## CS5120: Probability \& Computing

Jan-May 2020

## Lecture 16 The Count-Min Sketch

Lecturer: N.R.Aravind
Scribe: N.R.Aravind
In the previous class, we saw the Misra-Gries algorithm for finding heavy hitters (elements with frequency at least $\varepsilon n$ in a stream of length $n$ ). It used $O\left(\frac{1}{\varepsilon} \log m\right)$ space where the domain of the elements is $\{1,2, \ldots, m\}$.
We now see the Count-Min algorithm, which is due to Cormode and Muthukrishnan (2003). It gives an estimate of the frequencies of every element, and makes an error of at most $\varepsilon n$ on each estimate.

1. Choose $t$ hash functions $h_{1}, \ldots, h_{t}:\{1,2, \ldots, m\} \rightarrow\{1,2, \ldots, k\}$, each from a pairwise independent hash family.
2. For $1 \leq i \leq t$ and $1 \leq j \leq k$, initialize counters $C[i, j]$ to zero. The counters $C[i, 1], \ldots, C[i, k]$ correspond to the $i$ th hash function.
3. For each element $x$, do: set $i_{1}=h_{1}(x), \ldots, i_{t}=h_{t}(x)$. Increment each of $C\left[1, i_{1}\right], C\left[2, i_{2}\right], \ldots, C\left[t, i_{t}\right]$ by one.
4. For each $y \in\{1, \ldots, m\}$, output $\min \left\{C\left[1, h_{1}(x)\right], C\left[2, h_{2}(x)\right], \ldots, C\left[t, h_{t}(x)\right]\right\}$ as the estimated frequency of $y$.

Analysis: We will choose the values of $t$ and $k$, based on the analysis.
Fix $y \in\{1, \ldots, m\}$ and $i \in\{1,2, \ldots, t\}$. We have $C[i, y] \geq f(y)$ and $E[C[i, h(y)]]=f(y)+\frac{n-f(y)}{k} \leq f(y)+\frac{n}{k}$. Thus, by applying Markov's inequality, we get:

$$
\operatorname{Pr}(C[i, y]-f(y) \geq \varepsilon n) \leq \frac{1}{\varepsilon k}
$$

We now choose $k=\left\lceil\frac{2}{\varepsilon}\right\rceil$ so that the above probability is at most $1 / 2$. We choose $t=\lceil(1+c) \log m\rceil$ so that we get:

$$
\operatorname{Pr}\left(\operatorname{Min}\left(C\left[1, h_{1}(y)\right], \ldots, C\left[t, h_{t}(y)\right]\right) \geq f(y)+\varepsilon n\right) \leq \frac{1}{2^{t}} \leq \frac{1}{m^{1+c}}
$$

Finally, by applying the union bound on all $m$ elements, we can bound the total probability of error by at most $\frac{1}{m^{c}}$. The choice of $c=\frac{1}{\log m} \log \left(\frac{1}{\delta}\right)$ will bring the error to at most $\delta$.
Thus, the total space complexity is $O\left(\frac{\log n}{\varepsilon}\left(\log m+\log \left(\frac{1}{\delta}\right)\right)\right)$, where $\log n$ is for the space per counter and the remaining factors are the total number of counters.

