## MarKov Chains 4

## 1 Approximate Counting

We have a universe $U$ of elements and a subset $S \subseteq U$. Our goal is to find $|S|$. It may not be possible to find this value exactly with an efficient algorithm, thus our goal will be to find an approximate value, with a trade-off between running time and approximation (and error probability for a randomized algrorithm). Formally, we define the following.

Definition An algorithm to estimate $z$ is a Fully Polynomial-time Randomized Approximation Scheme or FPRAS, if the output $\bar{z}$ of the algorithm satisfies:

$$
\operatorname{Pr}(|z-\bar{z}|>\varepsilon z)<\delta
$$

and the algorithm runs in time:

$$
\operatorname{poly}(\mid \text { input } \mid) \frac{1}{\varepsilon^{2}} \log \left(\frac{1}{\delta}\right) .
$$

An output $\bar{z}$ such as above is called an $(\varepsilon, \delta)$-approximation (to the value $z$ ).

## Basic Monte Carlo Algorithm:

- Pick samples $X=\left\{X_{1}, \ldots, X_{N}\right\}$ u.a.r. from $U$.
- Let $s=|\{x \in X \cap S\}|$.
- Output $\frac{s}{N}|U|$.

For an $\varepsilon, \delta)$-approximation, we have the following which follows from Chernoff bounds.

Proposition 1 The number $N$ of samples needed for the above algorithm is: $N \sim \Theta\left(\frac{|U|}{|S|} \frac{1}{\varepsilon^{2}} \log \left(\frac{1}{\delta}\right)\right)$.
The above algorithm would be a FPRAS only if $|U| /|S|$ is bounded polynomially by the input size, which need not be the case.

In the second step, to find $|X \cap S|$, we assume that we have an algorithm that can test whether a given element belongs to $S$; and the running time will be that of this algorithm multiplied by $N$, the number of samples.

## 2 Counting DNF solutions

A DNF (Disjunctive Normal Form) formula consists of a disjunction of clauses, each of which is an AND of literals, that is: $\varphi=C_{1} \vee C_{2} \vee \ldots \vee C_{m}$; where each $C_{i}$ is a conjunction of literals. For example, let $\varphi=C_{1} \vee C_{2} \vee C_{3}$, where $C_{1}=(x \wedge \neg y \wedge z \wedge w), C_{2}=(y \wedge z), C_{3}=(x \wedge \neg w)$. Note that a DNF formula has satisfying assignments that are easy to find; just set all the literals of one clause to True, and arbitrarily assign other literals. In the above example, two satisfying assignments are $x=y=z=w=T$ and $x=y=T, z=w=F$. The interesting question here is to find the number of distinct satisfying assignments.

Let $S_{i}$ denote the set of satisfying assignments to $C_{i}$, the $i$ th clause. Then we want to find $|S|$, where $S=S_{1} \cup S_{2} \cup \ldots \cup S_{m}$. One approach is to use inclusion-exclusion. Write $S=\sum_{i}\left|S_{i}\right|-\sum_{i, j}\left|S_{i} \cap S_{j}\right|+\ldots$ and note that intersections can be computed easily; for example, if a conjunctive clause has $k$ distinct literals (and no two negations of each other), then the number of solutions to that clause is $2^{n-k}$. However, there are $\Theta\left(2^{m}\right)$ terms in the sum, which makes the running time prohibitively large.

We will instead use an approach that still makes use of the fact that we can write $S=S_{1} \cup \ldots \cup S_{m}$, with each $\left|S_{i}\right|$ known. We will also use the fact that we can sample from each $S_{i}$.

Assumptions: We know $\left|S_{i}\right|$, and we can sample from each $S_{i}$. Note that these assumptions are satisfied for the DNF counting problem; to sample from $S_{i}$, set the literals of that clause to True, and set other variables u.a.r to True or False.

Let $T_{i}=\left\{(i, x) \mid x \in S_{i}\right\}$ and $T=T_{1} \cup \ldots \cup T_{m} .|T| \leq m|S|$.

## Algorithm to sample u.a.r. from $T$

- Pick $i \in\{1,2, \ldots, m\}$ with prob $\frac{\left|S_{i}\right|}{|T|}$
- Pick $x$ u.a.r from $S_{i}$.

We note that $\operatorname{Pr}[(i, x)$ is output $]=\frac{\left|S_{i}\right|}{|T|} \frac{1}{\left|S_{i}\right|}=\frac{1}{|T|}$ as desired.
Algorithm to find $|S|$ where $S=S_{1} \cup \ldots \cup S_{m}$.

- Pick $\left(i_{1}, x_{1}\right), \ldots,\left(i_{N}, x_{N}\right)$ u.a.r. from $T$.
- For each $k$, set $C_{k}=1$ for $(i, x)$ if $S_{i}$ is the first set $\ni x$. Else set $C_{k}=0$.
- Let $C=C_{1}+\ldots+C_{N}, C_{i} \in\{0,1\}$.
- Output $\frac{C}{N}|T|$ as the estimate of $|S|$.

Note that $\operatorname{Pr}\left[C_{k}=1\right]=\frac{|S|}{|T|} ;$ thus from Proposition 1, it follows that $N=$ $\Theta\left(m \frac{1}{\varepsilon^{2}} \log \left(\frac{1}{\delta}\right)\right)$ is sufficient to get an $(\varepsilon, \delta)$ - approximation.

