Lecture 16/17
 The Method of Conditional Expectations

Lecturer: N.R.Aravind
Scribe: N.R.Aravind

1 3-SAT and random assignments

A k-SAT instance φ is a set of clauses, where each clause is an OR of k distinct literals. An instance in which every clause has at most k distinct literals will be called a partial k-SAT instance; a partial instance can have empty clauses which are assumed to be True. We denote by m the number of clauses, and n the number of variables.

An example of a 3-SAT instance is $\varphi=\{(x \vee \bar{y} \vee \bar{z}),(\bar{x} \vee z \vee \bar{w})\}$ with $m=2$ clauses, over $n=4$ variables. An example of a partial 3-SAT instance is $\varphi(x=F)=\{(\bar{y} \vee \bar{z}),(T)\}$.

We denote by $\mu(\varphi)$, the expected number of clauses satisfied by a random assignment to the variables of φ.

Observation:

- If φ is an instance of 3-SAT, then the probability of each clause being satisfied is $1-1 / 8=7 / 8$; thus $\mu(\varphi)=7 m / 8$.
- If φ is a partial 3-SAT instance, with $m_{0}, m_{1}, m_{2}, m_{3}$ denoting the number of clauses of size $0,1,2,3$ respectively, then $\mu(\varphi)=m_{0}+\frac{1}{2} m_{1}+$ $\frac{3}{4} m_{2}+\frac{7}{8} m_{3}$.

2 Finding an assignment satisfying many clauses

For a 3-SAT instance φ with m clauses, we saw that the expected number of clauses satisfied by a random assignment is $7 \mathrm{~m} / 8$. Can we actually find an assignment satisfying these many clauses? That's the goal of this section.

Let φ be a 3-SAT instance with n variables and m clauses. Consider a binary tree whose root is φ, with leaves being the 2^{n} possible assignments, and where each vertex at the i th level (for $i=1,2, \ldots, n$) has two children, one corresponding to $x_{i}=T$ and the other corresponding to $x_{i}=F$.

The first two levels of this tree are illustrated below. A vertex at depth i corresponds to a partial 3-SAT instance, in which the first i variables have been assigned values.

Our algorithm will successively choose a truth-value for each of x_{1}, \ldots, x_{n}. Which value should we choose for x_{1} ? Equivalently, which of the two subtrees $\left(\varphi \mid x_{1}=T\right)$ vs $\left.\varphi \mid x_{1}=F\right)$ should we choose?

The idea is that we choose the "heavier" subtree, where the "weight" of a subtree rooted at node v is equal to $\mu\left(\varphi_{v}\right)$; here φ_{v} is the partial 3 -SAT instance at node v.

Thus, the algorithm is the following:

- Set u to be the root.
- For $i=1$ to n, do:
- If $\mu\left(\varphi_{u} \mid x_{i}=T\right)>\mu\left(\varphi_{u} \mid x_{i}=F\right)$, then set $x_{i}=T$ and u to be the child node(of current u) corresponding to $x_{i}=T$. Else set $x_{i}=F$ and u to be the child node corresponding to $x_{i}=F$.
We claim that after every iteration, $\mu\left(\varphi_{u}\right)$ stays the same or increases (that is, is non-decreasing). Thus, when the algorithm reaches a leaf node, corresponding to an assignment $x_{1}=a_{1}, \ldots, x_{n}=a_{n}$, where each $a_{i} \in\{T, F\}$, the number of clauses satisfied by this assignment is at least as large as $\mu(\phi)=\frac{7 m}{8}$.

To prove the claim, let u be a node with two children v, w, where v corresponds to $x_{i}=T$ and w to $x_{i}=F$. Then note that:

$$
\mu\left(\varphi_{u}\right)=\frac{1}{2} \mu\left(\varphi_{u} \mid x_{i}=T\right)+\frac{1}{2} \mu\left(\varphi_{u} \mid x_{i}=F\right)=\frac{1}{2}\left(\mu\left(\varphi_{v}\right)+\mu\left(\varphi_{w}\right)\right) .
$$

Thus, $\max \left(\mu\left(\varphi_{v}\right), \mu\left(\varphi_{w}\right)\right) \geq \mu\left(\varphi_{u}\right)$, which proves the claim, and completes the argument for correctness of the algorithm.

Analysis of running time: A key point of the above algorithm is that computing φ_{u} for a node u can be done efficiently (in polynomial time), since from section 1, it is a linear combination of the number of clauses with $0,1,2,3$ literals; these numbers can be counted in $O(m)$ time. Thus each iteration takes $O(m)$ time, so that the total running time is $O(m n)$.

