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An understanding of the dominant dissipative mechanisms is crucial for the design

of a high-Q doubly clamped nanobeam resonator to be operated in air. We focus

on quantifying analytically the viscous losses—the squeeze film damping and drag

force damping—that limit the net quality factor of a beam resonator, vibrating in its

flexural fundamental mode with the surrounding fluid as air at atmospheric pressure.

Specifically, drag force damping dominates at smaller beam widths and squeeze film

losses dominate at larger beam widths, with no significant contribution from struc-

tural losses and acoustic radiation losses. The combined viscous losses agree well with

the experimentally measured Q of the resonator over a large range of beam widths,

within the limits of thin beam theory. We propose an empirical relation between the

maximum quality factor and the ratio of maximum beam width to the squeeze film

air gap thickness.
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I. INTRODUCTION

The sensitivity of flexural nanobeam resonators to changes in various physical quantities

such as temperature, pressure, and mass (m),1–3 is most often expressed in terms of the

change in resonant frequency (f ). The sensitivity to the physical quantities under assay

(δm/m) varies as (δf/f) or inversely as the quality factor (Q). While the Q can be improved

by operating the devices in vacuum4,5, sensing is often most practically carried out when

the device operates in air under ambient conditions. These devices are influenced by fluid-

structure interaction losses (squeeze film damping and drag force damping) that limit the

Q at ambient pressure. Studies reveal that one or the other of these damping mechanisms

dominates. Reliably achieving higher Q requires a better understanding of the damping

mechanisms and the role of geometry on the magnitude of the damping.

The quality factor or Q-factor is a physical parameter that quantifies the ratio of energy

stored (or maximum kinetic energy of the resonator), to the energy dissipated, per cycle

of oscillation of the resonator. The net dissipation is obtained by summing the dominant

sources of dissipation, namely, squeeze film damping (sq), drag force damping (dr), acoustic

radiation damping (ac), thermoelastic damping (ted), and clamping losses (cl) denoted by

their corresponding subscripts, and the net Q in terms of corresponding Q’s is given by6

Q−1
net = Q−1

sq +Q−1
dr +Q−1

ac +Q−1
ted +Q−1

cl . (1)

The quality factor associated with the structural losses such as thermoelastic losses7

and clamping losses8 are found to be of the order of O(106). Hence there is a marginal

contribution of structural losses to the measured quality factor corresponding to various

beam widths. For doubly clamped beams, the quality factor associated with the acoustic

losses9 is of the order of O(103) and also found to contribute marginally to the experimentally

measured quality factors, rendering the viscous losses in the form of drag and squeeze film

to be dominant.

Ikehala et al.10 investigated the variation in the Q of a microscale cantilever beam with

width by modeling the drag force on the vibrating beam with an equivalent vibrating sphere

model. They computed the drag force from an effective spherical radius and compared the

computed results with measured values. However, the dependency on width was found

to be insignificant. Xia and Li11 studied the effects of air drag on a cantilever operating in
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different modes under ambient conditions. They used the dish-string model for the air drag

and compared the calculated values with numerical and experimental results. Verbridge et

al.12 found that the measured quality factor of doubly clamped beam resonators, operated

in air in their fundamental out-of-plane mode vibration, scale as the ratio of volume to

surface area of the resonator. For small widths, as the beam width is increased, the Q

also increases. Depending on the size of the air gap between the device and the stationary

substrate (the air in the gap constitutes the squeeze film), a maximum in Q is attained at a

particular width, and a further increase in a device width results in a reduced Q due to the

increase in squeeze film damping. For larger air gaps, the width corresponding to

the highest Q also increases. However, despite the measurement of the variation

of quality factor with beam width, the identification of the dominant damping

mechanism as a function of the beam width was uncertain. To understand the

variation in quality factor of a cantilever beam near a fixed plate, the theoretical damping

force needs to be quantified in terms of the beam length, width, and the air-gap

thickness. Bullard et al.13 and Sadar et al.14 have presented dynamic similarity laws and

generalized scaling laws, respectively, to capture drag forces due to the vibration of cantilever

beam with and without a nearby fixed plate. While Ramanathan et al.15 have presented a

1D model under continuum and free molecular regime, Lissandrello et al.16 have presented

a model which requires the computation of the fitting parameters from experimental or

numerical studies. To model the damping effect of an AFM cantilever beam near the rigid

surface under different flow regimes and air-gap thickness, Drezet et al.17 and Honig et al.18,

Bowles and Ducker19 have introduced a slip length to be used on both the surfaces. They

found that the magnitude of slip also depended on the nature of the fluid-solid interface.

While Honig et al.18 and Bowles and Ducker19 have presented their studies based on a

modified 1D model of drag forces incorporating slip lengths and air-gap thickness, Drezet

et al.17 have presented a 2D model based on the lubrication theory by introducing a slip

length on both the surfaces of a cantilever under uniform or rigid motion. The success of

these models depends on finding the correct slip lengths and their scaling. Although these

cited studies have presented different models to compute drag forces near and away from

a fixed plate with rarefaction effects, most of them are based on 1D model except the one

proposed by Drezet et al.17. Moreover, none of them have discussed the influence of width

on the combined effect of drag forces and squeeze film on the quality factor necessary to
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allow the computation of Qmax corresponding to a particular beam width. Consequently,

they cannot be used in their present form to capture both the effects together.

In the present study, we identify and quantify the dominant dissipative mechanisms that

depend on the beam width of a nanomechanical fixed-fixed beam. Our study not only solves

the long standing problem concerning the uncertainty of when drag effects dom-

inate over squeeze-film damping (and vice-versa) but also provides design guidelines

to achieve optimum quality factor associated with the fundamental mode of such resonators

operated in air. We find that the viscous losses (squeeze film damping and drag force

losses) are the dominant dissipative mechanisms that contribute in different proportions

with varying beam widths. To identify the correct models, we compare different drag force

and squeeze film models individually with experimental results. Later, we use the optimized

drag and squeeze film models to capture the combined effects at various beam widths and

air-gap thicknesses that agrees well with the measurements of Verbridge et al.12. Using the

optimized models, we analyze the variation of maximum quality factor with different width

to air-gap ratio and length to width ratio respectively. Finally, we propose an empirical

model to capture such variations.

II. VISCOUS LOSSES IN THE DOUBLY CLAMPED BEAM

To study the influence of beam width and air-gap thickness of a fixed-fixed

beam on fluid damping, we take the dimensions and properties of the beam

from Verbridge et al.12 as shown in Fig. 1. The beam is fabricated with silicon

nitride material with Young’s modulus, E = 200 GPa, Poisson ratio, ν = 0.23 and mass

density, ρs = 2800 kg/m3. The nominal and effective beam length including the undercut

dimension of 1.5 µm are taken as a = 11 µm and ac = 12.5 µm, respectively. To compute

fluid damping, we take the effective length of the beam. Each beam has a thickness of

d0 = 140 nm and varying width, b, from 55 nm to 1910 nm. The beams are separated from

the bottom substrate by the air-gap thicknesses of h0 = 250 nm, 460 nm, 660 nm, and 750

nm, respectively. The measured values of in-vacuo fundamental frequencies are taken as

13-14 MHz. However, the theoretical frequency value subjected to residual stress of σr can

be obtained based on approximate modeshape ϕ(x) = (1− cos(2πx/a))/2 from the formula
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FIG. 1. (a) SEM images showing the top view of two beams with different width (1.5 µm and 50 nm

wide, respectively); (b) Schematic of a doubly clamped beam (front view), with length, a = 11 µm,

varying width, b, thickness, d0 = 140 nm, suspended above the thin air film of thickness h0.

based on Rayleigh method as9,20

ω2
a =

(2π)2

3

(
E(bd30/12)

ρa(bd0)

)
1

a4
+

(2π)2

3

(
σr

ρs

)
1

a2
. (2)

For the given dimensions and material properties, we find the frequency of 13 MHz corre-

sponding to a residual stress of 140 MPa. Since the beam vibrates in air, we take the air

viscosity, µ = 18.3×10−6 Ns/m2, density, ρf = 1.2 kg/m3, pressure, Pa = 1.013×105 N/m2

and temperature 300 K. At ambient temperature and pressure, the speed of sound is found

as cs = 343.2 m/s, the mean molecular speed uth = 468.23 m/s, the mean free path of air as

λ = 67nm, and the boundary layer thickness δ =
√

2µ/ρfω = 611 nm. For the first mode

of vibration of a fixed-fixed beam, the effective mass me = 0.375ρsacbd0, and the effective

stiffness ke = ω2
ame.

A. Flow Characterization

To quantify the viscous losses and predict the size effects on the measured quality factor of

doubly clamped beams operated in their fundamental mode at identical frequencies but with

varying beam widths, we compute various non-dimensional numbers such as the Knudsen
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number, Reynolds number, aspect ratio, etc. For a given beam length a and varying air-gap

thickness h0 and beam width b, the Knudsen numbers and the Reynolds numbers based on

the different characteristics length scale can be computed as6,15,21,22

• Knh = λ
h0
: It is used to define the degree of rarefaction in squeeze film damping. For

the airgap thickness h0 = 250nm, 460 nm, 660nm, and 750nm, the Knudsen number is

found to be 0.27 (Transition), 0.14 (Transition), 0.10 (Slip) and 0.09 (Slip). Therefore,

the effect of rarefaction needs to be considered in squeeze film force computation. It

can be captured by computing the effective viscosity23,24.

• Knb = λ
b
: It is used to define degree of rarefaction when the beam is far away from the

fixed plate. For beam width of b = 50 nm to 2µm, Knb varies from 1.34 (transition

flow) to 0.03 (slip flow). The effect of rarefaction needs to be considered in drag force

computation.

• Knδ = λ
δ

=
√
ωτ : For δ = 611 nm and, we get Knδ = 0.109 < 1. Since, the

Weissenberg number Wi=ωτ < 1, the flow can be assumed to be quasisteady flow.

• Reh =
ρfωh

2
0

µ
=

2h2
0

δ2
: For the airgap thickness h =250 nm, 460 nm, 660 nm, and 750

nm, Reh varies from 0.33 1.13, 2.3, 3 for a frequency of 13 MHz. The values show

that the local inertial effect is important for large air-gap. Alternatively, the ratio

h0

δ
can also be used to characterize the flow as being in the static regime

(h0 >> δ) or in the dynamic regime (h0 ≈ δ) in the case of the squeeze film

damping.

• Reb =
(ρfωb

2)

µ
= 2b2

δ2
: For a beam width of b = 50 nm, 420 nm 590nm, 1000 nm, 2000

nm, Reb varies from 0.014, 1.01, 2.01, 5.76, to 23. For beam widths greater than 400

nm, the inertial effect in drag force become significant. As in the previous case,

the ratio b
δ
signifies the static regime (b >> δ) and the dynamic regime for

(b ≈ δ) in the case of drag forces.

• Rec =
(ρfωδzb)

µ
: For small oscillations, δz ≈ 1nm, Rec is negligibly small. Consequently,

the convective inertia term can be neglected.

The computation of these different Knudsen and the Reynolds numbers show

that rarefaction and inertial effects are important in computing damping due
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to squeeze film and drag forces. Since, the ratio, h0/b, is greater than 0.1, the ef-

fect associated with 3D flow should also be considered in the formulations of drag force

and damping. Now, we describe different models of drag and squeeze film damping under

different operating conditions.

B. Different Analytical Models

There exist several different models to compute drag forces with or without

nearby fixed plate and squeeze film damping. We outline some important models

and their assumptions below.

1. Drag Force Models

In this section, we describe three important models to compute drag forces

under different operating conditions for a beam of width b, thickness d0, air-gap

h0, operating frequency ω, etc.

• Qd1 =
ρsbd0ω
γd1

, where, γd1 is the drag force coefficient per unit length. The generalized

expression of Stokes drag force coefficient (γd1 per unit length) using the so-called

“sphere” model21,25,26 can be reduced to γd1 = 8µKs for a thin disk. Therefore, the

drag force based quality factor for the slender beam can be written as Qdr =
ρsbd0ω
8µKs

.

Ks is the scaling factor, introduced to capture all of the terms for the shape correction,

rarefaction effect, inertial effect, etc. The factor Ks is independent of air-gap thickness

h0.

• Qd2 = meω
C26πµeRe

, where γd2 = C26πµeRe is the Stokes drag force coefficient, me is

the effective mass of the beam, µe = ρfauthλ is the effective viscosity when λ < h,

uth =
√

8RT/πMa Ra = 27.058, and Ma = 28.97 g/mole. The variation of pressure

and temperature can be incorporated in the density as ρf0 =
√
P/RaT . However, the

rarefaction effect can be captured through the mean-free path λ = µf

√
πRaT/2Ma

which is inversely proportional to pressure. The effective radius is obtained from Re =

CR

√
acb
π
, where CR is the correction in effective radius. This model is independent

of air-gap thickness and is valid under low operating frequency such that Re << δ,

where, δ =
√
2µe/ρf0ω

21,25.
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• Qd3 =
meω

C36πµeRe(1+Re/δ)
, where γd3 = C26πµeRe(1 + Re/δ) is the drag force coefficient,

δ =
√

2µe/ρf0ω is the boundary layer thickness and other parameters are same as

the previous model Qd2. Like the previous model, this model is also independent of

air-gap thickness. However, it is valid for a high operating frequency, i.e., Re > δe.

This model can be useful when the characteristic length scale, i.e., beam width, is of

same order as the boundary layer thickness16.

• Qd4 =
meω
γd4

, where, γd4 = C46πµeR
2
e/(h0ff ), where ff =

[
1 + η1

λ
h0

(
1 + η2

Re

δe

)]
, η1 and

η2 are the constants based on the strength of Knh = λ/h and Reδ = Re/δe, respectively.

Unlike the previous models, this model is dependent on air-gap thickness16.

On comparing different models, we found that Qd1, Qd2, and Qd3 are independent

of air-gap thickness, and Qd4 is dependent on the air-gap thickness. While the

inertial effect is captured directly by Qd3 and Qd4, the other models capture the

effect through fitting parameters.

2. Squeeze-film Damping Models

In this section, we discuss two important models to compute squeeze film

damping.

• Qs1 = Cs1
meω
γs1

, where, γs1 = γpr + γdp is the damping coefficient from forces due to

pressure and stress at the wall, γpr and γdp are given by

γpr =
8Aγa

3b

π4

∑
n=odd

1

n4

[
1− 2a

πnb

eπnb/(2a) − e−πnb/(2a)

eπnb/a − e−πnb/a

]
(3)

γdp = −Aγab

[
h2
0 −

2b1 + h0

b0 + b1 + h0

(h2
0 + b0h0)

]
, (4)

where,

Aγ =
2µ

ρf

[(
−1

3
+ 1

2
2b1+h0

b0+b1+h0

)
h2
0 +

(
2b1+h0

b0+b1+h0

)
b0h2

0

] , (5)

b0 and b1 are slip lengths at the lower and upper surface facing each other. Equa-

tions (3), (4), and (5) are derived for rigid motion of the plate by solving Reynolds
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equation with ambient pressure boundary conditions on all the four sides of a rectan-

gular domain17. This model is obtained for incompressible flow, and hence,

it is valid for low operating frequencies. It captures the rarefaction effect

through the slip lengths at the boundaries.

• To consider the effect of flexural motion of a fixed-fixed beam vibrating near a fixed

plate, the squeeze film damping model under ambient pressure condition is obtained

by solving the Reynolds equation with zero-pressure condition at free boundaries and

a no-flow condition at the fixed-boundaries. The Reynolds equation is solved with

the assumptions27 under which the flow is assumed to be (a) two dimensional due

to the pressure gradient along the two planar directions, and (b) isothermal and vis-

cous with weak compressibility provided through ρ ∝ P , where, P is the pressure.

This model is accurate for h0/b < 0.1. For h0/b > 0.1, the 3D flow effect can be

approximately modeled by writing an effective dimension beff = b + ξh0, where, ξ

is a correction factor associated with beff . The quality factor from the squeeze film

losses of a fixed-fixed beam can be computed from the expression obtained by Zhang

et al.27, Qs2 =

√
1−msqa

csqa
where, msqa and csqa are the squeeze inertia number and the

squeeze damping number respectively. We write the exact mode shape of the fixed-

fixed beam as20,27, χ(x) = cosh(αx/a)− cos(αx/a)+γ[sinh(αx/a)− sin(αx/a)], where

γ = − [cosh(α)−cos(α)]
[sinh(α)−sin(α)]

, x/a is a non-dimensional geometric factor, a is the beam length

and α is the frequency parameter. The parameter α is obtained by solving the fre-

quency equation, cos(α)cosh(α)−1 = 0 (for the fundamental mode, α = 4.73)20. The

expressions for squeeze inertia and the squeeze damping numbers are written as,

msqa =
µ2a4

π2Paρsd0h5
0

[
∞∑

m=even

∞∑
n=odd

2304a2m
n2

1

[(m2π2 + n2π2β2)2 + σ2]

+
∞∑

n=odd

1152a20
n2(n4π4β4 + σ2)

]
,

csqa =
µa4√

3ρsEα2d20h
3
0

[
∞∑

m=even

∞∑
n=odd

1152a2m
n2π2

(m2π2 + n2π2β2)

[(m2π2 + n2π2β2)2 + σ2]

+
∞∑

n=odd

576a20β
2

(n4π4β4 + σ2)

]
.

9

http://dx.doi.org/10.1063/1.4950758


where, ap is given by ap =
αsinh(α)
α2+p2π2 + γ αcosh(α)−α

α2+p2π2 − sin(pπ−α)
2(pπ−α)

− sin(pπ+α)
2(pπ+α)

− γ 1−cos(α−pπ)
2(α−pπ)

−

γ 1−cos(α+pπ)
2(α+pπ)

, p = 0 and 1, 3, 5, ...,m. A ready evaluation of the squeeze film quality

factor (Qs2), valid for the squeeze number, σ = 12µeffωa
2

Pah2
0

≪ 1000 and aspect ratio,

β = a/b > 10 is obtained by using the expression for the squeeze inertia and damping

numbers written as27, msqa = 1.1977
µ2
effb

4
eff

Paρsd0h5
0
, csqa = 0.1525

µeffa
2
effb

2
eff√

ρsEh3
0d

2
0
. For the funda-

mental mode of the resonator, the constants α = 4.73, a0 = 0.831. The constant

a0 is obtained by setting p to zero in the expression for ap (with γ = -0.983). For

the air gap thickness set to the experimental values of 750 nm, 660 nm, 460 nm and

250 nm, respectively, the corresponding computed squeeze number, σ, is 32, 39, 66,

and 132. To capture the rarefaction effect, we invoke the effective viscosity model23,24,

and use µeff = µ
Qrt

, where Qrt is the non-dimensional relative flow rate given by,

Qrt = 1+3×0.01807×
√
π/D+6×1.35355×D−1.17468, with D =

√
π

2Kn
. For the range

of air gaps (250 nm–750 nm) considered in the present study, the fluid flow regime

varies from the transition flow to slip flow. Here, µeff is obtained for gaseous slip

flow under ambient pressure and temperature conditions. However, the variation in

pressure and temperature of the surrounding air can be captured while computing the

mean free path or velocity slip24,28,29. The current formulation of the slip velocity is

for gaseous flow24, however, an appropriate slip model can be selected for other fluids

such as liquids or moisture30.

C. Comparison with experimental results

In this section, we compare the results from different models with experimental results

taken from Verbridge et al12. In all the cases, we take effective length of the beam as

a = 12.5µm. Figures 2(a) and (b) illustrate that all drag models fail to match

experimental results for sufficiently large b. For small b, the match between

model and experimental data appears best for models Qd1 and Qd4 (in Fig.2(b)).

While the models Qd1, Qd2, and Qd3 are independent of air-gap thickness, Qd4 is

a function of h0. Moreover, the model Qd1 captures drag based on the thin disc

model, and models Qd2 and Qd3 capture the drag based on the “sphere” model

without and with inertial effects. Therefore, to fit the damping due to drag

force in the range of smaller values of beam width, we choose a specific thin disc
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FIG. 2. Comparison for drag force based quality factor computed from (a) Qd1 (Ks = 1), Qd2

(C2 = 1 and CR = 1), and Qd3 (C3 = 1 and CR = 1) with experimental results for h0 = 750 nm,

and (b) Qd4 with experiments for h0 = 250, 460, 660, and 750 nm, respectively. Comparison of

squeeze-film based quality factors using (c) Qs1 ( Cs1 = 0.155) at different slip lengths b0 and b1,

and (d) Qs2 at different effective lengths with experimental results for h0 = 750 nm.

model Qd1, and a generalized “sphere” model Qd3 for further analysis.

Similarly, Figures 2(c) and (d) show the comparison of squeeze film models

Qs1 and Qs2 with experiments. Figures show that both the models fail to match

with experiments for sufficiently small width. However, both require fitting pa-

rameters to match the experimental results for larger width. While Qs1 requires

two fitting parameters, namely, slip length and scaling constant, Qs2 requires

11

http://dx.doi.org/10.1063/1.4950758


 

0

20

40

60

80

 

    , Q
s2

 (b
eff

=b+1.7 h  ) 

Exp. Res. (h  =750 nm)

Q
d1

 (K
eff

=0.5) ,  Q
s2

 (b
eff

=b+3.8 h
0
)

Q
s1
 (b

0
=10 nm, b

1
=10 nm)

Q
u
al

it
y
 F

ac
to

r

0 400 800 1200 1600 2000

Beam width, b[nm]
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Q
u

al
it

y
 F

ac
to

r

 

 

10

20

30

40

50

60

70

80

90

Q
s2

(theory)

Q
d1

   (K    = 0.5)
s  

expQ , h   = 250 nm0

expQ , h   = 460 nm0

expQ , h   = 660 nm0

expQ , h   = 750 nm0

theory

Q
net

Beam width , b, [nm]

(theory)

Verbridge et al 12

750 nm

660 nm

460 nm

250 nm

(a) (b)

Q
d3

  (C
3
=0.9, C

R
=0.75),

0
Q

d3
  (C

3
=0.75, C

R
   =0.75)

0

12

FIG. 3. (a) Comparison of combined quality factor due to drag and squeeze film using Qd3(C3 = 0.9

and CR = 0.75) and Qs2(b0 = 10nm and b1 = 10nm), Qd1(Keff = 0.5) and Qs2 (beff = b + 3.8h0),
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Comparison of theoretically computed analytical results using Qd1(Keff = 0.5) and Qs2 (beff =

b + ξh0, where ξ = 3.2, 3.8, 4.1, 3.8 for h0 = 250nm, 460nm, 660nm and 750nm, respectively)

with experimental results at different air-gap thickness.

only one fitting parameter, i.e., effective width. Moreover, Qs1 is valid for an

incompressible fluid only, while the validity of Qs2 can be extended to fluid with

low compressibility.

To compare the combined effect of drag and squeeze film damping, we take different

combinations of drag models, Qd1 and Qd3, and squeeze film models, Qs1 and Qs2 and

compute the net quality factor using eqn. (1). Figure 3(a) shows the comparison of Qnet

computed with combinations Qd3(C3 = 0.9 and CR = 0.75) and Qs1(b0 = 10nm and b1 =

10nm), Qd1(Keff = 0.5), and Qs2 (beff = b + 3.8h0), Qd3(C3 = 0.9 and CR = 0.75) and Qs2

(beff = b+ 1.7h0) with experimental results for h0 = 750nm. Although all the combinations

with different fitting parameters approximate the measured results nearly equally well, we

use the combination based on Qd1 and Qs2 for further analysis, as Qs2 is more general

than Qs1. Using Qd1 with Keff = 0.5 and Qs2 with beff = b + ξh0, we find the fitting

parameter ξ = 3.2, 3.8, 4.1 and 3.8 corresponding to h0 =250 nm, 460 nm, 660 nm and
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750 nm for the closest fits with experimental results as shown in Fig. 3(b). The fits to the

squeeze film quality factor, Qs2 exhibit a monotonic increase in the squeeze film losses with

increase in the beam widths. The pressure applied by the fluid on to the plate rises with

an increase in the beam width, resulting in a decrease in Qs2 for a fixed air gap thickness.

As the air-gap thickness decreases, Qs2 exhibits a steeper descent with Qs2 ∝ (1/b)2 for a

given air-gap thickness over a large range of beam widths (from 55 nm to 300 nm). The

theoretical fits match well with experimental results. The net computed quality factor, Qnet,

has a dominant contribution from squeeze film losses at higher beam widths, while the drag

force damping computed using Qd1 dominates in slender beams.

Finally, the net computed quality factor can be found from Q−1
net = Q−1

s2 +Q−1
d1 , which is

dominated by viscous losses. The calculated Q−1
net corroborates the experimental results, and

is found to have a maximum at a characteristic beam width, at which neither of the viscous

dissipation mechanisms dominates, resulting in an optimized high-Q resonator geometry for

a chosen air gap thickness. It is seen from Fig. 3(b) that the maximum value of Qnet shifts

to higher beam width with larger air gap thickness. We find that the drag force mechanism

(Qd1) provides larger energy loss for smaller values of b/h0 ratio, and the squeeze film losses

dominates for larger values of b/h0 ratio. In the range, 0.45 < b/h0 < 1 (the crossover regime

shown in Fig. 3(b)), both mechanisms provide comparable damping. To further quantify

the relative dominance of squeeze film damping over drag dissipation in the next section, we

take beff = b+ 3.5h0.

III. FINITE SIZE EFFECTS FROM THE DOUBLY CLAMPED BEAM

In this section, we extend the present model to predict the variation of Qnet with b if

the air gap thickness as well as length were varied beyond the values explored in the study

by Verbridge et al.12. We have used Qd1 with fitting coefficient Keff = 0.5 and Qs2 with

beff = b + 3.5h0 to compute Qnet to analyze the influence of air-gap thickness h0 and beam

length a on Qmax and bmax, respectively, as follows:

• Effect of air-gap thickness: Figure 4(a) shows the variation of Qnet with beam width, b,

in which Qmax is found to saturate at higher h0 and remains constant with b. For larger

airgaps, bmax does not attain a maximum but increases slowly with beam width. Thus

squeeze film losses (dominant for large widths) decrease as the height h0 increases27.
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FIG. 4. (a) Variation in the net quality factor computed from Qd1(Keff = 0.5) and Qs2 (beff =

b + 3.5h0 with beam width, b, for various air gap thicknesses. The black dots mark the optimum

beam width bmax to achieve Qmax for a given air-gap thickness, h0; (b) bmax varies with air-

gap thickness, h0 as bmax = 0.5559h0 + 80.66; (c) The maximum quality factor, Qmax, varies

exponentially with the aspect ratio bmax/h0; (the coefficients corresponding to curve fit for 0.5

< r < 0.95, are a1 = 1.288 × 108, b1 = -24.62, c1 = 141.5, d1 = -1.755, and the corresponding

coefficients for the aspect ratio, r in the range 0.95 < r < 2, are a2 = 77.24, b2 = -1.823, and c2 =

12.87, respectively. The parameters for simulation are: aeff = 12.5 µm, beff = b + 3.5h0 µm, d0 =

140 nm, and Ks =0.5). (d) Variation of Qmax with beam width b for different lengths a, and the

corresponding variation of (e) β = a/bmax with r = bmax/h0 and (f) Qmax and β = a/bmax.

Using the expressions for msqa and csqa, the expression for the net quality factor can

be used to find the maximum value of the quality factor (Qmax) and the corresponding

value of the optimum beam width (bmax). For a range of air gap thicknesses h0, the

corresponding width bmax can be obtained from bmax = 0.5559h0 + 80.66 or bmax

a
=

0.5559h0

a
+ 0.00645 for 50 nm < h0 < 1.5 µm as shown in Fig. 4(b). The relation

between Qmax and r = bmax/h0 are shown in Fig. 4(c) and are found as a1e
b1r + c1e

d1r

for 0.5 < r < 0.95 and a2e
b2r + c2 for 0.95 < r < 2. Here, a1 = 1.288 × 108, b1 =

-24.62, c1 = 141.5, d1 = -1.755, a2 = 77.24, b2 = -1.823, and c2 = 12.87. It is noticed

that two sources of dissipation influence the damping behavior corresponding to Qmax
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in the range of 0.5 < r < 0.95, whereas, only squeeze film dominates the damping

behavior in the range of 0.95 < r < 2.

• Effect of beam length: Similarly, Figure 4(d) shows the variation of Qnet with b for

different beam lengths when the air-gap thickness is maintained at h0 = 500 nm and

variation in frequency is considered using Eqn. (2). As the beam length increases,

bmax tends to a constant value, while Qmax decreases asymptotically to 20 for a given

air-gap thickness h0 = 500 nm. Fig. 4(e) shows the variation of β = a/bmax and

r = bmax/h0. For large beam length, optimum value of r = bmax/h0 can be taken in

the range of 0.6 to 0.7. The linear and exponential approximations of β = a/bmax

and r = bmax/h0 can also be found as β = −197r + 180 and β = 75e−3(r−0.7) − 33,

respectively. Figure 4(f) also shows that Qmax decreases exponentially with β = a/bmax

as Qmax = 600e−0.1β + 18. As the beam length increases beyond a certain value, most

of the damping is due to 1-D flow and is entirely dependent on the beam width to gap

ratio. Under these conditions, 1-D models can be used to compute damping forces.

The empirical fits, which serve as a recipe to achieve a high-Q structure for various ranges

of the aspect ratios (β and r) will prove to be useful in designing high performance devices.

Finally, we state that the present study can be of significance in understanding the fluid

damping in a multidisciplinary area. Although the present formulation is suited for gaseous

flow, the fluid damping in liquid can be obtained by suitably modifying the slip condition

at the boundary30.

IV. CONCLUSIONS

Our central interest in the present study was to identify the dominant viscous losses and

quantify the associated quality factors for a range of beam widths. Our findings match well

with the experimental results. The present model provides insight into finite size effects and

yields an optimized doubly clamped geometry to achieve a high-Q beam resonator. We have

identified a range for the aspect ratio (b/h0), at which the two viscous losses compete with

each other. We have also found the limiting cases of aspect ratios for a fixed length of the

beam at which only the squeeze film damping or the drag force damping alone contributes

to the net quality factor. The present model is applicable as long as the doubly clamped
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beam geometry is so choosen to be within the limits of the thin beam theory. For thick

beams, the search for optimum-Q requires a separate detailed study.
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