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Abstract Modal analysis of non-uniform bolted structures are of significance in

modeling many complex mechanical structures. There are vast literatures available

related with the analytical as well as numerical modeling of bolted joint. However,

most of the analytical model discuss about the modeling of first mode of uniform

structures with single bolted joint. In this paper, we present the modeling of single

as well as bolted non-uniform beams using approximate mode shapes. To develop

the model, we first carry out experiments to measures the modal frequencies and

shapes of the test structures. Subsequently, we also do numerical modeling of

non-uniform beams in ANSYS to verify the validity of the Euler-Bernoulli beam
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theory in developing the analytical models. Finally, using the Euler-Bernoulli beam

theory, we obtain the analytical values of frequencies using the approximate the

mode shapes. The analytical results are found to be closer to the experimental

results with a maximum percentage error of about 15%. The model presented in

the paper can be extended to the mechanical structures with many non-uniform

sections with or without bolted joints.

Keywords Non-uniform beam · Bolted structures · Model analysis · Closed form

solution

1 Introduction

Majority of mechanical and aerospace structures are frequently modeled as non-

uniform free-free Euler-Bernoulli beam [1–4]. Although, there have been many

work on the modal analysis of a structure with varying mass but there are limited

studies available for a system of structures with varying cross sections which are

connected by bolted joints. Since jointed type cylindrical structures find applica-

tion in rockets and space crafts, as sections of smaller lengths are joined together

to form the full lengths, the analysis of non-uniform beams connected by bolted

joint is very significant from various practical considerations. In this paper, we

deal with the modal analysis of single as well as bolted cantilever beams with

non-uniform sections.

Abrate [5] studied the vibration of non-uniform rods for which he transformed

the equation of motions into the wave equation and found out that the natural

frequencies of non uniform rods fixed at both ends is same as that of uniform rods.

Wu and Ho [6] obtained the natural frequencies and mode shapes corresponding

to the longitudinal and torsional vibrations of a non-uniform ship hull with large

hatch openings using the finite-element method. Platus [2] employed Lagrangian

approach to study nonlinear aeroelastic stability of flexible structure having non-

uniform sections. Pourtakdoust and Assadian [7] studied the effect of thurst on the

bending behaviour of non-uniform flexible floating structure. Jaworski and Dowell
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[8] obtained the theoretical and experimental frequencies of a cantilever beam with

multiple steps using the Rayleigh-Ritz method. Zheng et al. [9] developed modified

vibration functions by satisfying the required boundary conditions to compute the

frequencies of a multi-span beams with non-uniform sections subjected to mov-

ing loads. However, none of the above studies assumed the joints as bolted joint.

To model the jointed structure, there exist different types of models which are

classified based on loading, damping, flexibility of the joints, etc [10]. While the

normally loaded joint produces less damping as compared to tangentially loaded

joint, the damping in tangentially loaded joint depends on its elastic and plastic

deformation due to micro- and macro-slip phenomena. Such behavior can be mod-

eled using finely meshed finite element models or different friction models. Some

of friction models are the Coulomb models, Masing model, Iwan model, etc. The

nonlinear hysteretic behavior can be capture by different arrangements of Jenkin

element, which is a combination of spring and friction slider, or the Bouc Wen

model, etc. More details about the joint modeling can be found in reference [10,

11]. Oldfield et al. [12] used simplified models of bolted joints as a combination

of the number of Jenkins elements and the Bouc-Wen model to study the effect

of harmonic loading on a bolted joint using finite element method. Todd et al.

[13] performed experiments on a beam with its boundaries supported by spring

modified fasteners. Subsequently, they modeled the bolted joint with an effective

spring stiffness based on the perpendicular load acting normal to the axis of the

joint, i.e., neglecting the shearing effect, and thus, the effect of friction. Ouyang

et al [14] conducted experiment on a single joint of two beams under torsional

dynamic loads and described the hysteresis phenomena under different preloads

and excitation amplitudes. Finally, they correlated the results with the micro and

macro-slip phenomena at the joint interface. Ma et al [15] performed experiment

on the bolted and unbolted structure. They found the nonlinear stiffness and

damping associated the bolted joint by comparing the numerical model with the

unbolted joint. Hartwigsen et al [16] performed experiment to characterize the
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non-linear effect of a shear lap joint on the dynamics of two mechanical structure.

They modeled the effective stiffness and damping effect using Iwan models. Quinn

[17] presented the modal analysis of jointed structures by modeling the elastic

effect of the joint using a linear modal equation and the dissipative effect of the

joint with a continuum series-series Iwan model. Tol and Özgüven [18] described

an experimental identification method based on frequency response function de-

couling and optimization to extract the joint properties in terms of translation,

rotational, and cross-coupling stiffness and damping values. Chen et al. [19] used

the numerical assembly method (NAM) for computing the natural frequencies of a

cantilever beam having multiple spans of different cross-sections carrying spring-

mass system at different locations. In this method, they considered the joints as

attaching points of two beams, and, then, used the equilibrium and compatibil-

ity equations to form element matrices to compute the natural frequencies. Song

et al [20] presented the modeling of bolted beam structure using finite element

method with adjusted Iwan beam elements obtained by taking two adjusted Iwan

model corresponding to each degrees of freedom of 2-noded beam element. Subse-

quently, they used multi-layer feed forward neural network to optimize the joint

parameters obtained from FEM model with the measured results. Eriten et al [21]

ultilized nonlinear system identification and reduced order modeling to extract

the nonlinear damping of beams with bolted joints. They have also compared the

results with monolithic structure. Ahmadian and Jalali [22] presented a nonlinear

parametric formulation through a generic element under the conditions of a joint

interface. They obtained the dynamic characteristics of joint by comparing the

dynamic response of generic element using the incremental harmonic balance with

the observed behavior of the structure. To do accurate nonlinear friction model-

ing of the jointed structure for general structure, Süß and Willner [23] first used

three degree-of-freedom model using multiharmonic balance method (MHBM) and

then extended it to n degrees-of-freedom model using the finite element method.

Since the accuracy of harmonic balance method increases with the number of har-



Title Suppressed Due to Excessive Length 5

monics, increase in harmonics leads to larger computation time. To reduce the

computation time, Jaumouillé et al [24] proposed an adjusted harmonic balance

method which adjusts the number of retained harmonics for a given precision and

frequency value. Although there have been many improvement in the modeling of

bolted structures, however, some level of uncertainties remains due to non-smooth

nonlinear dynamic characteristics [25]. It is also important to note that most of

the above literatures dealt with the bolted joint of only uniform beams. To do

the modeling of jointed beams with non-uniform beams, Sarkar and Ganguli, [26],

adopted an inverse problem approach to obtain fundamental mode shape of a sin-

gle as well as bolted non-uniform Euler Bernoulli beams by approximating the

variation of mass and flexural rigidity by polynomial of required order in conjunc-

tion with free-free Euler-Bernoulli beam. To do the analysis of bolted non-uniform

beam, they modeled the bolted joint with torsional spring. However, their analy-

sis was limited to the first mode of simply-supported non-uniform beam. In this

paper, we focus on the modal analysis of jointed cantilever beams with two and

three non-uniform sections using higher modes.

To do the analysis, we first perform the experiments to measure the mode

shapes and frequencies of bolted cantilever beams. Based on the measured loca-

tions of the zero positions of first, second and third mode shapes, we compute ap-

proximate modeshapes of non-uniform cantilevers with bolted joints based on the

same approach as suggested by Sarkar and Ganguli [26]. Finally, we compute the

frequencies of first three transverse modes of bolted cantilever with non-uniform

sections and compare with the experiments.

2 Expermental Procedure and Results

To measure the modal frequencies of single as well as bolted non-uniform beams

as shown in Fig. 1(b), we use Polytec scanning laser vibrometer as described in

Fig. 1(a). To perform the experiment, we first mount the test specimen on a shaker.

Subsequently, we apply pseudorandom signal from an internal function generator
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Fig. 1 (a) A picture showing the outline of experimental setup; (b) Test specimen showing the
images of single non-uniform beam, bolted beams with two and three non-uniform sections,
and a monolithic beam with three non-uniform sections without bolted joint.

Fig. 2 (a) Experimental frequency response of a single non-uniform beam with diverging
section from the fixed end. (b) The scanning points and zero locations are shown in its first,
second and the third modes, respectively.

of vibrometer over a frequency bandwidth of around 200 Hz to 1600 Hz so as to

cover the first three transverse modes of different configurations. In each case, the

FFT lines are taken as 3200 over the given bandwidth. The acceleration of shaker

is controlled through the amplifier. To capture the mode shape and modal frequen-

cies, we defined sufficient number of scanning points on the test sample using laser

scanning head and start the measurements of displacement/velocity at each points

of the defined region. The movement of laser over the scan points are controlled

using OFV controller. Finally, the measured quantities such as the displacement

or velocity and input signal are stored using data acquisition system over a given

frequency range. The accuracy of frequency measurements depends on the num-

ber of FFT lines and frequency bandwidth. An accuracy of corresponding mode
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Fig. 3 (a) Experimental frequency response of a bolted beam with two sections. (b) The
scanning points and the zero locations are shown in its first, second and the third modes,
respectively.

shapes depends on the sufficient number of scan points. A detailed description of

measurement technique is described in the references [15,27,28].

Using the above mentioned procedure, we perform experiments to find the

modal frequencies and mode shapes of single as well as bolted non-uniform beams

as shown in Fig. 1. All the beams are made of aluminium and are of length,

L = 0.16 m, thickness, t = 0.002m and have varying width of b1 = 0.03 m at

one end to b2 = 0.05 m at another end. Each beam is provided with end holes of

diameter d = 0.01 m and an extra length of 0.02 m was provided for the fastening.

The Young’s modulus and the density of aluminium beam are taken as E = 69

GPa and ρ = 2700 kg/m3. To increase the accuracy of mode shape, we divide the

beam length into 22-32 divisions. Similarly, the beam width with smaller side is

divided into 4-6 divisions and that with larger side is divided into 6-8 divisions.

Consequently, for the beam of length 0.16 m, approximate spacing between each

scanning points along the beam length vary from 0.005 m to 0.007 m.

Table 1 Experimental results for single and bolted non-uniform cantilever beams.

Beam configurations 1st mode [Hz] 2nd mode [Hz] 3rd mode [Hz]

Single beam(Small end fixed) 54.68 371.09 1146.48
Two section bolted beam 13.1 66.5 260.25
Three sections bolted beam 5.62 33.43 73.44
Three sections monolithic beam 6.75 43.50 118.0



8 Bimal Purohit et al.

Fig. 4 (a) Experimental frequency response of a bolted beam with three non-uniform sections;
(b) The scanning points and the zero locations of the bolted beams are also shown in its first,
second and the third modes, respectively. (c) Experimental frequency response of a monolithic
beam with three non-uniform sections without joint; (d) The scanning points and the zero
locations of the monolithic beams are also shown in its first, second and the third modes,
respectively.

To systematically perform the experimental studies, we first perform experi-

ments on a single non-uniform cantilever beam. Figure 2(a) shows the frequency

response of the single non-uniform cantilever beam when the smaller end is fixed

as shown in Fig. 1(b). The measured frequencies are found as 66.40 Hz, 401.36

Hz, and 1160.15 Hz. Based on the observation of second mode, it is found that

the first torsional and second transverse modes are closer to each other. Figure

2(b) shows the scanning points over the length and width of the beam. It also

shows the zero locations along the length of the beam at x = 0 m for first mode,

x = 0 and 0.12m for second mode, and x = 0, 0.07 and 0.13m for third modes,

respectively. Although, the zero points for a given mode is found corresponding

to the zero response amplitude, there may be some error if the zero point is lo-

cated between the two scanning points. We performed measurements by varying
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the scanning points along the length from 27 to 33. Therefore, the maximum error

associated with the measurement of zero points may vary from 0.005m to 0.006m.

Figure 3(a) shows the variation of frequency response of a bolted cantilever beam

with two non-uniform sections. The frequencies are found to be 13.1 Hz 66.5 Hz,

and 260.25 Hz corresponding to first three transverse modes of the beam. The cor-

responding zero points are found to be x = 0 m for first mode, x = 0 and 0.21m for

second mode, and x = 0, 0.15 and 0.28m for third modes, respectively, as shown

in Figure 3(b). Similarly, the number of scanning points over each section along

the length is taken about 23 points which leads to a difference of about 0.007m

between two neighboring points.

Figures 4(a) and (c) show the frequency response curves of cantilever beams

with three non-uniform sections with and without bolted joints, respectively. For

the cantilever beam with three non-uniform bolted sections are found at 5.625 Hz,

33.43 Hz, and 73.44 Hz, respectively. The zero points are found to be x = 0 m for

first mode, x = 0 and 0.33m for second mode, and x = 0, 0.37 and 0.23m for third

modes, respectively, as shown in Figure 4(b). For the cantilever beam of three

non-uniform sections without any bolted joints, the transverse modes are found at

7.25 Hz, 42.75 Hz, and 120.75 Hz, respectively. The zero points are x = 0 m for

first mode, x = 0 and 0.36m for second mode, and x = 0, 0.4 and 0.23m for third

modes, respectively, as shown in Figure 4(d). In both the cases, for the scanning

points of 23 per section in both the cases, the maxiumum difference between two

points is about 0.007m. The comparison of results between monolithic and bolted

section show that the beam with bolted joints has lower modal frequencies than

that of the monolithic beam due to marginal reduction in stiffness and mass of the

bolts at the joints. The measured frequencies in all the above cases are summerized

in Table 1. In the subsequent section, we first present the modeling of single non-

uniform beam and monolithic three sections beam using ANSYS. Subsequently,

we present analytical modeling of a single non-uniform beam and the bolted beam

using lumped spring at the joint. The error associated with the measured values
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Fig. 5 Finite element models and mode shapes of (a)single beam with diverging section, (b)
single beam with converging section, (c) a monolithic beam with three non-uniform sections
without any joints.

may vary from 0.25 to 1 Hz due to the number of FFT lines taken for a given

range of measured frequencies.

3 Numerical Modelling and Results

In this section, we present numerical modeling of single as well as monolithic non-

uniform beams using 2D beam element in ANSYS. To model different sections, the

cross-sections at x = 0 and x = L are provided corresponding to the dimensions

of single non-uniform beam. To model the beams of monolithic beam with three

non-uniform sections, we provide six cross-sections corresponding to the ends of

each section and glue them together. After providing the material properties of

the beams, we perform modal analysis using block lancoz method to compute

modal frequencies and corresponding modes of the single and bolted non-uniform

beams. Figure 5(a) shows the numerically computed first three transverse mode

shapes of non-uniform beam when smaller end is fixed. Similarly, we obtain the

first three transverse modes of monolithic cantilever beam with three non-uniform

sections as shown in Fig. 5(c). The frequency values of beams with single and three

non-uniform sections are summerized in Table 2.

Table 2 Frequencies of cantilever beam with single and monolithic three non-uniform sections.

FEA models 1st mode [Hz] 2nd mode [Hz] 3rd mode [Hz]

Single beam(Small end fixed) 54.49 380.75 1100
Three sections monolithic beam 6.64 41.88 118.43
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On comparing the numerical results from Table 2 with the experimental re-

sults as mentioned in Table 1, we get very good agreement with a minimum and

maximum percentage errors of 0.3% and 11%, respectively.

4 Analytical Procedure and Results

In this section, we present approximate method to compute the first three trans-

verse mode shapes of the single non-uniform cantilever beam with variable mass

and elastic rigidity by following the approach proposed by Sarkar and Ganguli

[26]. Later, we utilize the computed mode shape to obtain the modal frequencies

using Rayleigh-Ritz method. After validating the method with the results of the

single beams, we compute the mode shapes and frequencies of bolted cantilever

beams with two and three non-uniform sections, respectively. Finally, we compare

the analytical results with experimental results for all the cases and discuss the

results.

4.1 Modal Analysis of a Single Non-Uniform Beam

To compute the expression of mode shapes corresponding to first three transverse

modes of a non-uniform cantilever beam fixed at its smaller end, we use zero

positions from the measured mode shapes. Subsequently, we use the Rayleigh-

Ritz method to compute the frequencies.

Taking the same dimensions as taken for the test sample for a beam of length

L = 0.16m, width b1 = 0.03 m at the small end and b2 = 0.05 m at the larger

end, thickness, h = 0.002 m, the elastic modulus of E = 69 GPa and the density

of ρ = 2700 kg/m3, the transverse motion can be governed by the Euler-Bernoulli

beam equation as [26],

∂2

∂x2

(
EI(x)

∂2φ

∂x2

)
−m(x)ω2φ(x) = 0, (1)
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where, φ(x) is the unknown mode shape corresponding to the modal frequency

ω which is obtained by satisfying the corresponding boundary conditions and the

governing equation of the beam. Due to the variation of width along the length,

the variation of mass m(x) and the flexural rigidity EI(x) can be obtained as

m(x) = 0.162 + 0.675x, and EI(x) = 1.38 + 5.75x. (2)

After finding the approximate mode shape, we obtain the corresponding fre-

quency using the Rayleigh-Ritz method as

ω2
n =

∑
i

∫ L
0

∂2

∂x2

(
EI(x)i

∂2φni(x)
∂x2

)
φni(x)dx∑∫ L

0
m(x)iφ2

ni(x)dx
(3)

where, ωn is the angular frequency and fn = ωn

2π is the frequency in Hz, φni is the

mode shape of ith section of the bolted beam corresponding to nth mode and for

the single beam, i = 1.

To describe the procedure of obtaining approximate mode shape a single non-

uniform beam corresponding to nth mode, we take i = 1.

– First Mode: For the first mode of the single non-uniform cantilever beam, we

approximate the assumed mode shape φ11 by a polynomial expression

φ11(x) = c0 + c1
x

L
+ c2

(
x

L

)2
+ c3

(
x

L

)3
+ c4

(
x

L

)4
, (4)

where, c0, c1, c2, c3, c4 are five unknown coefficients. These unknowns are de-

termined using the boundary conditions and normalization condition as follow.

φ11(0) = 0, φ′
11(0) = 0, φ′′

11(L) = 0, φ′′′
11(L) = 0, φ11(L) = 1, (5)

On solving the above equation, we obtain the following form of the first mode

φ11(x) = 78.125x2 − 325.52x3 + 508.63x4. (6)
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Using Eqs. (3) and (6), we get the frequency of first mode as 54.5 Hz.

– Second Mode: By observing the second mode shape of single beam with lower

end fixed from the experimental and numerical simulation from Figs. 2 and 5,

we noticed that there exist an additional zero position at α = 0.12m from the

fixed end. Consequently, the order of the assumed polynomial for the second

mode shape is increased by one in order to satisfy additional zero position

boundary condition. Therefore, the assumed mode shape can be written as

φ21(x) = c0 + c1

(
x

L

)
+ c2

(
x

L

)2
+ c3

(
x

L

)3
+ c4

(
x

L

)4
+ c5

(
x

L

)5
. (7)

The unknown coefficients c0, c1, c2, c3, c4, c5 can be obtained from the following

conditions:

φ21(0) = 0, φ′
21(0) = 0, φ′′

21(L) = 0, φ′′′
21(L) = 0, φ21(α) = 0, φ21(L) = 1 (8)

where, α = 0.12 m is the zero-location of second mode. Solving the above

equations, we obtain the final form of mode shape as

φ21(x) = −581.60x2 + 9295.43x3 − 46737.11x4 + 80532.50x5. (9)

Using Eqs. (3) and (9), we get the frequency of first mode as 378.56 Hz. The

errors associated with the measured values of zero location α = 0.12± 0.006m

may vary from 2% when α = 0.126m to 6% when α = 0.114m. These errors

can be reduced by increasing the number of scanning points on the beam.

– Third Mode: Like the case of second mode, by observing the modes of single

beam from the experimental and numerical results as shown in Figs. 2 and 5,

we noticed two additional zero locations at β = 0.07m and α = 0.13 m from the

fixed end. Consequently, the assumed mode shape can be approximated with

the polynomial expression of order six, i.e., one order higher to the second
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mode to satisfy the extra zero conditions. The mode shape is given by

φ31(x) = c0 + c1

(
x

L

)
+ c2

(
x

L

)2
+ c3

(
x

L

)3
+ c4

(
x

L

)4
+ c5

(
x

L

)5
+ c6

(
x

L

)6
(10)

The unknown coefficients c0, c1, c2, c3, c4, c5 and c6 can be obtained from the

following conditions:

φ31(0) = 0, φ′
31(0) = 0, φ′′

31(L) = 0, φ′′′
31(L) = 0, φ31(β) = 0, φ31(α) = 0,

φ31(L) = 1(11)

where, β = 0.07 m and α = 0.13 m are zero positions. On solving Eq. (11), we

get the following form of the mode shape

φ31(x) = 1422.53x2 − 44591.89x3 + 4.82× 105x4 − 2.19× 106x5

+3.61× 106x6. (12)

Using Eqs. (3) and (12), we get the frequency of third mode as 1007.87 Hz.

Taking the possible variation of zero locations as β = 0.07 ± 0.006m and α =

0.13±0.006 m, the percentage error in computing the frequency may vary from

5.7% to 14.5%. Therefore, measurement of zero location is very important to

compute the accurate frequency of non-uniform beams.

Table 3 Frequencies of single non-uniform beam with diverging section.

Modes Exp. Result [Hz] Anal. Result [Hz] Num. Result [Hz]

1st mode 54.68 54.5 54.49
2nd mode 371.09 378.56 380.75
3rd mode 1146.48 1007.87 1100

On comparing the analytical solutions with the experimental and numerical

results in Table 3, we found that the percentage error for the first mode is less

than 1%, the second mode is about 2% and the third mode is about 12% with

respect to the experimental results.
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Fig. 6 Analytical mode shapes of bolted cantilever beams with (a) two, and (b) three non-
uniform sections.

4.2 Modal Analysis of a Bolted Cantilever Beam with Two Non-Uniform Sections

To analytically compute the mode shapes and frequencies of a bolted beam with

two sections, we follow the same approach as discussed above to compute the

approximate modeshape of each section. The length of each section is taken as

L=0.16 m such that first section ranges from x = 0 to x = L1 = 0.16 m and

second section ranges from x = L1 = 0.16m to x = L2 = 0.32m. Using the

dimensions and properties of the beam, the variation of mass and flexural rigidity

for the two sections can be written as,

m1(x) = 0.162 + 0.675x, EI1(x) = 1.38 + 5.75x.

m2(x) = 0.054 + 0.675x, EI2(x) = 0.46 + 5.75x. (13)

To find the frequencies of all the three modes, we first compute the mode

shapes using approximate methods in conjunction with the boundary conditions,

normalization condition and bolted joint condition, etc., in the following section.
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– First Mode: The assumed first mode shape φ1 is written in terms of the mode

shapes of two sections, i.e., φ11 and φ12, such that φ1 = φ11+φ12. The assumed

mode shapes of φ11 and φ12 can be written as

φ11(x) = a0 + a1
x

L
+ a2

x2

L2
,

φ12(x) = b0 + b1
x

L
+ b2

x2

L2
+ b3

x3

L3
+ b4

x4

L4
(14)

where, a0, a1, a2, b0, b1, b2,b3 and b4 are unknown coefficients which can

be obtained from the boundary conditions, normalization condition, and joint

conditions. The equations associated with all the necessary conditions can be

written as

φ11(0) = 0, φ′
11(0) = 0, φ11(L1) = φ12(L1), φ′

11(L1) = φ′
12(L1),(

EI(x)φ′′
11(x)

)
|x=L1 = −kr1φ′

11(L1) +
(
EI(x)φ′′

12(x)
)
|x=L1,

φ12(L2) = 1, φ′′
12(L2) = 0, φ′′′

12(L2) = 0,
(
EI(x)φ′′′

11(x)
)
|x=L1 =(

EI(x)φ′′′
12(x)

)
|x=L1, (15)

where, kr1 is the torsional stiffness of the bolted joints located at x = L1.

Taking kr1 = 0.01 Nm/rad, the mode shapes of all the sections corresponding

to first mode of the bolted beam can be written as

φ11(x) = 16.35x2 − 22.72x3,

φ12(x) = 0.19− 3.30x+ 36.36x2 − 75.74x3 + 59.18x4. (16)

Using the above equation, the modal frequency is found as 14.08 Hz.

– Second Mode: To obtain the expression of second mode, we use additional zero

position at x = α = 0.21 m found from the experiment. Consequently, the

order of the assumed polynomial for the second section is increased by one in

order to satisfy additional boundary condition, i.e., φ22(α) = 0. Writing the

second mode shape as φ2 = φ21 + φ22, where, φ21 and φ22 are the assumed
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mode shapes of two sections which are obtained with kr1 = 0.01 Nm/rad as

φ21(x) = −23.41x2 + 106.71x3,

φ22(x) = −1.59 + 46.82x− 526.92x2 + 2581.84x3 − 5495.401x4

+4347.91x5. (17)

Using Eqs. (3) and (17), we get the second modal frequency as 68.48 Hz. We

have also found that the error associated with the zero position α = 0.21 ±

0.007m may vary from 7− 8%.

– Third Mode: To obtain the expression of third mode, we use two additional

zero locations at x = β = 0.14m and x = α = 0.28 m from the fixed end.

Consequently, the order of the assumed mode shape for the first and the sec-

ond sections are increased by one order each as compared to that in the first

mode. Consequently, the assumed mode shapes satisfy additional boundary

conditions, i.e., φ31(β) = 0 and φ32(α) = 0. Writing the third mode shape as

φ3 = φ31 +φ32, where, φ31 and φ32 are the mode shapes of two sections which

are obtained as

φ31(x) = 324.38x2 − 3474.65x3 + 8747.44x4,

φ32(x) = −30.38 + 750.49x− 6796.61x2 + 28320.76x3

−55315.8x4 + 41487.75x5. (18)

Using Eqs. (3) and (18), we get the third modal frequency as 251.33 Hz. The

maximum percentage error associated with the variation in measuring zero

positions β = 0.14 ± 0.007m and x = α = 0.28 ± 0.007 m is found to be less

than 2%.

To understand the variation of torsional stiffness kr1 on computed frequency,

we do sensitivity analysis with respect to different values of kr1. For kr1=0,

0.01, 0.1, 1, 10 Nm/rad, the frequency values of first, second and third modes

are mentioned in Table 4. As the stiffness value increases, the first mode fre-
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Table 4 Variation of first three modal frequencies of two section bolted beam with bolt
parameter kr1.

kr1 [Nm/rad] First Mode [Hz] Second Mode[Hz] Third Mode [Hz]

0.0 14.07 68.4808 266.589
0.01 14.08 68.4811 266.598
0.1 14.11 68.4836 266.672
1 14.47 68.508 267.409
10 17.4 68.7326 274.33

Table 5 Frequency comparison for bolted beam with two sections

Mode Exp. results [Hz] Anal. results [Hz] % Error

1st mode 13.1 14.08 7.5
2nd mode 66.5 68.48 3.0
3rd mode 260.25 266.60 2.4

quency is changed by more than 10% only when kr1 value increases from 1 to

10. The percentage change in the frequencies of second and third modes are

less than 1% and 3%, respectively, when kr1 varies from 0 to 10. When we

compare the computed values with kr1 = 0.01 Nm/rad with measured values

in Table 5, we get percentage errors of 7.5%, 3.0% and 2.4%. Hence, a smaller

value of kr1 = 0.01 implies that the bolted joint between the two beams pro-

vide marginally stiffness to the system of two beams and hence rigidly joined

the two beams. For the system of three non-uniform bolted beams, we use

kr1 = 0.01 Nm/rad for both the joints in the following section.

4.3 Modal Analysis of a Bolted Cantilever Beam with Three Non-Uniform

Sections

To compute the approximate expression of mode shapes corresponding to first

three modes of a bolted cantilever beam with three non-uniform sections as shown

in Fig. 6, we define section 1 from x = 0 to x = L1 = L, section 2 from x = L1 = L

to x = L2 = 2L, and section 3 from x = L2 = 2L to x = L3 = 3L. Using the

previously defined values of dimensions, the variation of mass, m(x) and flexural
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rigidity EI(x) over the three sections can be written as

m1(x) = 0.162 + 0.675x, EI1(x) = 1.38 + 5.75x.

m2(x) = 0.054 + 0.675x, EI2(x) = 0.46 + 5.75x. (19)

m3(x) = −0.054 + 0.675x, EI3(x) = −0.46 + 5.75x.

To find the mode shapes of first three modes of bolted beam with three non-uniform

sections, we write the combined mode shape in terms of the shape of each section,

respectively. Subsequently, we obtain the unknowns associated with the assumed

mode shapes by satisfying the boundary conditions, normalization condition and

the joint conditions as described for bolted beams with two sections.

– First Mode: Writting the first mode shape φ1 in terms of the shapes of all

the three sections, i.e., φ11, φ12, and φ13, we get φ1 = φ11 + φ12 + φ13. The

assumed mode shapes of φ11, φ12, and φ13 can be written as

φ11(x) = a0 + a1
x

L
+ a2

x2

L2
, φ12(x) = b0 + b1

x

L
+ b2

x2

L2
,

φ13(x) = c0 + c1
x

L
+ c2

x2

L2
+ c3

x3

L3
+ c4

x4

L4
(20)

where, a0, a1, a2, b0, b1, b2, c0, c1, c2, c3 and c4 are unknown coefficients which

can be obtained from the boundary conditions, normalization condition, and

joint conditions from the following equations,

φ11(0) = 0, φ′
11(0) = 0, φ11(L1) = φ12(L1), φ′

11(L1) = φ′
12(L1),(

EI(x)φ′′
11(x)

)
|x=L1 = −kr1φ′

11(L1) +
(
EI(x)φ′′

12(x)
)
|x=L1, φ12(L2)

= φ13(L2), φ′
12(L2) = φ′

13(L2),
(
EI(x)φ′′

12(x)
)
|x=L2 = −kr2φ′

12(L2)

+
(
EI(x)φ′′

13(x)
)
|x=L2, φ13(L4) = 1, φ′′

13(L4) = 0, φ′′′
13(L4) = 0,(

EI(x)φ′′′
11(x)

)
|x=L1 =

(
EI(x)φ′′′

12(x)
)
|x=L1,(

EI(x)φ′′′
12(x)

)
|x=L2 =

(
EI(x)φ′′′

13(x)
)
|x=L2, (21)



20 Bimal Purohit et al.

where, kr1 and kr2 are the torsional stiffness of the bolted joints located at

x = L1 and x = L2. Taking kr1 = kr2=0.01 Nm/rad, the mode shapes of

all the three sections corresponding to first mode of the bolted beam can be

written as

φ11(x) = 6.05x2 − 5.05x3, φ12(x) = 0.076− 1.03x+ 10.09x2 − 8.42x3,

φ13(x) = 0.63− 6.5x+ 30.3x2 − 40.08x3 + 21.92x4. (22)

The first mode shape is also shown in Fig. 6(b). Using Eqs. (3) and (22), we

get the first modal frequency as 6.10 Hz.

– Second Mode: Since the second mode shape of the bolted three non-uniform

beam has an additional zero position at x = α = 0.33 m which is located in

third section as shown in Fig. 4(b), the order of polynomial for the third section

is increased by one to satisfy the boundary condition, i.e., φ23(α) = 0. Writing

the second mode shape as φ2 = φ21 + φ22 + φ23, where, φ21, φ22, and φ23 are

the assumed mode shapes of three sections. Using the same sets of boundary

conditions, normalization conditions, condition of additional zero position and

joint conditions, we obtain

φ21(x) = −7.16x2 + 18.92x3, φ22(x) = −0.02 + 0.56x− 11.94x2

+31.54x3, φ23(x) = −16.23 + 231.03x− 1279.34x2 + 3396.03x3

−4298.73x4 + 2108.3x5. (23)

The final second mode shape can also shown in Fig. 6(c). Using Eqs. (3) and

(23), we get the second modal frequency as 38.38 Hz. The percentage error in

computing frequency due to the variation of zero point α = 0.33 ± 0.007m is

found to be less than 5%.

– Third Mode: Similarly, the measure mode shape of third mode has two addi-

tional zero locations at x = β = 0.23m and x = α = 0.37 m from the fixed end.

Consequently, the order of the assumed mode shape for the second section and
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the third section are increased by one order each as compared to that in the

first mode. Consequently, the assumed mode shapes satisfy additional bound-

ary conditions, i.e., φ32(β) = 0 and φ33(α) = 0. Writing the third mode shape

as φ3 = φ31+φ32+φ33, where, φ31, φ32, and φ33 are the assumed mode shapes

of three sections. The shape of three sections are obtained using the boundary

conditions, normalization conditions, condition of additional zero positions and

joint conditions with the same values of k1 and k2 as

φ31(x) = 5.77x2 − 23.83x3, φ32(x) = 0.2− 5.82x+ 64.1x2

−266.66x3 + 354.59x4, φ33(x) = −54.50 + 736.71x− 3863.81x2

+9796.72x3 − 12024.83x4 + 5768.64x5. (24)

The final third mode shape can also shown in Fig. 6(d). Using Eqs. (3) and

(24), we get the third modal frequency as 74.98 Hz. The percentage error in

computing frequency due to the variation of zero points β = 0.23±0.007m and

x = α = 0.37± 0.007m vary from 1% to 9%.

Finally, when we compare the analytical results with experimental results in Ta-

ble 6, we find the maximum percentage error of about 14.8%. Error may be due

to the approximate mode shapes, minor difference in the symmetry of the ta-

pering and holes provided at the end of the fabricated non-uniform beams, some

uncertainties associated with the bolted joints, frequency resolution in the mea-

sured signal, etc. It is also found that by increasing the torsional stiffness, we

can obtain the changes in the mode shapes and frequencies. Since the values of

kr1 = kr2 = 0.01 Nm/rad are found to be small in the present case, therefore,

modal frequencies of bolted beams may found to be closer to the monolithic beam

with three sections without any bolted joints.
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Table 6 Frequency comparison for bolted beam with three sections

Mode Exp. results [Hz] Anal. results [Hz] % Error

1st mode 5.63 6.10 8.35
2nd mode 33.43 38.38 14.8
3rd mode 73.44 74.98 2.0

4.4 Modal Analysis of Three-Sections Monolithic Beam

In this section, we compute modal frequencies of monolithic beam with three sec-

tions without any joint by neglecting the terms associated with torsional stiffness

at the joints. Using the zero position of second mode at x = α = 0.36m and the

third mode at x = α = 0.4m and x = β = 0.23m obtained from the experimental

mode shapes, we get the final form of the mode shapes using the same procedure

as described in the previous section. For the first mode, we get the following shape

functions

φ11(x) = 6.05x2 − 5.04x3, φ12(x) = 0.08− 1.03x+ 10.08x2 − 8.40x3,

φ13(x) = 0.63− 6.48x+ 30.25x2 − 42.02x3 + 21.89x4. (25)

For the second mode, we obtain the mode shape as

φ21(x) = −10.50x2 + 24.98x3, φ22(x) = −0.04 + 0.96x− 17.50x2 + 41.62x3,

φ23(x) = −20.49 + 291.00x− 1610.05x2 + 4264.21x3 − 5389.75x4 + 2640.77x5.(26)

Similarly, the corresponding mode shapes for the third mode are obtained as,

φ31(x) = 11.56x2 − 47.53x3, φ32(x) = 0.33− 9.82x+ 110.99x2 − 461.40x3

+597.17x4, φ33(x) = −84.59 + 1137.73x− 5935.53x2 + 14972.72x3

−18312.23x4 + 8761.62x5 (27)

Using the mode shape expressions, we obtained the modal frequencies from Eq. (3)

as 6.10 Hz, 47.54 Hz, and 110.55 Hz corresponding to first three transverse modes.
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Table 7 Frequency comparison for three section monolithic beam

Mode Exp. results [Hz] Anal. results [Hz] % Error

1st mode 6.75 6.10 9.63
2nd mode 43.25 47.54 9.9
3rd mode 118.0 110.55 6.74

On comparing the analytical results with the experimental results as mentioned

in Table 7, the percentage errors are found to be below 10%. It is also noticed

that due to small values of torsional stiffness at the joints and non-trivial mass of

bolts, the frequencies of bolted joint are found to be less than that of monolithic

beam. Although, the present formulation is useful when the joint acts as a torsional

spring especially under free standing structures, it should be modified to include

frictional effect to capture more realistic characteristics of bolted joints under

different loading conditions. However, the method presented in the paper can be

easily extended to the bolted beams of several complicated bolted non-uniform

sections where the stiffness of the bolted joint is significant.

5 Conclusions

In this paper, we present theoretical modeling of single non-uniform cantilever

beam and bolted cantilever beams with three non-uniform sections to compute

the modal frequencies of first three transverse modes. To develop the model, we

first carry out experiments to measure the modal frequencies and shapes of single

non-uniform cantilever beam with linearly diverging section, bolted beams with

two and three sections, monolithic beam with three section, respectively. On com-

paring the results, we found that the frequencies of bolted beams reduce due to

reduction in the stiffness and non-trival mass of bolt at the joints as compared

to that of the monolithic beam with three sections without joints. To understand

the modeling, we also develop numerical models of cantilever beams with single

and three non-uniform sections without joint. On comparing the numerical and

experimental results, we found that the model based on the Euler-Bernoulli beams
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can be used to develop analytical model. Finally, we develop approximate analyt-

ical model to first find the mode shapes using the information of zero position of

the experimental mode shapes for the single beam and then compare the results

with the experimental and numerical values. Subsequently, we extend the method

to model the bolted beams by replacing each bolted joint by a torsional spring

of stiffness, kr = 0.01 Nm/rad. On comparing the analytical results with exper-

iment values, we found the maximum percentage error of about 15% is found in

the bolted beam with three non-uniform sections. For the case of bolted beam

with two sections, the percentage error is found to be less than 10%. The error

may be due to the approximate mode shapes as well as differences in the physical

dimensions of fabricated non-uniform beams. It is also noticed that experimental,

FEA and analytical, all three values match very closely for first mode ( less than

10% error), however, difference for higher modes is more (10 – 15%). Finally, we

state that the method presented in the paper can be easily extended to the bolted

structures with many non-uniform sections.
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