
beam with linear taper in width gives negligible error
when |α| ≤ 0.4, the percentage error for 0.5 ≤ |α| ≤ 0.6
can be assumed to be less than 12.5%. Thus, the ap-
proach adopted in this paper is validated and can be
extended to compute frequencies of non-uniform beams
with different tapering. Figure 2 shows variation of lin-
ear frequency with α for both converging and diverging
beams with linear and quartic taper in width. We observe
that frequency for diverging beams decreases with an in-
crease in α, while that of a converging beam increases.
For converging beam with quartic taper in width, the fre-
quency is about 2.5 times greater than that of a uniform
beam. The corresponding mode shape can be obtained
for different beams for given values of α as discussed in
section II B. As a result, application of non-uniform can-
tilever beam (in particular beams with quartic variation
in width) can prove to be an excellent means in improving
the performance of resonant sensors and actuators which
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FIG. 2. Effect of taper parameter (α) on the linear frequency
for various cases of tapering

operate at resonance frequency. In subsequent subsec-
tions, we discuss the pull-in voltage and resonance fre-
quency of various non-uniform beams by including the
non-linear curvature effect.

TABLE I. The non dimensional fundamental frequency of
converging (negative α) and diverging (positive α) beam with
linear taper in width.

α Present Mabie et al. 14

0.0 3.516 3.516
-0.1 3.628 –
-0.2 3.747 3.717
-0.3 3.865 –
-0.4 3.954 3.892
-0.5 3.940 –
-0.6 3.540 4.048

α Present

0.0 3.516
0.1 3.413
0.2 3.321
0.3 3.237
0.4 3.162
0.5 3.096
0.6 3.036

TABLE II. The non dimensional frequency of converging (neg-
ative α) and diverging (positive α) beam with quartic tapering
in width

α Frequency

0.0 3.516
-0.1 3.994
-0.2 4.588
-0.3 5.336
-0.4 6.298
-0.5 7.558
-0.6 9.235

α Frequency

0.0 3.516
0.1 3.124
0.2 2.799
0.3 2.526
0.4 2.294
0.5 2.096
0.6 1.924

B. Pull-in Analysis

To obtain pull-in voltage for different tapered beams
by following the approach as explained in section III A,

TABLE III. Comparison of the pull-in voltage of uniform can-
tilever beam with existing literature

Sample
Number

VPull−in

(V)
(Present
model)

VPull−in

(V)
(Reference)

Reported By
(method)

1 65.19 68.5
Hu et al44

(experimental)

2 65.19 66.78
Chaterjee & Pohit29

(numerical)

3 37.15 37.84
Chowdhury et al26

(numerical)

4 2.23 2.27
Chowdhury et al26

(numerical)

5 2.23 2.29
Joglekar & Pawaskar40

(analytical)

TABLE IV. Comparison of pull-in voltage of converging beam
with linearly tapered width with existing literature

Sample
Number

α
Pull-in voltage

by present
model (V)

Pull-in voltage
by Joglekar and
Pawaskar40 (V)

1 -0.25 5.45 5.59 (analytical)
2 -0.25 5.45 5.61(FEA)
3 -0.5 24.74 24.26(analytical)
4 -0.5 24.74 24.68(FEA)

we first validate our model for pull-in voltage of a uni-
form beam with five different results from the literature
as mentioned in Table III. Taking dimensions and ma-
terial properties for each case as: (1) L = 20000 µm,
b = 5000 µm, h = 57 µm, d0 = 92 µm, E′ = 155.8 GPa,
v = 0.06; (2) L = 20000 µm, b = 5000 µm, h = 57 µm,
d0 = 92 µm, E′ = 155.8 GPa, v = 0.06; (3) L = 100 µm,
b = 50 µm, h = 3 µm, d0 = 1 µm, E′ = 169 GPa,
v = 0.06; (4) and (5) L = 300 µm, b = 50 µm, h = 1 µm,
d0 = 2.5 µm, E′ = 77 GPa, v = 0.33, computed results
from the developed model are found to be in good agree-
ment with available results. To compare the accuracy of
non-uniform beam, when α is non-zero, we take few cases
of converging beam with linear variation in width and
compare the results with that of Joglekar and Pawaskar40

in Table IV. The dimensions and material properties for
case (1) and (2) are taken as L = 200 µm, b = 40 µm,
h = 1 µm, d0 = 2 µm, E′ = 169 GPa, v = 0.06, and
that of (3) and (4) are taken as L = 100 µm, b = 15 µm,
h = 1µm, d0 = 2 µm, E′ = 169 GPa, v = 0.06. On
comparing the pull-in voltage of linearly tapered beam for
α = −0.25 and −0.5 obtained from the present method
with the results from Joglekar and Pawaskar40 in Ta-
ble IV, we get percentage error of about 2%. Although
nonlinear curvature effect is neglected in their models,
it may be insignificant for the given geometry. Now, we
extend the analysis to different types of tapered beams.
Figure 3(a) shows pull-in voltage with different taper pa-
rameters (α) for beams with linear and quartic varia-
tion in width. The dimensions and material properties
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for each case are taken as L = 200 µm, b = 40 µm,
h = 1 µm, d0 = 2 µm, E′ = 168.39 GPa, v = 0.06.
Figure 3(b) shows comparison of percentage difference in
computing the pull-in voltage with and without fringing
field effects of different non-uniform beams at different ta-
per parameters. For a quartic tapered beam with taper
parameter of α = −0.6, we get a maximum percentage
difference of about 7%. From our analysis, we find that
for a converging beam, the pull-in voltage increases with
an increase in α, while for diverging beam, it decreases.
This trend was expected because of the changes in stiff-
ness of converging and diverging beam with α. Similar
changes were also observed in case of linear frequency
in previous section. The linear frequency for diverging
beam decreases with an increase in α which implies that
stiffness effect (or spring force) decreases. As a result,
at a lower voltage, electrostatic forces balance the spring
force, and then the pull-in occurs. While in case of con-
verging beam, frequency (or stiffness) is more, and as a
result a higher voltage is needed for electrostatic forces
to overcome the spring force offered by cantilever beam.
Consequently, we see that pull-in voltage increases by
more than 100% in case of converging beam with quartic
tapering as compared to uniform beam. Thus, employing
a cantilever beam with quartic variation in width gives
us a larger voltage threshold which is about 2 times as
that of a widely used uniform beam for the operation of
MEMS devices.

C. Frequency Analysis at finite DC

To study vibration of different types of cantilever
beams under the application of DC voltage, we solve
static deflection Eqn.(23) at different V to get static de-
flection A. Using obtained value of A, we find frequency
from Eqn.(28) for different values of DC voltage. Figure
4 shows variation of the frequency with applied DC for
various types of beams. Frequencies are normalized with
their corresponding frequencies at zero DC voltage. From
figure 4, we see that increase of DC voltage causes the
system to soften and frequency decreases with an increase
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FIG. 4. Variation of linear, non-dimensional frequency with
applied DC voltage for various types of beams. ω0 is the
frequency at zero DC

in voltage. We know that geometrical non-linearity has
stiffening effect while inertial nonlinearity and linear elec-
trostatic forces have softening effect. However, overall ef-
fect on the dynamics depends on relative strength of each
nonlinearity. In our analysis, we have neglected higher or-
der terms of dynamic deflection in order to obtain linear
frequency at finite DC. With an increase of applied DC
voltage, linear frequency is found to decrease, thus, the
system undergoes softening effect due to linear electro-
static forces. This trend is obtained as the initial gap to
beam length ratio (γ) is less than 0.3 where the stiffening
effect of geometrical nonlinearity is minimal. For γ > 0.3
and higher DC, the combined effect of geometrical nonlin-
earity and nonlinear electrostatic force with higher order
terms becomes inevitable31. While this study consid-
ers geometrical nonlinearity in analysis, the higher order
nonlinear terms of electrostatic forces are neglected.

V. CONCLUSIONS

In this paper, we have developed theoretical model
for computing the frequency as well as pull-in voltage
of non-uniform cantilever beam with nonlinear curvature
effects. The non-uniformity considered in this paper is for
the cantilever beams with linear and quartic tapering in
width. To develop this model, we first obtained the exact
mode shape from linear equation for beams with different
non-uniformities. Subsequently, we apply the Galerkin
method based on single mode shape to find the formula-
tion for pull-in voltage and frequency from correspond-
ing static and dynamic equations respectively. From our
analysis, we have observed that linear frequency can be
increased by more than 2.5 times, whereas, pull-in volt-
age can also be increased by 2 times simply by varying
the order of tapering in the quartic tapered beam. Such
findings can be utilized not just to increase the sensitiv-
ity of cantilever based devices, but it also increases the
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operating range of bias voltage.
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