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Abstract

Nonlocal and surface effects become important for nanoscale devices. To model

these effects on frequency response of linear and nonlinear nanobeam subjected

to electrostatic excitation, we use Eringen’s nonlocal elastic theory and sur-

face elastic theory proposed by Gurtin and Murdoch to modify the governing

equation. Subsequently, we apply Galerkin’s method with exact mode shape in-

cluding nonlocal and surface effects to get static and dynamic modal equations.

After validating the procedure with the available results, we analyze the varia-

tion of pull-in voltage and frequency resonance by varying surface and nonlocal

parameters. To do frequency analysis of nonlinear system, we solve nonlinear

dynamic equation using the method of multiple scale. We found that the fre-

quency response of nonlinear system reduces for fixed excitation as the surface

and nonlocal effects increase. Also, we found that the nature of nonlinearity

can be tuned from hardening to softening by increasing the nonlocal effects.

Keywords: Surface effects, Nonlocal effects, Pull-in Voltage, Linear and

nonlinear frequency

∗Corresponding author
Email address: ashok@iith.ac.in (Ashok Kumar Pandey)

Preprint submitted to Applied Mathematical Modelling November 17, 2016



1. Introduction

Microelectromechanical systems ( MEMS) and nanoelectromechanical sys-

tems (NEMS) have been explored widely in the design of resonant sensors and

actuators in various fields [1, 2, 3, 4]. For the design and safe operation of the

MEMS/NEMS devices, pull-in instability analysis is also very important. Pull-

in voltage is defined as a critical voltage at which the physical equilibrium point

loses its stability. Pull-in instability can be static or dynamic. Static pull-in

is defined as critical dc voltage required to produce maximum stable displace-

ment from initial equilibrium position. Dynamic pull-in is defined as critical ac

voltage required for the collapse of the elastic structure toward the substrate at

low dc voltage below static pull-in [5, 6]. The performance of resonant sensors

is mostly characterized by the resonance frequency and the damping [7]. To

improve their sensitivity, the size of such devices have been reduced to submi-

cron or nanoscale. Due to high sensitivity of such devices, accurate computation

of the resonance frequency and their frequency response are essential from the

design prospective. An accurate computation of resonance frequency requires

correct modeling of mechanical effects such as the bending, stretching, rotation,

and shearing, etc., in nanobeams. To compute the frequencies in nanoscale

structure, there are mainly two techniques, one is based on atomistic simulation

[8, 9, 10], and another is based on the continuum method [11, 12]. While the

atomistic simulation becomes computationally expensive, traditional continuum

method gives inaccurate results due to the negligence of small scale and surface

effects, respectively. Therefore, correct modeling of scale and surface effect is

important to capture the mechanical effects accurately. In this paper, we dis-

cuss about the scale and surface effects on the linear and nonlinear frequency

response of an electrostatically excited fixed fixed beam.

The set of eigen circular frequencies of transversal vibrations of a beam

is generally found by solving partial differential equation of transversal vibra-

tions either by Euler-Bernaulli thoery or Timoshenko theory with or without

nonlinear geometric effects. However, when the scale effect dominates, which

2



influences the material properties of nanoscale devices [13], it is generally mod-

elled by Eringen’s theory of nonlocal-elasticity [14, 15]. Nonlocal-elastic theory

states that the stress at a point is not only the function of strain at that point

but it also depends on the strains in whole volume [14]. Consequently, the

terms in classical beam equations are modified to capture the nonlocal effects

accordingly. Similarly, the surface effect, which becomes dominant as surface

to volume ratio increases in submicron or nanoscale structure [16], is modeled

based on the surface elasticity theory as proposed by Gurtin and Murdoch [17].

According to surface elastic theory, surface effect is defined as increase in sur-

face to bulk energy ratio, due to high surface/volume ratio in nanoscale regime.

The validity of surface elasticity theory is also validated with the experimental

results in different cases [16, 18, 19]. Therefore, for analysing the frequency re-

sponse of the submicron or nanoscale beams, the combined surface and nonlocal

effects should be analyzed.

There have been many studies available in the literature that describe the

modeling of surface and nonlocal effects, either separately or as a combined

effect on the linear and nonlinear free vibration of the nanostructures. He et

al [20] theoretically modeled the surface effects to study the free transverse vi-

brations of nanowires. Sheng et al [21] also investigated the surface effects on

the free transverse vibrations of MEMS devices. Abbasion et al [22] consid-

ered the surface effects in analysing the free vibrations of microbeam based on

Timoshenko theory. Gheshlaghi et al [23] and Hashemi et al [24] modelled the

surface effects along with the geometric nonlinearity to compute the variation

of nonlinear free transverse vibrations of nanobeams. Lu et al [25] performed

size-dependent static and dynamic analysis of plate-like thin film structures by

proposing a general thin plate theory including surface effects. Liu et al [26]

presented a theoretical model which considers surface energy effects based on

Gurtin-Murdoch continuum theory to analyze thick and thin nanoscale beams

with an arbitrary cross section under different loading and boundary conditions.

Hu et al [27] studied the buckling and free vibrations of nonlocal nanowires by

including surface elasticity. Hu et al [28] also investigated slant edge cracked
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effect on the free transverse vibrations of nanobeams considering the inherent

relation between surface energy and mixed-mode crack propagations and sur-

face effect. To model the nonlocal effects, Pradhan and Murmu [1] performed

frequency analysis based on nonlocal elasticity for single wall carbon nanotube

embedded in elastic media. While Wang et al [29] analyzed the free vibrations

of beam using Timoshenko theory, Murmu et al [30] included it in analysing the

transverse vibrations of two nanobeams systems. Later, Reddy [31] included

the nonlocal effect in the nonlinear analysis of the bending of beams and plates.

Ke et al [32] investigated nonlinear free transverse vibrations of the piezoelectric

nanobeams including the nonlocal effect. Hu et al [33] demonstrated the scale

effect on coupling of in-plane and out-of-plane modal frequencies in nanores-

onators. In addition to the individual effects of surface and the nonlocal effects,

some researchers carried out different studies to model both surface and nonlo-

cal effects. Lee et al analyzed the combined effects of surface and nonlocal on

transversal vibrations of beam using Timoshenko theory [34] and of non-uniform

nanobeams using Euler-Bernaulli theory [35], respectively. Nazemnezhad et al

[36] modeled the combined effect to investigate the variation of nonlinear free

transverse vibrations of nanobeams. Recently, Malekzadeh et al [12] investi-

gated surface and nonlocal effects on the nonlinear free transverse vibrations of

non-uniform nanobeams. While most of the previous studies were focused on

modeling the surface and nonlocal effects in the bending and nonlinear geomet-

ric terms, Ardito et al [37] investigated the free vibration of micromechanical

resonators under the effect of nonlocal thermoelastic damping. Lei et al [38]

also investigated the effect of nonlocal Kelvin-Voigt viscoelastic damping on

the frequency of nonlocal Timoshenko beam. Based on the above studies, free

vibration frequencies of the beam of submicron to nanoscale length are found

to be sensitive to the surface and nonlocal effects. Recent research trend fo-

cus on the modeling of nonlocal and surface effects on the resonance frequency

and the pull-in effect (a common phenomena in MEMS [39, 40, 41]) of elec-

trostatically excited beam of submicron to nanoscale dimensions. Mousavi et

al [42] and Yang et al [43] investigated the pull-in stability of nano switches
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using nonlocal elasticity theory. Recently, Fakhrabadia et al [11] also modelled

the nonlocal effect in the bending and the forcing term of the electrostatically

actuated carbon nanotubes to study the pull-in effect. Pasharavesh et al [44]

considered the nonlocal effect in the inertial and forcing term to investigate the

transverse vibrations of nonlinear clamped-clamped and cantilever beam using

approximate mode shapes. While they found that the resonance frequency of

cantilever increases with increase in size, that of doubly-clamped beam reduces

with size.

From the above literatures, it is found that the surface and nonlocal effects

play an important role in the dynamic characteristics of nanobeams. How-

ever, there are hardly any literature that present the comprehensive modeling

of combined surface and nonlocal effects on the frequency of linear and nonlinear

system vibrations of electrostatically excited nanobeams at large bias voltage.

In this paper, we obtain governing partial differential equation of nonlinear sys-

tem by including the non-local effect in terms related with inertial, linear and

nonlinear stiffness, bending, damping, and forcing term of electrostatically ex-

cited fixed-fixed nanobeam. To capture the surface effects, we also modify the

linear and nonlinear stiffness terms in the governing equation. To do the static

and dynamic analysis, we apply Galerkin’s method with exact mode shape ob-

tained by considering surface and nonlocal effects to get static as well as modal

dynamic equations, respectively. The exact mode shape is derived considering

nonlocal effects , the surface effects , initial tension following the procedure as

found in [45] . Subsequently, we do static analysis to find the pull-in voltage

with surface and nonlocal effects. After validating the pull-in voltage with the

available results in the literature without considering nonlocal and surface ef-

fects, we do frequency analysis of linear and nonlinear system vibrations. To

do the frequency analysis of nonlinear system vibrations, we apply the method

of multiple scale (MMS) to obtain approximate solution. After validating the

solution based on MMS with the numerical solution from the modal dynamic

equation, we investigate the influence of surface and nonlocal effects on the

nonlinear frequency response of the beam.
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Figure 1: (a) Description of the transverse motion of a fixed-fixed beam with respect to the

bottom electrode under the influence of electric voltage V . (b) Electric field lines showing

the direct and fringing field effect along a section of electrostatically excited fixed-fixed beam.

Here, Es and τ0 are elastic surface modulus and residual surface tension, respectively.

2. Governing partial differential equation of transversal vibrations of

beam

In this section, we obtain the governing partial differential equation of transver-

sal vibrations of a fixed-fixed beam subjected to electrostatic actuation using

modified classical elastic theory by including nonlocal and surface effects, respec-

tively. To obtain the governing equation, we consider a fixed-fixed homogeneous

prismatic beam with rectangular cross section of length L, width b, thickness h

which is separated from the bottom electrode by a distance of d, respectively,

as shown in fig. 1(a). The beam is electrostatically excited by applying voltage

V = Vdc +v(t), where v(t) = Vac cos(Ωt) across the beam and bottom electrode.

(a) Surface effect: To capture the surface effect, the classical constitutive rela-

tion of the surface boundaries (y = ±b/2; z = ±h/2) as given by Gurtin

and Murdoch [17] and also the classical constitutive relations for the inter-

nal material of the beam under large transverse deflection ( -b/2< y< b/2;

-h/2< z <h/2) can be expressed as:

σs = τ0 + Esεx̄x̄, σx̄x̄ = Eεx̄x̄, εx̄x̄ =
∂ũ

∂x̄
+

1

2

(∂w̃
∂x̄

)2

− z ∂
2w̃

∂x̄2
(1)

where,τ0 is the residual surface axial stress, Es is the surface elastic mod-

ulus, ũ and w̃ are the axial and transverse deflection, εx̄x̄ is the effective

axial strain under large bending condition, E is the Young’s modulus of the
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internal material of the beam. Assuming the neglgible axial deflection as

compared to the transverse deflection, ∂ū
∂x̄ → 0. The stress resultants also

containing the surface effects can be utilized to find the effective axial force

and the moment as:

Nx̄x̄ =

∫ h
2

−h2
σx̄x̄bdz +

∮
σsds = (EA)s

1

2

(∂w̃
∂x̄

)2

+ 2τ0(b+ h) (2)

M =

∫ h
2

−h2
zσx̄x̄bdz +

∮
zσsds = (EI)s

[
− ∂2w̃

∂x̄2

]
(3)

where, A = bh is cross sectional area, (EA)s and (EI)s are the effective

in-plane and flexural rigidities, respectively, and which can be written as

[12]:

(EA)s = EA+ 2Es(b+ h) and (EI)s = EI + Es
(
h3

6
+
bh2

2

)
(4)

(b) Nonlocal effect: In order to include the nonlocal effect, the relationship

between the nonlocal stress, σnl
ij , and the local stress, σlij , is obtained by

Eringen [14, 15], which is given by the following differential constitutive

relation (
1− µ̄ ∂2

∂x̄2

)
σnl
ij = σlij (5)

where,µ̄ = (e0a)2 is the nonlocal scale parameter, e0 is the material con-

stant, and a is the internal characteristic length. Using the stress relation

from Eq. (5), the nonlocal axial tension and bending moments can be writ-

ten as: (
1− µ̄ ∂2

∂x̄2

)
Nnl
x̄x̄ = N l

x̄x̄ (6)

Mnl − µ̄∂
2Mnl

∂x̄2
= M l = EI

[
− ∂2w̃

∂x̄2

]
(7)

(c) Governing equation: Considering nonlocal effect in following terms, such as

the unsteady inertia term [12], axial tension term [12], damping term [38]

and the external forcing term [11], based on equivalent Eringen’s model,
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i.e.,
(

1− µ̄ ∂2

∂x̄2

)
Xnl = X l, where, X is variable, we can obtain a similar

governing equation as described in [12]. Neglecting the in-plane deflection

as compared to the transverse deflection,
∂Nnl

x̄x̄

∂x̄ → 0, we get Nnl
x̄x̄ = N l

x̄x̄ [12].

Finally, including the surface effect, nonlocal effect, and residual tension N0,

the equation of transverse vibration, w̃ can be written as

(
1− µ̄ ∂2

∂x̄2

)
ρA

∂2w̃

∂t̄2
+

∂2

∂x̄2

[
(EI)s

∂2w̃

∂x̄2

]
−

(
1− µ̄ ∂2

∂x̄2

)[
Nnl
x̄x̄

∂2w̃

∂x̄2

]

+

(
1− µ̄ ∂2

∂x̄2

)
C
∂w̃

∂t̄
=

(
1− µ̄ ∂2

∂x̄2

)
Qe. (8)

where,µ̄ = (e0a)2 is the nonlocal scale parameter, Nnl
x̄x̄ is the resultant axial

tension [12], (EI)s and (EA)s are the effective flexural and axial rigidities

[12], Qe is excitation force per unit length which is based on the assumption

of parallel plate capacitor [39]. The expressions of these quantities are given

by

Nnl
x̄x̄ = N0 +

1

2

(
∂w̃

∂x̄

)2

(EA)s + 2τ0(b+ h),

(EI)s = EI + Es
(
h3

6
+
bh2

2

)
, (EA)s = EA+ 2Es(b+ h), (9)

Qe =
ε0bV

2

2(d− w̃)2

[
1 + 0.65

(d− w̃)

b

]
(10)

where, τ0 and Es are residual surface tension and elastic surface modulus,

ρ is density, A = bh is cross sectional area, E is Young’s modulus, I = bh3

12

is axial moment of inertia of beam cross section for neutral axis of beam

bending, N0 is the pretention and C is damping constant. The force Q as

mentioned in Eq. (10) consists of direct and fringing field effects as described

in fig. 1(b). To obtain the generalized solution, we simplify the governing

equation by substituting Eqs. (9) and (10) in Eq. (8) as

ρAw̃t̄t̄ − µ̄ρAw̃x̄x̄t̄t̄ + (EI)sw̃x̄x̄x̄x̄ −N0w̃x̄x̄ + µ̄N0w̃x̄x̄x̄x̄ −
1

2
(EA)s(w̃x̄)2w̃x̄x̄

+
1

2
µ̄(EA)s(w̃x̄)2w̃x̄x̄x̄x̄ − 2τ0(b+ h)w̃x̄x̄ + 2µ̄τ0(b+ h)w̃x̄x̄x̄x̄ + µ̄(EA)s[

(w̃x̄x̄)2 + w̃x̄w̃x̄x̄x̄

]
w̃x̄x̄ + Cw̃t̄ − µ̄Cw̃x̄x̄t̄ = Qe(w̃, t̄)− µ̄Qex̄x̄(w̃, t̄). (11)
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To solve the above equation for fixed-fixed beam, we obtain the following

boundary conditions

w̃(0, t̄) = 0, w̃x̄(0, t̄) = 0, w̃(L, t̄) = 0, w̃x̄(L, t̄) = 0. (12)

(d) Nondimensionalization: To study the pull-in phenomena and response of

nonlinear system of vibrations of fixed-fixed nanobeam with surface and

nonlocal effcts under electrostatic actuation, we non-dimensionalize the

above equations and boundary conditions with the following non-dimensional

parameters w = w̃
d , t = t̄ωs, x = x̄

L , ωs
2 = (EI)s

ρAL4 , µ = µ̄
L2 as follow:

wtt − µwxxtt + wxxxx − α1wxx + α2wxxxx − β1(wx)2wxx + β2(wx)2wxxxx

+β3

[
(wxx)2 + wxwxxx

]
wxx + k1wt − k2wxxt =

f11V
2

(1− w)2
− f12(wxx)V 2

(1− w)3

−f13(wx)2V 2

(1− w)4
+

f21V
2

(1− w)
− f22(wxx)V 2

(1− w)2
− f23(wx)2V 2

(1− w)3
, (13)

w(0, t) = 0, wx(0, t) = 0, w(1, t) = 0, wx(1, t) = 0, (14)

where,

α1 = [N0 + 2τ0(b+ h)]
L2

(EI)s
, α2 = µα1, β1 =

1

2

(EA)s
(EI)s

d2, β2 = µβ1,

β3 = 2β2, k1 =
C

ρAωs
, k2 = µk1, f11 =

ε0bL
4

2d3(EI)s
, f12 = 2µf11

f13 = 6µf11, f21 =
0.65ε0L

4

2d2(EI)s
, f22 = µf21, f23 = 2µf21. (15)

To do the static and dynamic analysis of the above equation, we assume

transverse displacement w(x, t) as a sum of static deflection zs and dynamic

component z(x, t) as follow

w(x, t) = zs(x) + z(x, t). (16)

3. Static Analysis

In this section, we perform static analysis to study the effect of nonlocal

and surface parameters on pull-in voltage under the combined effect of direct as

well as fringing forces. The differential equation of static equilibrium governing
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zs(x) is obtained by substituting Eq. (16) into Eq. (13), and subsequently setting

the time derivative and dynamic displacement z(x, t) equal to zero. Thus, the

resulting equation for static deflection zs(x) can be written as:

zsxxxx − α1zsxx + α2zsxxxx − β1(zsx)2zsxx + β2(zsx)2zsxxxx

+β3

[
z2
sxx + zsxzsxxx

]
zsxx =

f11V
2
dc

(1− zs)2
− f12(zsxx)V 2

dc

(1− zs)3

−f13(zsx)2V 2
dc

(1− zs)4
+

f21V
2
dc

(1− zs)
− f22(zsxx)V 2

dc

(1− zs)2
− f23(zsx)2V 2

dc

(1− zs)3
. (17)

To solve the above equation, we assume the solution based on the single mode

approximation as zs(x) = qφ(x), where φ(x) is exact mode shape obtained

by considering nonlocal effects, the surface effects, initial tension. It can be

readily reduce to form of exact mode shape with nonlocal effects as mentioned

in [45] by neglecting initial tension and surface effects. The form of characteristic

equation and mode shape φ(x) for fixed-fixed beam which satisfy the appropriate

boundary similar to [45] are given by

(e0a)2kfke sinh(keL) sin(kfL) + 2 cosh(keL) cos(kfL)− 2 = 0,

φ(x) = cosh (kex)− cos (kfx)− (ke sinh (keL) + kf sin (kfL))

ke (cosh keL− cos kfL)

×
[
sinh (kex)− ke

kf
sin (kfx)

]
, (18)

where,

kf = λ

√√√√√4 + ((e0aλ)2 − (N/λ2))
2

+ ((e0aλ)2 − (N/λ2))

2
,

ke = λ

√√√√√4 + ((e0aλ)2 − (N/λ2))
2 − ((e0aλ)2 − (N/λ2))

2
,

λ =

√
ω

c0
, c0 =

√
((EI)s + (e0a)2N)/ρA, N = N0 + 2τ0(b+ h).

For the first mode approximation, the eigenvalues of the clamped-clamped beam

with nonlocal parameter e0a
L and N = 1.8054× 10−6 are given as

Substituting zs(x) = qφ(x) into the governing Eq. (17) and then applying

Galerkin method, the static equation can be rewritten as:

r1q + r2q
2 + r3q

3 + r4q
4 + r5q

5 + r6q
6 + r7q

7 = r8V
2
dc − r9V

2
dcq − r10V

2
dcq

2
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Table 1: First mode eigenvalues of clamped-clamped beam with nonlocal parameter e0a
L

and

for N = 1.8054 × 10−6

e0a
L 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

λL 4.73 4.594 4.276 3.918 3.592 3.315 3.084 2.889 2.725

−r11V
2
dcq

3 (19)

where,

r1 = α2J4 + J4 − α1J5, r2 = 4α1J6 − 4 J9 − 4α2J9,

r3 = −6α1J11 + 6α2J12 − β1J13 + β2J15 + 6 J12 + β3J41 + β3J42,

r4 = −4α2J18 − 4β2J19 − 4 J18 + 4β1J20 + 4α1J22 − 4β3J43 − 4β3J44,

r5 = α2J23 − α1J25 + 6β2J26 + J23 − 6β1J27 + 6β3J45 + 6β3J46,

r6 = −4β2J28 + 4β1J29 − 4β3J47 − 4β3J48, r7 = −β1J30 + β2J31

+β3J49 + β3J50, r8 = (f11 + f21) J1, r9 = (f22 + f12) J5 + (2 f11 + 3 f21) J2,

r10 = − (f12 + 2 f22) J6 − (f11 + 3 f21) J8 + (f13 + f23) J10,

r11 = f21J17 + f22J11 − f23J16.

Since the static deflection of the beam approaches to infinity at the pull-in

voltage, we get dq
dV →∞ or dV

dq = 0. After differentiating Eq. (19) w.r.t. q, and

substituting dV
dq = 0, we get the expression of pull-in voltage which includes the

nonlocal and surface effects as follow:

Vp =

(
−
(
r9 + 2 r10q + 3 r11q

2
)(
r1 + 2 r2q + 3 r3q

2 + 4 r4q
3 + 5 r5q

4

+6 r6q
5 + 7 r7q

6
))1/2(

r9 + 2 r10q + 3 r11q
2
)−1

(20)

where, q is the solution of equation which is obtained by substituting Vp into

Eq. (19), J ’s are constants which are mentioned in appendix A.

3.1. Comparison and Validation

To validate the pull-in voltage with available expressions in the literature,

we make the surface and nonlocal terms to zero, i.e, e0a
L = 0, τ0 = 0, Es = 0
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in Eq. (20). To compare the results, we first compare the formulas [41, 46, 47]

which are based on approximate mode shape assumptions without considering

geometric nonlinearity. Subsequently, we compare the results with the model

[40] which is based on exact mode shape and also includes geometric nonlinear-

ity.

• For comparison with the models based on approximate mode shapes, we

take the dimensions and properties of a nanobeam [41] as mentioned in

Table 2. On comparing the pull-in voltage obtained by substituting the

surface and nonlocal terms (i.e. e0a
L = 0, τ0 = 0, Es = 0) in Eq. (20),

we get a lower value for the pull-in voltage as compared to that obtained

from Chao et al [46], Fang et al [47] and Pandey[41] with percentage

differences of 5.4%, 7.2% and 14%, respectively. Such differences are due

to approximate mode shapes being used by Chao et al [46], Fang et al [47]

and Pandey[41].

• To compare the model based on exact mode shape, we take the dimension

and properties of beam [40] as mentioned in Table 3. When we compare

the results obtained from Eq. (20) by substituting the surface and nonlocal

terms (i.e. e0a
L = 0, τ0 = 0, Es = 0) with that obtained from Nayfeh et

al [40], we get a percentage difference of 8%. It is due to the fact that

the results from Nayfeh et al [40] are based on summation of three or

five mode shapes, however, in our model we approximate the transverse

displacement by first mode approximation.

Based on the above comparisons, we validate our model to compute pull-in

voltage including the surface as well as nonlocal effects.

4. Linear and nonlinear Dynamic Analysis

In this section, we obtain partial differential equations of dynamic equilib-

rium of a linear and nonlinear nanobeam, which governs the transverse dis-

placement z(x, t), by substituting w(x, t) from Eq. (16) into Eq. (13). After
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Table 2: Comparison of pull-in voltages obtained from the proposed model as mentioned in

Eq. (20) with that proposed by [46], [47] and [41], respectively.

Dimensions and Pull-in voltage (V)

Material Properties Chao et al [46] Fang and Pu [47] Pandey [41]

Eq. (20)

with µ = 0,

τ0 = 0, Es = 0

b = 150 nm, h =

100 nm,L = 15µm,

d = 300 nm,

E = 226 GPa,

ρ = 3158 kg
m3 ,

N0 = 1.35µN

15.7 15.4 17.1 14.56

expanding the forcing term about z = 0 and using the static equation given by

Eq. (17), the simplified form of the dynamic equation is given by

ztt − µzxxtt + zxxxx = β1[z2
x + 2zsxzx]zsxx − β2[z2

x + 2zsxzx]zsxxxx

+[α1 + β1(z2
sx + z2

x + 2zsxzx)]zxx − [α2 + β2(z2
sx + z2

x + 2zsxzx)]zxxxx

−β3

[
z2
xx + 2zsxxzxx + zxzsxxx + zsxzxxx + zxzxxx

]
zsxx − β3

[
z2
sxx + z2

xx

+2zsxxzxx + zsxzsxxx + zxzsxxx + zsxzxxx + zxzxxx

]
zxx − k1zt

+k2zxxt +
2f11zV

2
dc

(1− zs)3
z +

f11(2Vdcv(t) + v(t)2)

(1− zs)2

[
1 +

2

(1− zs)
z

]
− f12zxxVdc

2

(1− zs)3

−3
f12 (zsxx + zxx ) zVdc

2

(1− zs)4 −
f12 (zsxx + zxx )

(
2Vdcv (t) + (v (t))

2
)

(1− z)3[
1 +

3

(1− zs)
z

]
−
f13

(
zx

2 + 2 zsxzx
)
V 2
dc

(1− zs)4 − 4
f13

(
zsx

2 + zx
2 + 2 zsxzx

)
zVdc

2

(1− zs)5

−
f13

(
zsx

2 + zx
2 + 2 zsxzx

) (
2Vdcv (t) + (v (t))

2
)

(1− zs)4

[
1 +

4

(1− zs)
z

]
+
f21zVdc

2

(1− zs)2 +
f21(2Vdcv(t) + v(t)2)

(1− zs)

[
1 +

1

(1− zs)
z

]
− f22zxxVdc

2

(1− zs)2

13



Table 3: Comparison of pull-in voltage obtained from Eq. (20) with that obtained by Nayfeh

et al [40]

Dimensions and Pull-in voltage (V)

Material Properties Nayfeh et al [40]
Eq.(19) with

µ = 0, τ0 = 0, Es = 0

b = 100µm, h = 1.5 µ m,

L = 510µm, d = 1.18µm,

E = 166 GPa, ρ = 2330 kg
m3 ,

N0 = 170 µN

4.8 4.4

−2
f22 (zsxx + zxx ) zVdc

2

(1− zs)3 −
f22 (zsxx + zxx )

(
2Vdcv (t) + (v (t))

2
)

(1− zs)2[
1 +

2

(1− zs)
z

]
−
f23

(
zx

2 + 2 zsxzx
)
Vdc

2

(1− zs)3 − 3
f23

(
zsx

2 + zx
2 + 2 zsxzx

)
zVdc

2

(1− zs)4

−
f23

(
zsx

2 + zx
2 + 2 zsxzx

) (
2Vdcv (t) + (v (t))

2
)

(1− zs)3

[
1 +

3

(1− zs)
z

]
(21)

4.1. Linear modal dynamic equation

To find the partial differential equations of dynamic equilibrium of a lin-

ear nanobeam, we neglect the nonlinear terms and dynamic forcing terms in

Eq. (21), and get the following form of the equation

ztt − µzxxtt + zxxxx = β1[2zsxzx]zsxx − β2[2zsxzx]zsxxxx + [α1 + β1(z2
sx)]

zxx − [α2 + β2(z2
sx)]zxxxx − β3

[
2zsxxzxx + zxzsxxx + zsxzxxx

]
zsxx

−β3

[
z2
sxx + zsxzsxxx

]
zxx +

2f11V
2
dc

(1− zs)3
z − f12V

2
dczxx

(1− zs)3
− 3

f12V
2
dczsxx

(1− zs)4
z

−2
f13V

2
dczsxzx

(1− zs)4
− 4

f13V
2
dczsx

2

(1− zs)5
z +

f21V
2
dc

(1− zs)2
z − f22zxxV

2
dc

(1− zs)2

−2
f22zsxxV

2
dc

(1− zs)3
z − 2

f23zsxzxV
2
dc

(1− zs)3
− 3

f23z
2
sxV

2
dc

(1− zs)4
z. (22)

To convert the above equation into standard modal dynamic equation, we as-

sume the static and dynamic solutions based on the single mode approximation

14



as z(x, t) = P (t)φ(x) and zs(x) = qφ(x), respectively, where φ(x) is exact mode

shape given by Eq. (18). Substituting z(x, t) and zs(x) into above Eq. (22) and

then applying Galerkin method, the equation reduces to linear modal dynamic

equation as follow:

MPtt(t) +KP (t) = 0, ω =

√
K

M
(23)

where,

M = −10 q3J38 + 5 qJ6µ− 5 q4J25µ+ 10 q3J22µ+ J2 + q5J32µ− 10 q2J11µ

− µJ5 + 5 q4J39 + 10 q2J17 − 5 qJ8 − q5J40,

K = 2J10f13qVdc
2 − f22q

2J11Vdc
2 + 2 J10f23qVdc

2 + 2 f13q
2J16Vdc

2 − 2 f12q
2

J11Vdc
2 + f21Vdc

2J38q
3 + 4 f11Vdc

2J8q − 2 f11Vdc
2J17q

2 + 3 f21Vdc
2J8q

+ q5J32α1 + 10 q3J22α1 − 5 qJ9α2 + J5f12Vdc
2 − 10 q2J11α1 − 10 q3J18α2

+ J5f22Vdc
2 + J4 − 5 qJ9 − 10 q3J18 + 10 q2J12 + 5 qJ6α1 + 10 q2J12α2

+ 5 q4J23α2 − f21Vdc
2J2 − 3 q7J36β2 − 3 f21Vdc

2J17q
2 + 5 q4J23 + J4α2

− J5α1 + 15 q3J20β1 − 2 f11Vdc
2J2 − 15 q3J19β2 − 30 q4J27β1 + 30 q5J29β1

+ 15 q6J31β2 − 15 q6J30β1 − 30 q5J28β2 + 3 q7J35β1 − f23q
3J37Vdc

2

+ f12qJ6Vdc
2 + f22q

3J22Vdc
2 − f22qJ6Vdc

2 − 5 q4J25α1 − q5J33α2

− 3 J13β1q
2 + 3 J15β2q

2 + 30 q4J26β2 − q5J33 − f23q
2J16Vdc

2

+ 3β3q
2J41 + 3β3q

2J42 − 15β3q
3J43 − 15β3q

3J44 + 30β3q
4J45

+ 30β3q
4J46 − 30β3q

5J47 − 30β3q
5J48 + 15β3q

6J49

+ 15β3q
6J50 − 3β3q

7J51 − 3β3q
7J52.

where, all J ’s are mentioned in appendix A. The linear frequency obtained

from Eq. (23) can be used to find resonance frequency at different bias voltages

Vdc under the influence of surface and nonlocal effects. The discussion on sur-

face and nonlocal effects on frequency variation will be presented later in the

subsequent sections.

4.2. Nonlinear modal dynamic equation

In this section, we obtain nonlinear modal dynamic equation governing the

transverse displacement z(x, t) about an equilibrium position given by static
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deflection zs(x). Subsequently, we derive approximate solution based on the

method of multiple scale (MMS) to capture the surface and nonlocal effects.

To find the modal dynamic equation, we again assume the dynamic and

static solution based on single mode approximation z(x, t) = P (t)φ(x) and

zs(x) = qφ(x), respectively. After substituting z(x, t) and zs(x) into Eq. (21)

and using Galerkin method, the equation reduces to nonlinear modal dynamic

equation as

s11Ptt(t) + s12P (t) + s13Pt(t) + s14P (t)2 + s15P (t)3 + s21VdcVac cos(Ωt)

+s22V
2
ac cos2(Ωt) + s23VdcVac cos(Ωt)P (t) + s24V

2
ac cos2(Ωt)P (t) + s25V

2
dcP (t)2

s26VdcVac cos(Ωt)P (t)2 + s27V
2
ac cos2(Ωt)P (t)2 + s28V

2
dcP (t)3

+s29VdcVac cos(Ωt)P (t)3 + s30V
2
ac cos2(Ωt)P (t)3 = 0

(24)

where,

s11 = M, s12 = K,

s13 = k1J2 + q5k2J32 − 10 q2k2J11 + 10 q3k2J22 − 5 q4k2J25 + 5 qk2J6 − k2J5

− 5 qJ 8k1 + 10 q2J17k1 − 10 q3J38k1 + 5 q4J39k1 − q5J40k1,

s14 = −15 q2β2J19 + 30 q3β2J26− 15 q5β1J30− 30 q4β2J28− 3β1qJ13 + 3 q6β1J35

+ 15 q2β1J20 + 15 q5β2J31 + 3β2qJ15 − 30 q3β1J27 − 3 q6β2J36 + 30 q4β1J29

+ 3β3qJ41 + 3β3qJ42 + 15β3q
5J49 − 15β3q

2J43 − 15β3q
2J44 − 3β3q

6J51

+ 30β3q
3J45 + 30β3q

3J46 − 30β3q
4J47 − 30β3q

4J48 + 15β3q
5J50 − 3β3q

6J52,

s15 = 5 q4β2J31 + β2J15 − 10 q3β2J28 + q5β1J35 − 5 q4β1J30 − β1J13 − 5 qβ2J19

+ 5 qβ1J20 − q5β2J36 − 10 q2β1J27 + 10 q2β2J26 + 10 q3β1J29 + β3J41

− 5β3qJ43 + 10β3q
2J45 + 10β3q

2J46 − 10β3q
3J47 − 10β3q

3J48 + β3J42

+ 5β3q
4J49 + 5β3q

4J50 − 5β3qJ44 − β3q
5J51 − β3q

5J52,

s21 = −6 f11q
2J8 − 4 f12q

2J6 + 2 f12q
3J11 + 2 f11q

3J17 + 8 f21q
3J17 − 2 f21q

4J38

− 2 J1f11 − 2 J1f21 − 6 f22q
2J6 + 6 f22q

3J11 − 2 f22q
4J22 + 6 f11qJ2

+ 2 f22qJ5 + 2 f12qJ5 − 2 f13q
3J16 + 2 f23q

4J37 − 4 f23q
3J16

+ 2 f13q
2J10 + 2 J10f23q

2 − 12 f21q
2J8 + 8 f21qJ2,

s22 = −2 f12q
2J6 − J1f11 − J1f21 + 4 f21qJ2 + 3 f11qJ2 − 3 f11q

2J8 + f12q
3J11
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+ f13q
2J10 + f11q

3J17 + f23q
2J10 − f13q

3J16 + f23q
4J37 + f12qJ5

+ f22qJ5 − f22q
4J22 − 6 f21q

2J8 + 4 f21q
3J17 − f21q

4J38

− 2 f23q
3J16 − 3 f22q

2J6 + 3 f22q
3J11,

s23 = 4 f13q
2J16 + 2 f21J38q

3 + 4 f13qJ10 − 4 f11J17q
2 + 6 f21J8q − 6 f21J17q

2

− 2 f21J2 − 2 f22qJ6 − 2 f22q
2J11 + 2 f22q

3J22 + 2 f12qJ6 − 4 f12q
2J11

+ 4 f23qJ10 − 2 f23q
2J16 − 2 f23q

3J8 + 8 f11J37q

+ 2 J5f22 + 2 J5f12 − 4 f11J2,

s24 = J5f12 + J5f22 − 2 f11J2 − f21J2 + 2 f23qJ10 − 2 f12q
2J11 + f12qJ16 +

f22q
3J22 + f21J38q

3 − 2 f11J17q
2 + 3 f21J8q − 3 f21J17q

2 + 2 f13qJ10

+ 2 f13q
2J16 − f23q

3J37 − f23q
2J16 − f22q

2J11 + 4 f11J8q − f22qJ6,

s25 = 3 f12J6 + 2 f22J22q
2 + f13J10 + f23J10 − 4 f22J11q + 2 f22J6 + 7 f13qJ16

+ 4 f23qJ16 − 5 f23q
2J37 − 3 f12J11q,

s26 = 4 f22J6 − 10 f23q
2J37 + 4 f22J22q

2 + 6 f12J6 − 6 f12J11q − 8 f22J11q

+ 2 f23J10 + 8 f23qJ16 + 2 f13J10 + 14 f13qJ16,

s27 = 3 f12J6 + 2 f22J22q
2 + f13J10 + f23J10 − 4 f22J11q + 2 f22J6 + 7 f13qJ16

+ 4 f23qJ16 − 5 f23q
2J37 − 3 f12J11q,

s28 = 3 f23J16 − 3 f23J37q + 4 f13J16, s29 = −6 f23J37q + 6 f23J16 + 8 f13J16,

s30 = 3 f23J16 − 3 f23J37q + 4 f13J16.

Here, all J ’s are given in appendix A. After dividing Eq. (24) by s11, the

simplified form of equation is given by

Ptt(t) + b1P (t) + b2Pt(t) + b3P (t)2 + b4P (t)3 + b5VdcVac cos(Ωt)

+b6V
2
ac cos2(Ωt) + b7VdcVac cos(Ωt)P (t) + b8V

2
ac cos2(Ωt)P (t) + b9V

2
dcP (t)2

b10VdcVac cos(Ωt)P (t)2 + b11V
2
ac cos2(Ωt)P (t)2 + b12V

2
dcP (t)3

+b13VdcVac cos(Ωt)P (t)3 + b14V
2
ac cos2(Ωt)P (t)3 = 0 (25)

where,

b1 =
s12

s11
, b2 =

s13

s11
, b3 =

s14

s11
, b4 =

s15

s11
, b5 =

s21

s11
,

b6 =
s22

s11
, b7 =

s23

s11
, b8 =

s24

s11
, b9 =

s25

s11
, b10 =

s26

s11
,
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b11 =
s27

s11
, b12 =

s28

s11
, b13 =

s29

s11
, b14 =

s30

s11

4.3. Method of multiple scales

In this section, we apply method of multiple scales to obtain the modulation

equations. In order to apply the method of multiple scales, we convert the

damping term, nonlinear stiffness terms and forcing terms in Eq. (25) into weak

terms by re-scaling them with ε, respectively, as follow

Ptt(t) + b1P (t) + εb2Pt(t) + εb3P (t)2 + εb4P (t)3 + εb5VdcVac cos(Ωt)

+εb6V
2
ac cos2(Ωt) + εb7VdcVac cos(Ωt)P (t) + εb8V

2
ac cos2(Ωt)P (t)

+εb9V
2
dcP (t)2 + εb10VdcVac cos(Ωt)P (t)2 + εb11V

2
ac cos2(Ωt)P (t)2

+εb12V
2
dcP (t)3 + εb13VdcVac cos(Ωt)P (t)3 + εb14V

2
ac cos2(Ωt)P (t)3 = 0. (26)

Assuming the solution of the form P (t) =
∑1
j=0 ε

jpj(T0, T1) +©(ε2), where,

T0 = t is fast time scale and T1 = εt is slow time scale. After substituting the

solution in Eq. (26) and comparing the coefficients of different powers of ε, we

get

©(ε0) : D2
0p0 + ω2p0 = 0, (27)

©(ε1) : D2
0p1 + ω2p1 = −b8Vac2 (cos (Ω t))

2
p0 − b11Vac

2 (cos (Ω t))
2
p0

2

−b14Vac
2 (cos (Ω t))

2
p0

3 − b7VdcVac cos (Ω t) p0 − b10VdcVac cos (Ω t) p0
2

−b13VdcVac cos (Ω t) p0
3 − b3p0

2 − b4p0
3 − b6Vac2 (cos (Ω t))

2 − 2D0D1p0

−b2D0p0 − b9Vdc2p0
2 − b12Vdc

2p0
3 − b5VdcVac cos (Ω t) , (28)

where, ω2 = b1, and the derivatives Dm for m = 0, ..., 1 are defined as Dm =

∂
∂Tm

dTm
dt . Assuming the solution of Eq. (27) as

p0 = A(T1)e(iωT0) + Ā(T1)e(−iωT0) (29)

where, A(T1) and Ā(T1) are complex conjugates of each other, and substituting

it into Eq. (28) with detuning parameter σ as defined in Ω = ω + εσ, we get

D2
0p1 + ω2p1 =

[
− iω2D1A− iωb2A− 3b4A

2Ā− b5
VdcVac

2
e(iσT1)
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−b8
(
Vac

2

2
A+

Vac
2

4
Āe(2iσT1)

)
− b10

VdcVac
2

(
A2e(−iσT1) + 2AĀe(iσT1)

)
−3b12A

2ĀVdc
2 − b14

(
Vac

2

2
3A2Ā+

Vac
2

4

(
A3e(−2iσT1) + 3AĀ2e(2iσT1)

))]
e(iωT0)

+

[
− b3A2 − b6

Vac
2

4
e(2iσT1) − b7

VdcVac
2

Ae(iσT1) − b9Vdc2A2

−b11

(
Vac

2

2
A2 +

Vac
2

4
2AĀe(2iσT1)

)
− b13

VdcVac
2

(
A3e(−iσT1) + 3A2Āe(iσT1)

)]

e(2iωT0) +

[
− b4A3 − b8

Vac
2

4
Ae(2iσT1) − b10

VdcVac
2

A2e(iσT1) − b12Vdc
2A3

−b14

(
Vac

2

2
A3 +

Vac
2

4
3A2Āe(2iσT1)

)]
e(3iωT0) +

[
− b11

Vac
2

4
A2e(2iσT1)

−b13
VdcVac

2
A3e(iσT1)

]
e(4iωT0) −

[
b14

Vac
2

4
A3e(2iσT1)

]
e(5iωT0) − 2b3AĀ− b6

Vac
2

2

−b7
VdcVac

2
Ae(−iσT1) − 2b9Vdc

2AĀ− b11

(
Vac

2AĀ+
Vac

2

4
A2e(−2iσT1)

)
−3b13

VdcVac
2

AĀ2e(iσT1) + cc (30)

where, cc represents complex conjugate terms. After eliminating secular terms

from Eq. (30), we get the following complex modulation equation

−iω2D1A− iωb2A− 3b4A
2Ā− b5

VdcVac
2

e(iσT1) − b8

(
Vac

2

2
A+

Vac
2

4

Āe(2iσT1)

)
− b10

VdcVac
2

(
A2e(−iσT1) + 2AĀe(iσT1)

)
− 3b12A

2ĀVdc
2

−b14

(
Vac

2

2
3A2Ā+

Vac
2

4

(
A3e(−2iσT1) + 3AĀ2e(2iσT1)

))
= 0. (31)

To convert the above equation into real modulation equation, we assume the

polar form of A = ae(iθ)

2 , Ā = āe−iθ

2 and substitute it into Eq. (31). After

separating and equating the real and imaginary terms, we obtain following form

of modulation equation

a′ = −t1a− t2 sin(φ)− t3a sin(2φ)− t4a2 sin(φ)− t5a3 sin(2φ), (32)

aφ′ = aσ − t6a3 − t2 cos(φ)− t7a− t3a cos(2φ)− t8a2 cos(φ)
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−t9a3 cos(2φ). (33)

where,

t1 =
b2
2
, t2 =

b5VdcVac
2ω

, t3 =
b8Vac

2

8ω
, t4 =

b10VdcVac
8ω

,

t5 =
b14Vac

2

16ω
, t6 =

(
3b4
8ω

+
3b12Vdc

2

8ω
+

3b14Vac
2

16ω

)
, t7 = 2t3,

t8 = 3t4, t9 = 2t5, a′ =
da

dT1
, φ′ =

dφ

dT1
, φ = σT1 − θ.

The non-trivial equilibrium solutions of Eqs. (32) and (33) can be obtained by

solving a′ = 0 and φ′ = 0, simultaneously. In the subsequent section, we do

stability analysis of the equilibrium solutions.

4.4. Stability

The stability of equilibrium solutions can be obtained by finding the Jaco-

bian and eigen values of the equilibrium solutions. For Eqs. (32) and (33), the

equilibrium solutions are given by

−t1a− t2 sin(φ)− t3a sin(2φ)− t4a2 sin(φ)− t5a3 sin(2φ) = 0, (34)

σ − t6a2 − t2 cos(φ)

a
− t7 − t3 cos(2φ)− t8a cos(φ)− t9a2 cos(2φ) = 0. (35)

and the corresponding Jacobian matrix and eigen values are given as

J =

 a11 a12

a13 a14

 ,
where,

a11 = −t1 − t3 sin (2φ)− 2 t4a sin (φ)− 3 t5a
2 sin (2φ) ,

a12 = −t2 cos (φ)− 2 t3a cos (2φ)− t4a2 cos (φ)− 2 t5a
3 cos (2φ) ,

a13 = −2 t6a+
t2 cos (φ)

a2
− t8 cos (φ)− 2 t9a cos (2φ) ,

a14 =
t2 sin (φ)

a
+ 2 t3 sin (2φ) + t8a sin (φ) + 2 t9a

2 sin (2φ) .

and

λ1,2 = − 1

2a

(
λA ±

√
λB

)
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where,

λA = −4 a3t9 sin (φ) cos (φ) + 6 a3t5 sin (φ) cos (φ)− t8a2 sin (φ) + 2 t4a
2 sin (φ)

−2 at3 sin (φ) cos (φ) + t1a− t2 sin (φ) ,

λB = −24 (cos (φ))
3
a5t5t4 − 8 (cos (φ))

3
a5t9t8 + 32 (cos (φ))

2
t6a

4t3 + t1
2a2

+t8
2a4 − 5 t2

2 (cos (φ))
2

+ 4 t4
2a4 + 8 t6a

3t2 cos (φ) + 8 t6a
5t4 cos (φ)

−8 t2 (cos (φ))
2
t4a

2 + 2 t8 (cos (φ))
2
a2t2 + 2 at2 sin (φ) t1 + 2 t8a

3 sin (φ) t1

+20 t2 cos (φ) t3a+ 20 t2 cos (φ) t5a
3 + 4 t8 cos (φ) a5t5 + 8 t9a

5t4 cos (φ)

+24 t3 cos (φ) a3t4 + 4 t8 (cos (φ))
3
a3t3 − 24 t3 (cos (φ))

3
a3t4 − 28 t2 (cos (φ))

3

t3a− 28 t2 (cos (φ))
3
t5a

3 + 4 t8 (cos (φ))
3
a5t5 + 8 t9a

3t2 (cos (φ))
3

+ 4 t4a
3 sin (φ) t1

+4 t8a
3t3 cos (φ) + 8 t9a

5 cos (φ) t8 + 24 a5t5 cos (φ) t4 − 16 t9a
6 (cos (φ))

2
t5

−16 t9a
4 (cos (φ))

2
t3 + 72 a4t5 (cos (φ))

2
t3 + 32 (cos (φ))

2
t6a

6t5 + 16 (cos (φ))
4

t9a
6t5 + 16 (cos (φ))

4
t9a

4t3 − 72 (cos (φ))
4
t3a

4t5 + 12 t3 sin (φ) cos (φ) a2t1

+8 t9a
4 sin (φ) cos (φ) t1 + 12 a4t5 sin (φ) cos (φ) t1 + 16 a6t9

2 (cos (φ))
2

+ 36 a6t5
2

(cos (φ))
2

+ 36 a2t3
2 (cos (φ))

2 − (cos (φ))
2
t8

2a4 − 4 (cos (φ))
2
t4

2a4 − 16

(cos (φ))
4
a6t9

2 − 36 (cos (φ))
4
a6t5

2 − 36 (cos (φ))
4
t3

2a2 − 16 t6a
4t3 − 16 t6a

6t5

+16 t9a
4t3 + 16 t9a

6t5 + 4 t2t4a
2 + 4 t8a

4t4 + 2 t8a
2t2 + t2

2.

Finally, the condition under which the equilibrium solutions become stable is

given by Re(λ1,2) < 0.

5. Results and discussions

In this section, we study the influence of surface and nonlocal effects first

on the pull-in voltage and frequency of a linear nanobeam, and then on the

frequency response of a nonlinear nanobeam. To do these analysis, we take the

dimensions and material properties from [41, 48], and the corresponding surface

and nonlocal parameters from [12] as mentioned in Table (4).
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Table 4: Dimensions and material properties of a nanobeam

Quantity Symbol

Length L 15 µm

Width b 150 nm

Height h 100 nm

Gap d 300 nm

Young’s modulus E 226× 109 N/m2

Pretension N0 1.35 µN

Density ρ 3158 kg/m3

Electric constant ε0 8.854× 10−12 F/m

Residual surface tension τ0 0.9108 N/m

Elastic surface modulus Es 5.1882 N/m

5.1. Pull-in voltage and frequency of linear system vibrations

In this section, we study the influence of surface and nonlocal effects on

pull-in voltage and frequency of linear system vibrations. The pull-in voltage is

obtained by first solving Eq. (19) and then substituting the results in Eq. (20).

The validation of the approach has also been presented in Tables 2 and 3,

respectively, without considering the surface and nonlocal effects. Figure 2(a)

shows the variation of pull-in voltage with and without surface effects when the

nonlocal is neglected. It is found that for Es = 0, τ0 = 0, e0aL = 0, the value of

pull-in voltage is 14.6 V and for Es = 5.1882 Nm−1, τ0 = 0.9108 Nm−1, e0a
L = 0,

the value of pull-in is 16 V. It shows that with surface effects the pull-in voltage

is increased by about 9%. Similarly, the pull-in voltage with or without nonlocal

parameter when surface effect is neglected is presented in Fig. 2(b). It shows that

the pull-in voltage increases approximately by 59.5% as the nonlocal parameter,

e0a
L , is varied from 0 to 0.8. Finally, we study the combined effect of both surface

and nonlocal parameters on pull-in voltage Fig. 2(c). It shows that for fixed

surface parameters, i.e., Es = 5.1882 Nm−1, τ0 = 0.9108 Nm−1, pull-in voltage

increases by around 62% as the nonlocal parameter e0a
L varies from 0 to 0.8.
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Figure 2: Variation of static deflection with dc bias voltage (a) with or without surface effects,

(b) for different values of non-local parameters varying from 0 to 0.8, and (c) for combined

surface and nonlocal effects.

Figure 3: Variation of linear resonance frequency with dc bias voltage (a) with or without

surface effects, (b) for different values of non-local parameters varying from 0 to 0.8, and (c)

for combined surface and nonlocal effects.

Similarly, the resonance frequency is obtained by first computing the static

deflection from Eq. (19) and then substituting it in Eq. (23). To validate

procedure for obtaining the resonance frequency, we compute frequency from

Eq. (23) under negligible nonlocal and surface effects at Vdc = 0. Under this

condition, we obtain non-dimensional frequency ω = 42.7 and dimensional

frequency fn = ωωs
2π = 7.37 MHz, where, ωs =

√
(EI)s
ρAL4 is non-dimensional

parameter. On comparing fn = 7.37 MHz with 7.6 MHz, as mentioned in

[41, 48], we obtain a percentage difference of about 3%. Moreover, the pull-

in obtained using frequency variation versus Vdc is found to be same as that

obtained from the variation of static deflection as shown in Fig. 2(a). Thus,

the procedure is validated. Like Fig. 2, Fig. 3 shows the variation of fre-

quency with bias voltage with or without surface and nonlocal effects. Fig-
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Figure 4: Comparison between solutions obtained from the method of multiple scale and

numerical simulation with surface effects captured by Es = 5.1882 N/m, τ0 = 0.9108N/m

for (a) e0a
L

= 0.1, and (b) e0a
L

= 0.8. (c) Variation of frequency of nonlinear system under

nonlocal and surface effects denoted by Es = 5.1882 N/m, τ0 = 0.9108N/m, e0a
L

= 0.1 at

different dc bias Vdc = 5V, 6V and 7V with same Vac = 6V.

ure 3(a) shows increase in resonance frequency by 10% due to the surface ef-

fects, Es = 5.1882 Nm−1, τ0 = 0.9108 Nm−1. Similarly, the increase in fre-

quency by about 32.5% is found as nonlocal parameter, e0a
L , increase from 0

to 0.8 as shown in Fig. 3(b). Finally, due to the combined effect of surface

(Es = 5.1882 Nm−1, τ0 = 0.9108 Nm−1) and nonlocal ( e0aL = 0..0.8), the fre-

quency increases by about 34.7% as shown in Fig. 3(c). Finally, we state that

the combined surface and nonlocal effects influence pull-in voltage as well as

resonance frequency effectively. The increase in pull-in voltages and linear fre-

quencies in linear regime is due to increase in linear stiffness with the increase

in nonlocal and surface effects.

5.2. Frequency of nonlinear system vibrations

In this section, we first validate the nonlinear solution obtained using the

methods of multiple scale and then analyse the influence of surface and nonlocal

effects. To validate the method of multiple scale, we first solve evolution equa-

tions given by Eqs. (32) and (33) using Matlab based Matcont for a given set

of parameters. Subsequently, for the same parameter values, we compare the

solution of evolution equations with the numerical solution obtained by solving

original modal dynamic equation given by Eq. (25) using Runge-Kutta method
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Figure 5: Variation of frequency of nonlinear system for constant electrostatic excitation

Vdc = 7V, Vac = 6V (a) with and without surface effects, (b) with nonlocal effects varying 0

to 0.3, and (c) combined surface and nonlocal effects.

in Fig 4. Figure 4(a) shows that the hardening effect can be captured by the

solutions obtained from MMS as well as numerical simulation for the parameter

values Es = 5.1882 Nm−1, τ0 = 0.9108 Nm−1, e0a
L = 0.1, Vdc = 7 V, Vac =

6V,Q = 5000. Similarly, the softening effects can also be captured from the

solutions obtained from MMS and numerical simulation, however, for different

parameter values given by Es = 5.1882 Nm−1, τ0 = 0.9108 Nm−1, e0a
L =

0.8,Vdc = 15V, Vac = 6V, Q = 5000.

After validating the nonlinear response obtained from MMS with numerical

solution in Figs. 4(a) and (b), we observe that the nonlinearity increases with

increase in the static deflection due to large dc bias as shown in Fig. 4(c) for

Es = 5.1882 Nm−1, τ0 = 0.9108 Nm−1, e0a
L = 0.1, Vac = 6V, Q = 5000. For

fixed excitation of Vdc = 7V and Vac = 6V , we also analyse the influence of

surface and nonlocal effects in Fig. 5. Figure 5(a) shows frequency of nonlinear

system with and without surface effects captured by Es = 5.1882 Nm−1, τ0 =

0.9108 Nm−1 when nonlocal effect is neglected. It is observed that the surface

parameter decreases the nonlinear response as the excitation voltage is kept

constant. However, it does not effect the nature of nonlinearity. Similarly, we

also observe the variation of frequency of nonlinear system with increase in non-

local parameters from 0 to 0.3 as shown in Fig. 5(b) in the absence of surface

effects. Like surface effects, the nonlinear response also decreases with increase
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Figure 6: Comparison of variation of (a) static deflection versus Vdc, (b) linear frequency

versus Vdc and (c) frequency reponse of nonlinear system under different conditions with case

1 as Es = 0, τ0 = 0, e0a
L

= 0, case 2 as Es = 5.1882 Nm−1, τ0 = 0.9108 Nm−1, e0a
L

= 0,

case 3 as Es = 0, τ0 = 0, e0a
L

= 0.2, and the case 4 with Es = 5.1882 Nm−1, τ0 =

0.9108 Nm−1, e0a
L

= 0.2.

in nonlocal effect, but the nature of nonlinearity also changes from hardening

to softening when nonlocal parameter increases from 0.1 to 0.3. Such variations

in frequency reponse of nonlinear system can also be clearly observed under

the combined influence of surface and nonlocal effects in Fig. 5(c). Fig. 6(a)

shows the comparison of variation of static deflection versus dc bias voltage for

different condition with case 1 as Es = 0, τ0 = 0, e0a
L = 0, case 2 as Es =

5.1882 Nm−1, τ0 = 0.9108 Nm−1, e0a
L = 0, case 3 as Es = 0, τ0 = 0, e0a

L = 0.2,

and the case 4 as Es = 5.1882 Nm−1, τ0 = 0.9108 Nm−1, e0a
L = 0.2,respectively.

Similarly, the comparison of variation of linear frequency versus dc bias voltage

and frequency response of nonlinear system for different cases are shown in

Figs. 6(b) and (c). The comparison shows that nonlocal effect dominates over

surface effect for the given surface parameters. However, further studies can

be done by improving the surface effect modeling based on Hu et al [27, 28] by

varying the surface parameters.

Finally, we state that the modeling of surface and nonlocal effects assume

significance in computing frequency of linear and nonlinear nanobeams under

electrostatic excitation. Similar analysis can also be done to beams of different

boundary conditions.
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6. Conclusion

In this paper, we have analyzed the influence of nonlocal and surface effects

on the static and dynamic response of a fixed-fixed nanobeam excited by elec-

trostatic actuation. To do the analysis, we first modeled nonlocal and surface

effects based on Eringen’s non-local elastic theory and surface elastic theory

as proposed by Gurtin and Murdoch, respectively. Subsequently, we obtained

the static and dynamic modal equations by Galerkin’s approach after assuming

the solution based on single exact mode shape obtained by considering surface

and nonlocal effects. Based on the static analysis, we analyzed the influence of

surface and nonlocal effects on the pull-in voltage. We found that both surface

as well nonlocal effects tend to increase the pull-in voltage effectively. To do

the dynamic analysis, we solved the governing equation using the method of

multiple scale. After validating the approach with numerical simulation, we an-

alyzed frequency response of linear as well as nonlinear system. We found that

resonance frequency of linear nanobeam increases with the increase in surface

and nonlocal effects mainly due to increase in overall stiffness of the beam. On

analyzing the response of nonlinear system of vibrations for a fixed excitation

voltage, it reduced due to surface as well as nonlocal effects. Additionally, we

found that while the nature of nonlinearity remained unchanged due to increase

in surface effect, nonlocal effect changed the nonlinearity from hardening to soft-

ening when it was increased beyond a critical point. Therefore, it is concluded

that surface and nonlocal effects modify the static and dynamic characteristics

of nanobeams effectively.
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