
CS5120: Probability & Computing Jan-May 2020

Markov Chains 4

1 Approximate Counting

We have a universe U of elements and a subset S ⊆ U . Our goal is to �nd |S|.
It may not be possible to �nd this value exactly with an e�cient algorithm,
thus our goal will be to �nd an approximate value, with a trade-o� between
running time and approximation (and error probability for a randomized
algrorithm). Formally, we de�ne the following.

De�nition An algorithm to estimate z is a Fully Polynomial-time Ran-

domized Approximation Scheme or FPRAS, if the output z̄ of the
algorithm satis�es:

Pr (|z − z̄| > εz) < δ

and the algorithm runs in time:

poly(|input|) 1

ε2
log(

1

δ
).

An output z̄ such as above is called an (ε, δ)-approximation (to the value z).

Basic Monte Carlo Algorithm:

• Pick samples X = {X1, . . . , XN} u.a.r. from U .

• Let s = |{x ∈ X ∩ S}|.

• Output
s

N
|U |.

For an ε, δ)-approximation, we have the following which follows from Cherno�
bounds.

Proposition 1 The number N of samples needed for the above algorithm is:

N ∼ Θ

(
|U |
|S|

1

ε2
log(

1

δ
)

)
.

The above algorithm would be a FPRAS only if |U |/|S| is bounded polyno-
mially by the input size, which need not be the case.

1

2

In the second step, to �nd |X ∩ S|, we assume that we have an algorithm
that can test whether a given element belongs to S; and the running time
will be that of this algorithm multiplied by N , the number of samples.

2 Counting DNF solutions

ADNF (Disjunctive Normal Form) formula consists of a disjunction of clauses,
each of which is an AND of literals, that is: ϕ = C1 ∨ C2 ∨ . . . ∨ Cm; where
each Ci is a conjunction of literals. For example, let ϕ = C1 ∨ C2 ∨ C3,
where C1 = (x ∧ ¬y ∧ z ∧ w), C2 = (y ∧ z), C3 = (x ∧ ¬w). Note that a
DNF formula has satisfying assignments that are easy to �nd; just set all
the literals of one clause to True, and arbitrarily assign other literals. In
the above example, two satisfying assignments are x = y = z = w = T and
x = y = T, z = w = F . The interesting question here is to �nd the number
of distinct satisfying assignments.

Let Si denote the set of satisfying assignments to Ci, the ith clause. Then
we want to �nd |S|, where S = S1 ∪ S2 ∪ . . . ∪ Sm. One approach is to use
inclusion-exclusion. Write S =

∑
i |Si| −

∑
i,j |Si ∩ Sj| + . . . and note that

intersections can be computed easily; for example, if a conjunctive clause has
k distinct literals (and no two negations of each other), then the number of
solutions to that clause is 2n−k. However, there are Θ(2m) terms in the sum,
which makes the running time prohibitively large.

We will instead use an approach that still makes use of the fact that we can
write S = S1 ∪ . . .∪Sm, with each |Si| known. We will also use the fact that
we can sample from each Si.

Assumptions: We know |Si|, and we can sample from each Si. Note that
these assumptions are satis�ed for the DNF counting problem; to sample
from Si, set the literals of that clause to True, and set other variables u.a.r
to True or False.

Let Ti = {(i, x)|x ∈ Si} and T = T1 ∪ . . . ∪ Tm. |T | ≤ m|S|.

Algorithm to sample u.a.r. from T

• Pick i ∈ {1, 2, . . . ,m} with prob
|Si|
|T |

• Pick x u.a.r from Si.

3

We note that Pr[(i, x) is output] =
|Si|
|T |

1

|Si|
=

1

|T |
as desired.

Algorithm to �nd |S| where S = S1 ∪ . . . ∪ Sm.

• Pick (i1, x1), . . . , (iN , xN) u.a.r. from T .

• For each k, set Ck = 1 for (i, x) if Si is the �rst set 3 x. Else set Ck = 0.

• Let C = C1 + . . .+ CN , Ci ∈ {0, 1}.

• Output
C

N
|T | as the estimate of |S|.

Note that Pr[Ck = 1] =
|S|
|T |

; thus from Proposition 1, it follows that N =

Θ

(
m

1

ε2
log(

1

δ
)

)
is su�cient to get an (ε, δ)- approximation.

