
CS5120: Probability & Computing Jan-May 2020

Lecture 16/17
The Method of Conditional Expectations

Lecturer: N.R.Aravind Scribe: N.R.Aravind

1 3-SAT and random assignments

A k-SAT instance ϕ is a set of clauses, where each clause is an OR of k
distinct literals. An instance in which every clause has at most k distinct
literals will be called a partial k-SAT instance; a partial instance can have
empty clauses which are assumed to be True. We denote by m the number
of clauses, and n the number of variables.

An example of a 3-SAT instance is ϕ = {(x∨ ȳ ∨ z̄), (x̄∨ z ∨ w̄)} with m = 2
clauses, over n = 4 variables. An example of a partial 3-SAT instance is
ϕ(x = F) = {(ȳ ∨ z̄), (T)}.

We denote by µ(ϕ), the expected number of clauses satis�ed by a random
assignment to the variables of ϕ.

Observation:

• If ϕ is an instance of 3-SAT, then the probability of each clause being
satis�ed is 1− 1/8 = 7/8; thus µ(ϕ) = 7m/8.

• If ϕ is a partial 3-SAT instance, withm0,m1,m2,m3 denoting the num-

ber of clauses of size 0, 1, 2, 3 respectively, then µ(ϕ) = m0 +
1

2
m1 +

3

4
m2 +

7

8
m3.

2 Finding an assignment satisfying many clauses

For a 3-SAT instance ϕ with m clauses, we saw that the expected number of
clauses satis�ed by a random assignment is 7m/8. Can we actually �nd an
assignment satisfying these many clauses? That's the goal of this section.

1

2

Let ϕ be a 3-SAT instance with n variables and m clauses. Consider a
binary tree whose root is ϕ, with leaves being the 2n possible assignments,
and where each vertex at the ith level (for i = 1, 2, . . . , n) has two children,
one corresponding to xi = T and the other corresponding to xi = F .

The �rst two levels of this tree are illustrated below. A vertex at depth i
corresponds to a partial 3-SAT instance, in which the �rst i variables have
been assigned values.

ϕ(x1, x2, . . . , xn)

ϕ(T, x2, . . . , xn) ϕ(F, x2, . . . , xn)

ϕ(T, T, . . . , xn) ϕ(T, F, . . . , xn) ϕ(F, T, . . . , xn) ϕ(F, F, . . . , xn)

Our algorithm will successively choose a truth-value for each of x1, . . . , xn.
Which value should we choose for x1? Equivalently, which of the two subtrees
(ϕ|x1 = T) vs ϕ|x1 = F) should we choose?

The idea is that we choose the �heavier� subtree, where the �weight� of a
subtree rooted at node v is equal to µ(ϕv); here ϕv is the partial 3-SAT
instance at node v.

Thus, the algorithm is the following:

• Set u to be the root.

• For i = 1 to n, do:

• If µ(ϕu|xi = T) > µ(ϕu|xi = F), then set xi = T and u to be the child
node(of current u) corresponding to xi = T . Else set xi = F and u to
be the child node corresponding to xi = F .

We claim that after every iteration, µ(ϕu) stays the same or increases (that
is, is non-decreasing). Thus, when the algorithm reaches a leaf node, corre-
sponding to an assignment x1 = a1, . . . , xn = an, where each ai ∈ {T, F},
the number of clauses satis�ed by this assignment is at least as large as

µ(φ) =
7m

8
.

3

To prove the claim, let u be a node with two children v, w, where v corre-
sponds to xi = T and w to xi = F . Then note that:

µ(ϕu) =
1

2
µ(ϕu|xi = T) +

1

2
µ(ϕu|xi = F) =

1

2
(µ(ϕv) + µ(ϕw)) .

Thus, max (µ(ϕv), µ(ϕw)) ≥ µ(ϕu), which proves the claim, and completes
the argument for correctness of the algorithm.

Analysis of running time: A key point of the above algorithm is that
computing ϕu for a node u can be done e�ciently (in polynomial time),
since from section 1, it is a linear combination of the number of clauses with
0,1,2,3 literals; these numbers can be counted in O(m) time. Thus each
iteration takes O(m) time, so that the total running time is O(mn).

